
Reverse-Mode Automatic Differentiation in
Futhark Language

Cosmin E. Oancea (cosmin.oancea@diku.dk)
work in collaboration with

Troels Henriksen, Ola Rønning and Robert Schenck

Department of Computer Science (DIKU)
University of Copenhagen

24th of July 2023, MODE Workshop

Overview

f (x) f ′(x)AD

This talk presents an AD algorithm [1] for a functional,
high-level, and nested-parallel array language (Futhark) .
All parallelism is made explicit via parallel
combinators—map, reduce, scan (prefix sum), scatter, etc.
AD is applied before parallelism is mapped to the hardware.

Work is aimed to explore how the richer semantics of high-level
parallel language enables AD as a first-lass language citizen.

[1] Robert Schenck, Ola Rønning, Troels Henriksen and Cosmin Oancea, ”AD for an Array

Language with Nested Parallelism”, In Procs of SC22: International Conference for High

Performance Computing, Networking, Storage and Analysis, 2022.

Reverse-AD: Core Re-Write Rule

Key Idea #1: Redundant Execution Instead of Tape

Key Idea #2: Parallel Constructs are Differentiated at a High Level

Key Idea #3: Translate Accumulators to Specialized Constructs

Experimental Results: Competitive with State of the Art

Extra Slides
Motivating Example for AD
Differentiating Loops & Time-Space Tradeoff
Differentiating Map
Loops with In-Place Updates

Reverse-AD: Core Re-Write Rule

Key Idea #1: Redundant Execution Instead of Tape

Key Idea #2: Parallel Constructs are Differentiated at a High Level

Key Idea #3: Translate Accumulators to Specialized Constructs

Experimental Results: Competitive with State of the Art

Extra Slides
Motivating Example for AD
Differentiating Loops & Time-Space Tradeoff
Differentiating Map
Loops with In-Place Updates

Reverse AD: Core Re-Write Rule for Scalar Code

For program P(. . . xi . . .) = y ∈ R, reverse AD computes the
adjoint of each (intermediate) program variable t, denoted t = ∂y

∂t ,
i.e., the sensitivity of the output to changes in t.

Initially y = ∂y
∂y = 1, and eventually the adjoints of the input

xi =
∂y
∂xi

are computed by applying the following re-write rule:

Primal
Trace:

. . .
|
V

z = f (x, y, . . .)
|
V

. . .

Reverse
Sweep:

. . .
∧
| (* *)

x = x + ∂f (x,y,...)
∂x · z

y = y + ∂f (x,y,...)
∂y · z

. . .
∧ (*)
|

. . .

(*) final value of z is known;
(**) z is dead after this point; x and y are still under computation.

A tape is needed to recover the values of x and y (used in ∂f (x,y)
∂x)

Reverse AD: Core Re-Write Rule for Scalar Code

For program P(. . . xi . . .) = y ∈ R, reverse AD computes the
adjoint of each (intermediate) program variable t, denoted t = ∂y

∂t ,
i.e., the sensitivity of the output to changes in t.

Initially y = ∂y
∂y = 1, and eventually the adjoints of the input

xi =
∂y
∂xi

are computed by applying the following re-write rule:

Primal
Trace:

. . .
|
V

z = f (x, y, . . .)
|
V

. . .

Reverse
Sweep:

. . .
∧
| (* *)

x = x + ∂f (x,y,...)
∂x · z

y = y + ∂f (x,y,...)
∂y · z

. . .
∧ (*)
|

. . .

(*) final value of z is known;
(**) z is dead after this point; x and y are still under computation.

A tape is needed to recover the values of x and y (used in ∂f (x,y)
∂x)

Illustrating Reverse AD on straightline scalar code

Adjoint of var t is t ≡ ∂y
∂t . Goal: compute the adjoints of the input.

Core Rewrite Rule: z = f (x, y)⇒ x+ = ∂f (x,y)
∂x · z

y+ = ∂f (x,y)
∂x · z

P(x0, x1) :
t0 = sin(x0)
t1 = x1 · t0
y = x0 + t1
return y

=⇒

P′(x0, x1) :
t0 = sin(x0)
t1 = x1 · t0
y = x0 + t1

Illustrating Reverse AD on straightline scalar code

Adjoint of var t is t ≡ ∂y
∂t . Goal: compute the adjoints of the input.

Core Rewrite Rule: y = f (x1, x2)⇒
x1+ = ∂f (x1,x2)

∂x1
· z

x2+ = ∂f (x1,x2)
∂x2

· z

P(x0, x1) :
t0 = sin(x0)
t1 = x1 · t0
y = x0 + t1
return y

=⇒

P′(x0, x1) :
t0 = sin(x0)
t1 = x1 · t0
y = x0 + t1
y = 1; x0 = 0; t1 = 0
x0 = x0 +

∂(x0+t1)
∂x0

· y = 1 · 1 = 1
t0 = t0 +

∂(x0+t1)
∂t1

· y = 1 · 1 = 1

Illustrating Reverse AD on straightline scalar code

Adjoint of var t is t ≡ ∂y
∂t . Goal: compute the adjoints of the input.

Core Rewrite Rule: y = f (x1, x2)⇒
x1+ = ∂f (x1,x2)

∂x1
· z

x2+ = ∂f (x1,x2)
∂x2

· z

P(x0, x1) :
t0 = sin(x0)
t1 = x1 · t0
y = x0 + t1
return y

=⇒

P′(x0, x1) :
t0 = sin(x0)
t1 = x1 · t0
y = x0 + t1
y = 1; x0 = 0; t1 = 0
x0 = x0 +

∂(x0+t1)
∂x0

· y = 1 · 1 = 1
t1 = t0 +

∂(x0+t1)
∂t1

· y = 1 · 1 = 1
x1 = 0; t0 = 0
x1 = x1 +

∂(x1·t0)
∂x1

· t1 = x1 + t0 · t1
t0 = t0 +

∂(x1·t0)
∂t0

· t1 = t0 + x1 · t1

Illustrating Reverse AD on straightline scalar code

Adjoint of var t is t ≡ ∂y
∂t . Goal: compute the adjoints of the input.

Core Rewrite Rule: y = f (x1, x2)⇒
x1+ = ∂f (x1,x2)

∂x1
· z

x2+ = ∂f (x1,x2)
∂x2

· z

P(x0, x1) :
t0 = sin(x0)
t1 = x1 · t0
y = x0 + t1
return y

=⇒

P′(x0, x1) :
t0 = sin(x0)
t1 = x1 · t0
y = x0 + t1
y = 1; x0 = 0; t1 = 0
x0 = x0 +

∂(x0+t1)
∂x0

· y = 1 · 1 = 1
t1 = t0 +

∂(x0+t1)
∂t1

· y = 1 · 1 = 1
x1 = 0; t0 = 0
x1 = x1 +

∂(x1·t0)
∂x1

· t1 = x1 + t0 · t1
t0 = t0 +

∂(x1·t0)
∂t0

· t1 = t0 + x1 · t1
x0 = x0 +

∂sin(x0)
∂x0

· t0 = x0 + cos(x0) · t0
return x0, x1

Classical API for AD

Reverse-mode:

vjp : (f : α→ β)→ (x : α)→ (y : β)→ α

Forward mode:

jvp : (f : α→ β)→ (x : α)→ (dx : α)→ β

Matrix Multiplication in Futhark (C = A*B):
l e t C =

map (\ A row −>
map (\ B co l −>

map2 (*) A row B co l
|> reduce (+) 0

) (t r anspose B)
) A

Classical API for AD

Reverse-mode:

vjp : (f : α→ β)→ (x : α)→ (y : β)→ α

Forward mode:

jvp : (f : α→ β)→ (x : α)→ (dx : α)→ β

Matrix Multiplication in Futhark (C = A*B):
l e t C =

map (\ A row −>
map (\ B co l −>

map2 (*) A row B co l
|> reduce (+) 0

) (t r anspose B)
) A

Reverse-AD: Core Re-Write Rule

Key Idea #1: Redundant Execution Instead of Tape

Key Idea #2: Parallel Constructs are Differentiated at a High Level

Key Idea #3: Translate Accumulators to Specialized Constructs

Experimental Results: Competitive with State of the Art

Extra Slides
Motivating Example for AD
Differentiating Loops & Time-Space Tradeoff
Differentiating Map
Loops with In-Place Updates

The Tape is Challenging to Implement

In the sequential context, the tape is elegantly modeled by
means of powerful programming abstractions (closures,
delimited continuations) but these are not suitable for GPU
execution;

In a nested parallel context:

Dex: maintains complex and irregular structures of arrays that
need to be passed across deeply-nested scopes.

Enzyme: applies AD to GPU kernels and take advantage of GPU
specialized memories but may have problems if kernel’s
resources are capped out.

Key Idea #1: Redundant Execution Instead of Tape

Implementing the Tape by a Re-Execution Policy

Whenever a new scope is entered, the code generation of the
reverse sweep first re-executes the primal trace of that scope.

Asymptotics-preserving: re-execution overhead is constant
for non-recursive programs, i.e., equal to the depth of the
deepest scope nest;

No overhead for perfectly nested scopes (other than loops);

Loops require checkpointing & Loop stripmining provides an
easy way to navigate an effective space-time tradeoff;

Loop checkpointing can be further optimized by exploiting
specific data-dependency properties of loops.

Recall: Reverse AD on straightline scalar code

Adjoint of var t is t ≡ ∂y
∂t . Goal: compute the adjoints of the input.

Core Rewrite Rule: y = f (x1, x2)⇒
x1+ = ∂f (x1,x2)

∂x1
· z

x2+ = ∂f (x1,x2)
∂x2

· z

P(x0, x1) :
t0 = sin(x0)
t1 = x1 · t0
y = x0 + t1
return y

=⇒

P′(x0, x1) :
t0 = sin(x0)
t1 = x1 · t0
y = x0 + t1
y = 1; x0 = 0; t1 = 0
x0 = x0 +

∂(x0+t1)
∂x0

· y = 1 · 1 = 1
t1 = t0 +

∂(x0+t1)
∂t1

· y = 1 · 1 = 1
x1 = 0; t0 = 0
x1 = x1 +

∂(x1·t0)
∂x1

· t1 = x1 + t0 · t1
t0 = t0 +

∂(x1·t0)
∂t0

· t1 = t0 + x1 · t1
x0 = x0 +

∂sin(x0)
∂x0

· t0 = x0 + cos(x0) · t0
return x0, x1

Asymptotic Preserving & No Overhead for Perfect Nests
Original/Primal Code is a perfect nest of depth 4:

let xss = map (λ c as → if c
then . . .
else map (λa → a*a) as

) cs ass

Differentiated Code displays in red the re-execution of the primal:

let xss = map (λc as→ if c then . . . else map (λa→ a*a) as) cs ass
let ass = map (λc as xs→

let xs = if c then . . . else map (λa→ a*a) as
in if c then . . .

else let xs′ = map (λa→ a*a) as
let as = map (λa x → let x = a * a

in 2 * a * x
) as xs

in as
) ass xss

Asymptotic Preserving & No Overhead for Perfect Nests
Original/Primal Code is a perfect nest of depth 4:

let xss = map (λ c as → if c
then . . .
else map (λa → a*a) as

) cs ass

Differentiated Code displays in red the re-execution of the primal:

let xss = map (λc as→ if c then . . . else map (λa→ a*a) as) cs ass
let ass = map (λc as xs→

let xs = if c then . . . else map (λa→ a*a) as
in if c then . . .

else let xs′ = map (λa→ a*a) as
let as = map (λa x → let x = a * a

in 2 * a * x
) as xs

in as
) ass xss

Reverse-AD: Core Re-Write Rule

Key Idea #1: Redundant Execution Instead of Tape

Key Idea #2: Parallel Constructs are Differentiated at a High Level

Key Idea #3: Translate Accumulators to Specialized Constructs

Experimental Results: Competitive with State of the Art

Extra Slides
Motivating Example for AD
Differentiating Loops & Time-Space Tradeoff
Differentiating Map
Loops with In-Place Updates

Differentiating Reduce at a High Level

Reduce combines all elements of an array with a binary
associative operator �:

let y = reduce � e� [a0, a1, . . . , an−1]

≡
let y = a0 � a1 � · · · � an−1

For each ai in the array, we can group the terms of reduce as:

let y = a0 � · · · � ai−1︸ ︷︷ ︸
li

� ai � ai+1 � · · · � an−1︸ ︷︷ ︸
ri

And then directly apply the AD rewrite rule

ai +=
∂(li � ai � ri)

∂ai
y

We compute all ai in parallel by mapping over all instances
of li, ai, ri . How do we compute all instances of li and ri?

Differentiating Reduce at a High Level

Reduce combines all elements of an array with a binary
associative operator �:

let y = reduce � e� [a0, a1, . . . , an−1]

≡
let y = a0 � a1 � · · · � an−1

For each ai in the array, we can group the terms of reduce as:

let y = a0 � · · · � ai−1︸ ︷︷ ︸
li

� ai � ai+1 � · · · � an−1︸ ︷︷ ︸
ri

And then directly apply the AD rewrite rule

ai +=
∂(li � ai � ri)

∂ai
y

We compute all ai in parallel by mapping over all instances
of li, ai, ri . How do we compute all instances of li and ri?

Differentiating Reduce at a High Level

Reduce combines all elements of an array with a binary
associative operator �:

let y = reduce � e� [a0, a1, . . . , an−1]

≡
let y = a0 � a1 � · · · � an−1

For each ai in the array, we can group the terms of reduce as:

let y = a0 � · · · � ai−1︸ ︷︷ ︸
li

� ai � ai+1 � · · · � an−1︸ ︷︷ ︸
ri

And then directly apply the AD rewrite rule

ai +=
∂(li � ai � ri)

∂ai
y

We compute all ai in parallel by mapping over all instances
of li, ai, ri . How do we compute all instances of li and ri?

Computing li and ri
For each i ∈ {0, . . . , n− 1}, need to compute li and ri

a0 � · · · � ai−1︸ ︷︷ ︸
li

� ai � ai+1 � · · · � an−1︸ ︷︷ ︸
ri

Compute all li with a (parallel) prefix sum operation, a.k.a., scan:

let ls = scan � e� [a0, a1, . . . , an−1]

≡ [e�︸︷︷︸
l0

, a0︸︷︷︸
l1

, a0 � a1︸ ︷︷ ︸
l2

, . . . , a0 � . . .� an−2︸ ︷︷ ︸
ln−1

]

For the ris, do a backward scan, i.e., on the reversed array

let rs = reverse as . scan (λx y → y � x) e� [a0, a1, . . . , an−1]

. reverse

≡ [a0 � . . .� an−2︸ ︷︷ ︸
r0

, . . . , an−2 � an−1︸ ︷︷ ︸
rn−3

, an−1︸︷︷︸
rn−2

, e�︸︷︷︸
rn−1

]

The Reduce Rule For an Arbitrary Associative Operator

The differentiation of reduce results in the following
statements

let y = reduce � e� [a0, a1, . . . , an−1]
}

Forward
...

let ls = scan � e� as
let rs = reverse as . scan (λx y → y � x) e�

. reverse

Reverse
let as += map

(
λli ai ri → ∂(li�ai�ri)

∂ai
y
)
ls as rs

The rule is asymptotics-preserving:
I scan has the same work-depth asymptotics as reduce;
I requires about 8× more accesses to global memory.

Reduce Rule For Commutative and Invertible Operators

Assume � : α→ α→ α associative and commutative operator.

Assume � is also invertible, i.e.,

∃ �−1 such that z �−1 a = b whenever b� a = z

The differentiation of reduce consists of:

let y = reduce � e� [a0, a1, . . . , an−1]
}

Forward
...

Reverse
let as = map(λ ai → let b = y �−1 ai

in ∂(b�ai)
∂ai

y) as

Specialized rules for other operators (+, min, max, ∗) admit
similar efficient implementations (map-reduce).

Reverse-AD: Core Re-Write Rule

Key Idea #1: Redundant Execution Instead of Tape

Key Idea #2: Parallel Constructs are Differentiated at a High Level

Key Idea #3: Translate Accumulators to Specialized Constructs

Experimental Results: Competitive with State of the Art

Extra Slides
Motivating Example for AD
Differentiating Loops & Time-Space Tradeoff
Differentiating Map
Loops with In-Place Updates

Optimizing Accumulators: Matrix-Multiplication Eg

A class of optimizations refers to translating accumulators to
more specialized constructs, e.g., reductions.

Matrix Multiplication Original:
f o r a l l i = 0 . . n−1 / / map

f o r a l l j = 0 . . n−1 / / map
f o r k = 0 . . n−1 / / map−reduce

c [i , j] += a [i , k] * b [k , j]

Matrix Multiplication Reverse-AD with accumulators:
f o r a l l i = 0 . . n−1

f o r a l l j = 0 . . n−1
f o r a l l k = 0 . . n−1
a [i , k] += b [k , j] * c [i , j]
b [k , j] += a [i , k] * c [i , j]

Rewrite the accumulations as classical reductions. This requires:
to distribute the loop-nest over each statement
bring innermost the parallel loop to which the write access is
invariant to.

Optimizing Accumulators: Matrix-Multiplication Eg

A class of optimizations refers to translating accumulators to
more specialized constructs, e.g., reductions.

Matrix Multiplication Original:
f o r a l l i = 0 . . n−1 / / map

f o r a l l j = 0 . . n−1 / / map
f o r k = 0 . . n−1 / / map−reduce

c [i , j] += a [i , k] * b [k , j]

Matrix Multiplication Reverse-AD with accumulators:
f o r a l l i = 0 . . n−1

f o r a l l j = 0 . . n−1
f o r a l l k = 0 . . n−1
a [i , k] += b [k , j] * c [i , j]
b [k , j] += a [i , k] * c [i , j]

Rewrite the accumulations as classical reductions. This requires:

to distribute the loop-nest over each statement
bring innermost the parallel loop to which the write access is
invariant to.

Optimizing Accumulators: Matrix-Multiplication Eg

A class of optimizations refers to translating accumulators to
more specialized constructs, e.g., reductions.

Matrix Multiplication Original:
f o r a l l i = 0 . . n−1 / / map

f o r a l l j = 0 . . n−1 / / map
f o r k = 0 . . n−1 / / map−reduce

c [i , j] += a [i , k] * b [k , j]

Matrix Multiplication Reverse-AD with accumulators:
f o r a l l i = 0 . . n−1

f o r a l l j = 0 . . n−1
f o r a l l k = 0 . . n−1
a [i , k] += b [k , j] * c [i , j]
b [k , j] += a [i , k] * c [i , j]

Rewrite the accumulations as classical reductions. This requires:
to distribute the loop-nest over each statement
bring innermost the parallel loop to which the write access is
invariant to.

MMM Example: Optimizing Generalized Reductions

Distribute the loop-nest over each statement.
Bring innermost the parallel loop to which the write access is
invariant to.

f o r a l l i = 0 . . n−1
f o r a l l k = 0 . . n−1

f o r a l l j = 0 . . n−1
a [i , k] += b [k , j] * c [i , j]

f o r a l l k = 0 . . n−1
f o r a l l j = 0 . . n−1

f o r a l l i = 0 . . n−1
b [k , j] += a [i , k] * c [i , j]

Perform a strength reduction: result can be summed and
accumulated once

f o r a l l i = 0 . . n−1
f o r a l l k = 0 . . n−1

acc = 0
f o r j = 0 . . n−1

acc = acc + b [k , j] * c [i , j]
a [i , k] += acc

f o r a l l k = 0 . . n−1
f o r a l l j = 0 . . n−1

acc = 0
f o r i = 0 . . n−1

acc = acc + a [i , k] * c [i , j]
b [k , j] += acc

MMM Example: Optimizing Generalized Reductions

Distribute the loop-nest over each statement.
Bring innermost the parallel loop to which the write access is
invariant to.

f o r a l l i = 0 . . n−1
f o r a l l k = 0 . . n−1

f o r a l l j = 0 . . n−1
a [i , k] += b [k , j] * c [i , j]

f o r a l l k = 0 . . n−1
f o r a l l j = 0 . . n−1

f o r a l l i = 0 . . n−1
b [k , j] += a [i , k] * c [i , j]

Perform a strength reduction: result can be summed and
accumulated once
f o r a l l i = 0 . . n−1

f o r a l l k = 0 . . n−1
acc = 0
f o r j = 0 . . n−1

acc = acc + b [k , j] * c [i , j]
a [i , k] += acc

f o r a l l k = 0 . . n−1
f o r a l l j = 0 . . n−1

acc = 0
f o r i = 0 . . n−1

acc = acc + a [i , k] * c [i , j]
b [k , j] += acc

MMM Example: Optimizing Generalized Reductions

f o r a l l i = 0 . . n−1 / / map
f o r a l l k = 0 . . n−1 / / map

acc = 0
f o r j = 0 . . n−1 / / map−reduce

acc = acc + b [k , j] * c [i , j]
a [i , k] += acc

f o r a l l k = 0 . . n−1 / / map
f o r a l l j = 0 . . n−1 / / map

acc = 0
f o r i = 0 . . n−1 / / map−reduce

acc = acc + a [i , k] * c [i , j]
b [k , j] += acc

Now re-write (most of) the accumulations as classical reductions:

map (\ i −>
map (\ k −>

l e t acc = map2 (*) b [k] c [i]
|> reduce (+) 0

l e t a [i , k] += acc i n a
) (i o t a n)

) (i o t a n)

map (\ k −>
map (\ j −>

l e t acc = map2 (*) a [: , k] c [: , j]
|> reduce (+) 0

l e t b [k , j] += acc i n b
) (i o t a n)

) (i o t a n)

In this form, the (enhanced) Futhark compiler would apply block
and register tiling, and also implement the technique of
parallelizing the innermost dimension proposed by
[Rasch,Schulze, and Gorlatch, 2019]

Reverse-AD: Core Re-Write Rule

Key Idea #1: Redundant Execution Instead of Tape

Key Idea #2: Parallel Constructs are Differentiated at a High Level

Key Idea #3: Translate Accumulators to Specialized Constructs

Experimental Results: Competitive with State of the Art

Extra Slides
Motivating Example for AD
Differentiating Loops & Time-Space Tradeoff
Differentiating Map
Loops with In-Place Updates

Sequential CPU Benchmarks - ADBench

BA

D-L
ST

M
GMM

0

5

10

13

3.
2

5.
1

10
.3

4.
5 5.

4

8.
6

6.
2

4.
6

Futhark
Tapenade
Manual

HAND-C

HAND-S
0

20

40

60

50

45

3,
75

8

59

4.
6

4.
4

ADBench: a collection of
AD benchmarks for
comparing sequential AD
tools.

Benchmarked Futhark
using its C backend.

Performance measured in
AD overhead:

differentiated runtime
original runtime

the lower the better

On BA, bottleneck is due
to packing the result in
CSR format.

GPU Benchmarks - vs. Enzyme

RSB
en

ch

XSB
en

ch
LB

M
0

2

4

6

3.
9

2.
7

5.
1

4.
2

3.
2

6.
3

Futhark
Enzyme

Performance measured in AD
overhead:

differentiated runtime
original runtime

Enzyme is state-of-the-art LLVM
compiler plugin that performs AD on
a low-level imperative IR.

RSBench and XSBench are
comprised of a large parallell loop
with inner sequential loops and
branches.

LBM consists of a large sequential
loop containing a parallel loop.

k-means by Newton’s Method on NVIDIA’s A100 GPU

Dataset 0
0

20

40
41

13
41

16
28

Fut-AD
Fut-Manual

PyTorch
JAX

JAX-VMap

Dataset 1
0

5

10

15

20

11
19

9
2

10
8

Dataset 2
0

500

1,000

10
9

94
92

2
20

7
97

6

Performance measured in miliseconds.
PyTorch and JAX use hand-tuned matrix primitives;
JAX(vmap) instead uses JAX’s vectorizing map operation.

Sparse k-means on Nvidia’s A100 GPU

movielens
0

0.5

1

1.5

0.
16

6
·1

0−
2

1.
47

0.
38

Fut-AD
Fut-Manual

PyTorch
JAX

nytimes
0

2

4

0.
3

9
·1

0−
2

5.
24

1.
35

scrna
0

2

4

6

8

10

0.
58

0.
16

9.
32

8.
91

Performance
measured in
seconds.

PyTorch and JAX
use hand-tuned
matrix primitives
and sparse
libraries.

Futhark just uses
a standard CSR
implementation.

GMM: GPU Performance vs PyTorch on A100 & MI100

We test benchmark GMM from ADBench on 32-bit floats.
This is neutral ground.

Measurement D0 D1 D2 D3 D4 D5

A1
00

PyT. Jacob. (ms) 7.4 15.8 15.2 5.9 12.5 64.8
Fut. Speedup 2.1 2.2 1.4 1.6 1.5 1.0
PyT. Overhead 3.5 4.9 2.8 3.2 4.0 3.2
Fut. Overhead 2.0 1.8 1.9 2.7 2.8 2.8

M
I1

00

PyT. Jacob. (ms) 20.9 51.5 42.5 20.7 38.5 193.1
Fut. Speedup 3.3 4.0 2.1 2.9 2.5 1.7
PyT. Overhead 5.9 5.3 2.4 2.6 3.1 2.8
Fut. Overhead 3.0 2.9 3.0 2.8 2.8 2.8

LSTM: GPU Performance vs PyTorch & JAX

This is PyTorch’s home ground, because matrix-multiplications
take about 75% of runtime, and matrix-multiplication is a
primitive in PyTorch, while Futhark needs to work hard for it.

Speedups
PyTorch Jacob. Futhark nn.LSTM JAX JAX(vmap)

A1
00 D0 45.4 ms 3.0 11.6 4.5 0.3

D1 740.1 ms 3.3 22.1 6.4 0.9

M
I1

00 D0 89.8 ms 2.6 4.0 − −
D1 1446.9 ms 1.8 5.4 − −

Overheads
PyTorch Futhark nn.LSTM JAX JAX(vmap)

A1
00 D0 4.1 2.1 2.7 3.5 1.4

D1 4.3 3.9 2.2 3.7 0.8

M
I1

00 D0 5.0 4.2 7.2 − −
D1 7.9 3.9 6.6 − −

cuDNN-based refers to the (manual) torch.nn.LSTM library.

GPU Benchmarks - Depth and Memory Consumption

RSB
en

ch

XSB
en

ch
LB

M
GMM

LS
TM

0

0.5

1

1.5

2

2.5

1.
4

1

33
.6

2.
1

2.
1

RSB
en

ch

XSB
en

ch
LB

M
GMM

LS
TM

0

2

4

6

6 6

5

4 4

Depth
Mem. Overhead

AD Memory overhead:

differentiated mem.
original mem.

Loop strip-mining
reduces LBM’s memory
overhead to 8.7×, at
the cost of 1.3×
increase in runtime.

Strong performance on programs with non-trivial depth demonstrates
the viability of a recomputation-based approach to AD.

Conclusions

AD in a nested-parallel, high-level and hardware-neutral
functional language.
Key idea: high-level differentiation using specialized rules
for parallel combinators.
Key idea: re-computation instead of a tape (except for loops!).
Strong performance against state-of-the-art AD competitors.
The implementation is available now in the Futhark
compiler–try it out!

https://futhark-lang.org

https://futhark-lang.org

Reverse-AD: Core Re-Write Rule

Key Idea #1: Redundant Execution Instead of Tape

Key Idea #2: Parallel Constructs are Differentiated at a High Level

Key Idea #3: Translate Accumulators to Specialized Constructs

Experimental Results: Competitive with State of the Art

Extra Slides
Motivating Example for AD
Differentiating Loops & Time-Space Tradeoff
Differentiating Map
Loops with In-Place Updates

Reverse-AD: Core Re-Write Rule

Key Idea #1: Redundant Execution Instead of Tape

Key Idea #2: Parallel Constructs are Differentiated at a High Level

Key Idea #3: Translate Accumulators to Specialized Constructs

Experimental Results: Competitive with State of the Art

Extra Slides
Motivating Example for AD
Differentiating Loops & Time-Space Tradeoff
Differentiating Map
Loops with In-Place Updates

Illustrative Example: k-means clustering in 2D

Illustrative Example: k-means clustering in 2D

Illustrative Example: k-means clustering in 2D

Illustrative Example: k-means clustering in 2D

Illustrative Example: k-means clustering in 2D

Illustrative Example: k-means clustering in 2D

Illustrative Example: k-means clustering in 2D

Genralized histograms allow a two-slide efficient implementation.
[2] Troels Henriksen, Sune Hellfritzsch, P. Sadayappan and Cosmin Oancea, ”Compiling

Generalized Histograms for GPU”, In Procs of SC20: International Conference for High

Performance Computing, Networking, Storage and Analysis, 2020.

Illustrative Example: k-means clustering in 2D

Genralized histograms allow a two-slide efficient implementation.
[2] Troels Henriksen, Sune Hellfritzsch, P. Sadayappan and Cosmin Oancea, ”Compiling

Generalized Histograms for GPU”, In Procs of SC20: International Conference for High

Performance Computing, Networking, Storage and Analysis, 2020.

Mathematical Formulation of k-means clustering

Given a set of n points P in a d-dimensional space, one must find
the k points C that minimize the cost function:

f (C) =
∑
p∈P

min
{
||p− c||2, c ∈ C

}

This problem can be solved by applying Newton’s Method, i.e.,

Ci+1 = Ci −∇f (Ci) · Hf (Ci)−1

AD: worthy to be supported as a first-class citizen of parallel
languages?

Mathematical Formulation of k-means clustering

Given a set of n points P in a d-dimensional space, one must find
the k points C that minimize the cost function:

f (C) =
∑
p∈P

min
{
||p− c||2, c ∈ C

}

This problem can be solved by applying Newton’s Method, i.e.,

Ci+1 = Ci −∇f (Ci) · Hf (Ci)−1

AD: worthy to be supported as a first-class citizen of parallel
languages?

Reverse-AD: Core Re-Write Rule

Key Idea #1: Redundant Execution Instead of Tape

Key Idea #2: Parallel Constructs are Differentiated at a High Level

Key Idea #3: Translate Accumulators to Specialized Constructs

Experimental Results: Competitive with State of the Art

Extra Slides
Motivating Example for AD
Differentiating Loops & Time-Space Tradeoff
Differentiating Map
Loops with In-Place Updates

Loops

Sequential loops are sugar for tail-recursive functions.
Loop parameters are variables which are variant through the
loop and are returned as the result of the loop.

loop y = 2 for i = 0 . . . n - 1 do
let y′ = y ∗ y
in y′

y = 2
for i = 0 . . . n - 1 do
y = y ∗ y

(Imperative analog)

Storing the loop parameter y on the tape for each iteration is
required in order to be able to execute the loop backwards.
Parallel constructs do not require such check-pointing.

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original
loop, save the value of y
in each iteration in ys.

2. Compute the adjoint
contributions of the
loop.

I Run the loop
backwards

I Restore the value of y
from ys

I Re-execute the body
of the original loop

I Compute the adjoints
of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Primal Trace

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse Sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original
loop, save the value of y
in each iteration in ys.

2. Compute the adjoint
contributions of the
loop.

I Run the loop
backwards

I Restore the value of y
from ys

I Re-execute the body
of the original loop

I Compute the adjoints
of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Primal Trace

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse Sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original
loop, save the value of y
in each iteration in ys.

2. Compute the adjoint
contributions of the
loop.
I Run the loop

backwards

I Restore the value of y
from ys

I Re-execute the body
of the original loop

I Compute the adjoints
of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Primal Trace

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse Sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original
loop, save the value of y
in each iteration in ys.

2. Compute the adjoint
contributions of the
loop.
I Run the loop

backwards
I Restore the value of y

from ys

I Re-execute the body
of the original loop

I Compute the adjoints
of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Primal Trace

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse Sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original
loop, save the value of y
in each iteration in ys.

2. Compute the adjoint
contributions of the
loop.
I Run the loop

backwards
I Restore the value of y

from ys
I Re-execute the body

of the original loop

I Compute the adjoints
of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Primal Trace

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse Sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Differentiating Loops

let y′′ =
loop y = y0 for i = 0 . . . n - 1 do
stmsloop
in y′

1. Re-execute the original
loop, save the value of y
in each iteration in ys.

2. Compute the adjoint
contributions of the
loop.
I Run the loop

backwards
I Restore the value of y

from ys
I Re-execute the body

of the original loop
I Compute the adjoints

of the body

2 let ys0 = scratch(n,
3 sizeOf(y0))
4 let (y′′, ys) =
5 loop (y, ys) = (y0, ys0)


Primal Trace

6 for i = 0 . . . n - 1 do
7 let ys[i] = y
8 stmsloop
9 in (y′, ys)
12 let (y′′′, fvsl) =
13 loop (y, fvsl) = (y′′, fvsl0)
14 for i = n - 1 . . . 0 do
15 let y = ys[i]
16

−−−−→
stmsloop


Reverse Sweep

17
←−−−−
stmsloop

18 in (y′, fvs′l)
19 let y0 += y′′′

Loop Strip-mining implements the Space-Time Trade-off

Loop strip-mining partitions a loop into a loop nest

loop y = y0 loop yj = y0 for j = 0 . . . n-1 do
for i = 0 . . . n3-1 do ⇒ loop yk = yj for k = 0 . . . n - 1 do
stms loop ym = yk for m = 0 . . . n - 1 do

let i = j ∗ n2 + k ∗ n+m
stms

For the original loop, we save n3 versions of y on the tape.
For the strip-mined loop, only 3n versions are saved.
Strip-mining is controlled by the user via a simple annotation.

Strip-mining a loop k times results in up to k× slowdown, but
memory overhead decreases from a factor of nk× to n · k×.

Summary: Tape vs Redundant Execution

whenever a new scope is entered, the code generation of the
reverse trace first re-executes the primal trace of that scope;

the re-execution overhead is at worst proportional with the
deepest scope nest of the program (which is constant);

“the tape” is part of the program and subject to aggressive
optimizations (especially in a purely functional context);

in most cases, it is more efficient to re-compute scalars
rather than to access them from the tape (global memory);

loops require checkpointing, parallel constructs do not.

Subject to checkpointing are only the loops appearing
directly in the current scope of the reverse-trace code
generation (i.e., inner loops of the primal trace are not).

Reverse-AD: Core Re-Write Rule

Key Idea #1: Redundant Execution Instead of Tape

Key Idea #2: Parallel Constructs are Differentiated at a High Level

Key Idea #3: Translate Accumulators to Specialized Constructs

Experimental Results: Competitive with State of the Art

Extra Slides
Motivating Example for AD
Differentiating Loops & Time-Space Tradeoff
Differentiating Map
Loops with In-Place Updates

Map without Free Variables

Map is equivalent to a parallel for-loop

let xs = map (λa b→ let res = a ∗ b in res) as bs
m

forall i = 0 . . . n - 1
xs[i] = as[i] ∗ bs[i]

Differentiating map is straightforward in the absence of free
variables

let as, bs = map (λa b x a0 b0 →
let res = a ∗ b
let a = a0 + b ∗ x
let b = b0 + a ∗ x
in a, b) as bs xs as0 bs0

Map without Free Variables

Map is equivalent to a parallel for-loop

let xs = map (λa b→ let res = a ∗ b in res) as bs
m

forall i = 0 . . . n - 1
xs[i] = as[i] ∗ bs[i]

Differentiating map is straightforward in the absence of free
variables

let as, bs = map (λa b x a0 b0 →
let res = a ∗ b
let a = a0 + b ∗ x
let b = b0 + a ∗ x
in a, b) as bs xs as0 bs0

Map with Free Variables

Maps involving free variables are more complicated to
differentiate

let xs = map (λa→ a ∗ b) as

Naive approach: turn free variables into bound variables.

let xs = map (λa b′ → a ∗ b′) as (replicate n b)

Problem: asymptotically inefficient for partially used free
arrays.

Efficient Maps with Free Variables

In an impure language, asymptotics-preserving adjoint
updates for free array variables can be implemented as a
generalized reduction:
I preserves the useful properties of maps (parallel loops),
I generalization of map, reduce, reduce-by-index, scatter.

In this setting, the adjoint of a free aray variable as[i] can be
updated with an operation as[i] += v.

In our pure setting, we introduce accumulators.
I Write-only view of an array.
I Guarantees the generalized reduction properties at the type

level.

An important set of optimizations refer to specializing
generalized reductions to maps, reduce, reduce-by-index.

Reverse-AD: Core Re-Write Rule

Key Idea #1: Redundant Execution Instead of Tape

Key Idea #2: Parallel Constructs are Differentiated at a High Level

Key Idea #3: Translate Accumulators to Specialized Constructs

Experimental Results: Competitive with State of the Art

Extra Slides
Motivating Example for AD
Differentiating Loops & Time-Space Tradeoff
Differentiating Map
Loops with In-Place Updates

Handling of Loops with In-Place Updates

The brownian loop brindge from OptionPricing, FinPar suite:
l e t bbrow =

loop bbrow f o r i i n 1 ..< num dates do
l e t bbrow[bi[i] - 1] =

sd [i] * gauss [i] +
rw [i] * bbrow[ri[i] - 1] +
lw [i] * bbrow[li[i] - 1]

i n bbrow

Checkpointing bbrow for each iteration breaks work asymptotics!

If the loop exhibits only true (RAW) dependencies, then:

On primal: before the loop, checkpoint the indices of bbrow
written through the loop (e.g., the whole array);

On reverse: after computing the adjoint of the loop, restore the
bbrow array to the state before the loop.

Rationale:
Parallel prog means avoiding (cross-iteration) dependencies;
WAR & WAW are named false dependencies for a reason!

Handling of Loops with In-Place Updates

The brownian loop brindge from OptionPricing, FinPar suite:
l e t bbrow =

loop bbrow f o r i i n 1 ..< num dates do
l e t bbrow[bi[i] - 1] =

sd [i] * gauss [i] +
rw [i] * bbrow[ri[i] - 1] +
lw [i] * bbrow[li[i] - 1]

i n bbrow

Checkpointing bbrow for each iteration breaks work asymptotics!

If the loop exhibits only true (RAW) dependencies, then:
On primal: before the loop, checkpoint the indices of bbrow

written through the loop (e.g., the whole array);
On reverse: after computing the adjoint of the loop, restore the

bbrow array to the state before the loop.

Rationale:

Parallel prog means avoiding (cross-iteration) dependencies;
WAR & WAW are named false dependencies for a reason!

Handling of Loops with In-Place Updates

The brownian loop brindge from OptionPricing, FinPar suite:
l e t bbrow =

loop bbrow f o r i i n 1 ..< num dates do
l e t bbrow[bi[i] - 1] =

sd [i] * gauss [i] +
rw [i] * bbrow[ri[i] - 1] +
lw [i] * bbrow[li[i] - 1]

i n bbrow

Checkpointing bbrow for each iteration breaks work asymptotics!

If the loop exhibits only true (RAW) dependencies, then:
On primal: before the loop, checkpoint the indices of bbrow

written through the loop (e.g., the whole array);
On reverse: after computing the adjoint of the loop, restore the

bbrow array to the state before the loop.

Rationale:
Parallel prog means avoiding (cross-iteration) dependencies;
WAR & WAW are named false dependencies for a reason!

	Reverse-AD: Core Re-Write Rule
	Key Idea #1: Redundant Execution Instead of Tape
	Key Idea #2: Parallel Constructs are Differentiated at a High Level
	Key Idea #3: Translate Accumulators to Specialized Constructs
	Experimental Results: Competitive with State of the Art
	Extra Slides
	Motivating Example for AD
	Differentiating Loops & Time-Space Tradeoff
	Differentiating Map
	Loops with In-Place Updates

