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Outline of the talk

● Background for volcano muography 
● Geant4 simulation of the Muography Observatory System
● With the G4 simulation:

– Testing the “classic” χ2 algorithm currently being used
– Teaching a deep neural network to suppress background

● Can we use deep learning to enhance signal to noise ratio?
– Especially important for volcano muography

● Applying the machine learning algorithm to MOS-08 measurements @ Sakurajima



  

What can cosmic muons be used for?

● Attenuation muography:
– Cosmic muon flux attenuated by material (density-length)
– Directional measurement : muogram → density map of large objects
– Geophyiscs, archeology, industrial, meteorology

● Muon scattering tomography
– Multiple scattering on high-Z material
– Two tracklet matching : 

scatter map → high-Z materials
– Disclose hidden objects, homeland security

● Muon induced secondaries
– The type of secondaries that are created, 

absorbed and exit depends strongly on the material



  



  

Our detectors @ Sakurajima volcano

~ 10 m2 sensitive area
● Low signal (3 Hz) for a detector
● MWPC detectors
● Cost effective



  

Our detectors @ Sakurajima volcano

● 4 years of data
● Challenge: no spectrometer
● ~10 m resolution @ volcano

L. Oláh et al. Scientific Reports, 8, 3207, 2018,

https://doi.org/10.1038/s41598-018-21423-9



  

Muography of cyclones

● Increased pressure yields more 

μ decaying
● Low pressure → more μ
● 1 % pressure drop result in 

2 % flux increase

Tanaka et al. (2022) Sci. Rep. 12, 
16710 https://doi.org/10.1038/s41598-
022-20039-4



  

Backgrounds in volcano muography

R. Nishiyama et al. (2016)
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● Background depends on

– Detector
– Thickness of vulcano
– Elevation angle

● R. Nishiyama et al. (2016) simulated 

a realistic background for a vulcano
● R2: 300-600 m rock
● R3: 600-900 m rock



  

Backgrounds in volcano muography

● Background: protons, electrons and 
muons (hadronic origin)

● IF we could use a cut at ~1 GeV 

there would be almost no background!
● In our detetors due to absorbers very 

suppressed total background:

– Electrons
– Protons
– Scattered muons

R. Nishiyama et al. (2016)
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Geant4 simulation of the MOS-08

● Dedicated simulation developed
● Gas volume voxelized
● Output of simulation is in same 

format as the measurement pipeline
– Important for testing the tracking algorithm

● Output analyzed with same 

tracking algorithm (N-1 point χ2)
● Some “detector” effects are very hard to simulate → take the distribution 

from measurements

e- γ

μ-



  

Muon energy dependent features

500 MeV 50 GeV

● Scattering (used by χ2 algorithm)
● Secondary creation:

– Energy deposition (NOT used by χ2 algorithm)
– Lots of clusters (NOT used by χ2 algorithm as input)

Detector
Lead



  

Detector effects 

● Need to include these in the simulation to reproduce 
measurements

● Cluster size
● Gain changes:

– Changing weather
– Non homogenous gain (due to wires)

● Important for Machine Learning!



  

Testing the tracking algorithm

● Simulation data
● Different χ2 cuts shown 
● χ2<4 cut is used in this talk
● Suppresses 0.5 GeV 

muons with 95% chance
● ~98% efficiency @ 5 GeV
● ~90% efficiency @ 1 TeV



  

Neural network

● Used together with χ2 algorithm → Direction
● Binary classification:

– Was the muon above a certain energy (5 GeV used in 
this presentation)

● Residual layers for robustness
● Decouple the information sources
● Output: score (1 double) ~ probability of belonging 

to one class (it’s mapping)
● Three subnetworks:

– X direction (8 x 64 wires, 0 or 1 – hit or not)
– Y direction (8 x 64 wires, 0 or 1 – hit or not)
– Energy deposition (8 double)

Energy 
deposition

X hits
Y hits

Final decision



  

Teaching the ML

● ~ 1 day on a single GPU
● 20 million muons
● 12 GB of events data 
● Accuracy: 0.900
● Most used metric for classification AUC = 0.952



  

Results of the ML

● Cut at score 0.4 
● Cut can be tuned on demand
● Suppresses 1 GeV protons

– 6x more then χ2<4 algorithm
● ~99.5% efficiency @ 1 TeV



  

What does the ML predict to 
measurements?

3.5 years of data analysed with χ2 
MOS-08@Sakurajima

Middle of mountain

Open sky → High energy

● Measurements taken

@Sakurajima
● Score distribution 

for different regions

● Middle of the mountain

– 7 km of rock → Only low E
● Open sky ~ horizont

– High E



  

Interpretibility – SHAP values

● Tool to understand most ML algorithms
● From game theory
● Lloyd Shapley, Nobel prize 
● Remove a subset of inputs

calculate the output of the model
● Additive values
● Energy deposition after lead absorbers 

are used mostly



  

Conclusion

● Designed a detailed Geant4 simulation of MOS system
– Included detector effects (changing gain, cluster size)
– Tested the classical tracking algorithm

● Designed a dedicated Deep Neural Network to classify low vs. high E muons
– Taught the network with simulation data

● The neural network:
– Suppresses low energy muons better than χ2

– Identifies high energy muons with complicated clusters better than χ2

● Applied the ML to measurements taken at Sakurajima:
– The preliminary results agree with the expected tendencies 



  

Outlook

● Try additionals models:
– GNN (working @ IceCube)
– Vision transformers

● Optimize the geometry!
● Test the machine learning with measurements:

– Dedicated measurements to collect muons with known energy bands
● Could the lessons learned from ML be used in classical tracking?

– E.g. Use cut on number of wires fired besides using χ2 

● Perform anomaly detection on Sakurajima data to look for vulcanological events in 
the last 4 years



  



  

Simulations, detector effects 

● Need to include these in the simulation to reproduce 
measurements

● Important for Machine Learning!
● Read out electronics:

– 2 or 3 wires / pads connected for cheaper readout
● Gain changes:

– Changing weather
– Non homogenous gain (due to wires)

26/10/2022  16/11/2019



  

Number of fired wires per layer

Simulation before including 
detector effects Measurements



  

Changing gain

26/10/2022  16/11/2019

● Fitted Landau distribution to the energy deposition for 
every ~ 2 hour

● Scaled measurements to simulation for ML



  

Modified Gaisser dist.

● Muon flux for diff. E



  



  



  

Muon energy dependent features

● A dedicated simulation to understand effect of muon E on secondary 
detection 

– One 2 cm lead and 1 detector
● Secondary creation:

– Number of fired wires
● For high E many clusters

– “Bad” for χ2  algorithm (lot of clusters) 
– “Good” for ML



  

Highlights

● The ML presented is used for volcano muography
– Special use case: signal is very low for ~200 m rock thickness 

● Pros:
– Lots of data: ~ 4 years measurements 10 m2  at Sakurajima volcano alone

● Cons:
– No Measurements with KNOWN primary muon energy not taken

● Personal experience:
– detector effects are very important



  

SHAP values for wires

Y wires Y wires
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