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= This talk presents an AD algorithm [1] for a functional,
high-level, and nested-parallel array language (Futhark) .

= All parallelism is made explicit via parallel
combinators—map, reduce, scan (prefix sum), scatter, etc.

= AD is applied before parallelism is mapped to the hardware.

Work is aimed to explore how the richer semantics of high-level
parallel language enables AD as a first-lass language citizen.

[1] Robert Schenck, Ola Renning, Troels Henriksen and Cosmin Oancea, "AD for an Array
Language with Nested Parallelism”, In Procs of SC22: International Conference for High

Performance Computing, Networking, Storage and Analysis, 2022.
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Reverse-AD: Core Re-Write Rule



Reverse AD: Core Re-Write Rule for Scalar Code

For program P(...x;...) =y € R, reverse AD computes the
adjoint of each (intermediate) program variable t, denoted t =
i.e., the sensitivity of the output to changes in t.
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Reverse AD: Core Re-Write Rule for Scalar Code

y € R, reverse AD computes the

For program P(...x;...) =
adjoint of each (intermediate) program variable t, denoted t = 7,
i.e., the sensitivity of the output to changes in t.
Initially y = % = 1, and eventually the adjoints of the input
X; = % are computed by applying the following re-write rule:
"
[ ()
‘ X=x+ Bf(xé;)/(,m) 7
Primal , l/f(x ) Reverse _, . oy
Trace: | R Sweep: y
Vv A (")

(") final value of Z is known;
(**) zis dead after this point; X and y are still under computation.

A tape is needed to recover the values of x and y (used in df(x’y))



Illustrating Reverse AD on straightline scalar code

Adjoint of var tis t = %. Goal: compute the adjoints of the input.

Core Rewrite Rule: z = f(x,y) = ofey) =
yt =0
P'(xq, X1) :
Pho, xa) tg 37 siézxo)
tg = sin(x, B
0 B ( 0) _— t = xq - to
t1 =x1-1t o
y =X+ 1t1 y=»X+t

return y



Illustrating Reverse AD on straightline scalar code

Adjoint of var tis t = 8t Goal: compute the adjoints of the input.

Of (x1,%2)

. X1+ = z
Core Rewrite Rule: y = f(x1,x3) = X7+ = 8f§£}(2) 'z
P(Xo7 Xl) : P/(X07 Xl) :

to = sin(xp) to = sin(xo)
t1 = X1 - to th=x1-10

y=X+1t y=X+t _

return y y=1 X =0 t=0
Xo=x0+ ) .y —1.1=1
I(x+t) +

hh=to+ =g~ y=11=1



Illustrating Reverse AD on straightline scalar code

Adjoint of var tis t = g{ Goal: compute the adjoints of the input.
v of(x1,%2) 5
) X1+ = 5272 . 7
Core Rewrite Rule: y = f(x1, %) = 8fg)1‘1X2) -
X+ =G0 Z
P'(xg, X1) :
P(xo, x1) bo, )
to = sin(xo) fo = SIn(Xo)
— t1 =x1 -t
fL=x 1l y=Xxo+t
=Xo+ 1l 7 0 i _
)r/eturn y=1 x=01=0
y Yo — %= 3(Xo+f1) _
Xo = Xg + y=1.-1=1
H:%_I_a(Xaoa-tl) y:1 1:
71 = O; tO =0
xi=x+ 250 B =Xty f
fo=tfo+ ) =T +x &



Illustrating Reverse AD on straightline scalar code

Adjoint of var tis t = g{ Goal: compute the adjoints of the input.
v of(x1,%2) 5
i xi+ = L. 7
Core Rewrite Rule: y = f(x1,x3) = X1
y = f(x1,%2) ot = A
P/(Xo, X1) :
P(xo, x1) : to = sin(xo)
to = sin(xg) — t1 = X1 - lo
1 =x1-1 Yy = Xo + t1 -
Yy =xo+1 )721' X0=0; =0

+<9(Xo+t1) y=1-1=1

return y Xo = Xo
E=5+8(X§7Z”)~7:1-1:1
E:O; to—o
ﬂ:7+8(xllt°) H=x{+t &
fo=fo+ 200 f =T+ x
Xo = Xo +M to = Xo + cos(xp) - ty

return xp, X1



Classical API for AD

Reverse-mode:

vip:(fra—=08)=(x:a)—= (V:8) >«

Forward mode:

jvp:(f:ra—p)—=(x:a)—(dx:a) =



Classical API for AD

Reverse-mode:

vip:(fra—=08)=(x:a)—= (V:8) >«

Forward mode:

jvp:(f:ra—p)—=(x:a)—(dx:a) =

Matrix Multiplication in Futhark (C = A*B):

let C =
map (\ A_-row —>
map (\B_col —
map2 (*) A_row B_col
|> reduce (+) O
) (transpose B)
) A



Key Idea #1: Redundant Execution Instead of Tape



The Tape is Challenging to Implement

= |n the sequential context, the tape is elegantly modeled by
means of powerful programming abstractions (closures,
delimited continuations) but these are not suitable for GPU
execution;

= |n a nested parallel context:

Dex: maintains complex and irregular structures of arrays that
need to be passed across deeply-nested scopes.

Enzyme: applies AD to GPU kernels and take advantage of GPU
specialized memories but may have problems if kernel’s
resources are capped out.



Key Idea #1: Redundant Execution Instead of Tape

Implementing the Tape by a Re-Execution Policy

Whenever a new scope is entered, the code generation of the
reverse sweep first re-executes the primal trace of that scope.

= Asymptotics-preserving: re-execution overhead is constant
for non-recursive programs, i.e., equal to the depth of the
deepest scope nest;

= No overhead for perfectly nested scopes (other than loops);

= | oops require checkpointing & Loop stripmining provides an
easy way to navigate an effective space-time tradeoff;

= Loop checkpointing can be further optimized by exploiting
specific data-dependency properties of loops.



Recall: Reverse AD on straightline scalar code

Adjoint of var tis t = g{ Goal: compute the adjoints of the input.
v of(x1,%2) 5
i xi+ = L. 7
Core Rewrite Rule: y = f(x1,x3) = X1
y = f(x1,%2) ot = A
P/(Xo, X1) :
P(xo, x1) : to = sin(xo)
to = sin(xg) — t1 = X1 - lo
1 =x1-1 Yy = Xo + t1 -
Yy =xo+1 )721' X0=0; =0

+<9(Xo+t1) y=1-1=1

return y Xo = Xo
E=5+8(X§7Z”)~7:1-1:1
E:O; to—o
ﬂ:7+8(xllt°) H=x{+t &
fo=fo+ 200 f =T+ x
Xo = Xo +M to = Xo + cos(xp) - ty

return xp, X1



Asymptotic Preserving & No Overhead for Perfect Nests

Original/Primal Code is a perfect nest of depth 4:

let xss=map (Acas — ifc
then
else map (\a — a*a)as
) ¢s ass



Asymptotic Preserving & No Overhead for Perfect Nests

Original/Primal Code is a perfect nest of depth 4:

let xss=map (Acas — ifc
then
else map (\a — a*a)as
) ¢s ass

Differentiated Code displays in red the re-execution of the primal:

Llet xss =map (Acas — 1if c then... else map (\a — a*a) as) cs ass
Let ass = map (Acasxs —
let xs=1if cthen... elsemap (\a — a*a) as
inif cthen...
else let xs' =map (\a — a*a) as
letas=map (\ax — let x=a*a
in2*a*Xx
) as xs
inas
) ass Xss



Key Idea #2: Parallel Constructs are Differentiated at a High Level



Differentiating Reduce at a High Level

= Reduce combines all elements of an array with a binary
associative operator ©:

let y = reduce © eg [ag,a1,...,0, 1]

lety = 0001 ©---©dp_1



Differentiating Reduce at a High Level

= Reduce combines all elements of an array with a binary
associative operator ©:

let y = reduce © eg [ag,a1,...,0, 1]

lety = 0001 ©---©dp_1

= For each g; in the array, we can group the terms of reduce as:

— -~

lj Ti




Differentiating Reduce at a High Level

= Reduce combines all elements of an array with a binary
associative operator ©:

let y = reduce © eg [ag,a1,...,0, 1]

lety = 0001 ©---©dp_1

= For each g; in the array, we can group the terms of reduce as:

—_———— -
[f ri
And then directly apply the AD rewrite rule

_ _ oloeaorn) _
a += (IQOGI'Q ) y
!

= We compute all a; in parallel by mapping over all instances
of l;, a;, ri. How do we compute all instances of [; and r;?



Computing [; and r;

= Foreachi e {0,...,n— 1}, need to compute [; and r;

Gy ©---© 01 ©aq © A1 OO a1
— ~

[i Ti

= Compute all [; with a (parallel) prefix sum operation, a.k.a., scan:

let [s= scan © eg [ag,01,...,0,_1]
E[E@, Go,ao®01,...,ao@...®an,2]
~— ~— —— —_—————
lo h b lh—1

= For the r;js, do a backward scan, i.e., on the reversed array

let rs = reverseas > scan (Axy — y ©x) eg [do, a1, - .,05_1]
> reverse
=[00O®...00_2,...,00—2 ©0y_1,d5_1, €5 ]
~—~—

o n—3 h—2 In—1



The Reduce Rule For an Arbitrary Associative Operator

= The differentiation of reduce results in the following
statements

let y = reduce © eg [do, 01, ..., 0p—1] }Forward

let [s=scan © ey as
let rs =reverseas > scan (\xy —y © X) ep
> reverse Reverse

let G5 ¥= map ()\l,- aj ri — aﬂ%ﬂi@”) )7) [sasrs

= The rule is asymptotics-preserving:

» scan has the same work-depth asymptotics as reduce;
» requires about 8 x more accesses to global memory.



Reduce Rule For Commutative and Invertible Operators

Assume ® : « — o — « associative and commutative operator.

Assume © is also invertible, i.e.,

Jo lsuchthat zo1a=b whenever boa=z

= The differentiation of reduce consists of:

let y = reduce © eg [ap,aq,...,0, 1] Forward

Reverse
letdas = map(\a; — letb=y 0! g

. 0(boa)
in=5 >y )as

= Specialized rules for other operators (+, min, max, %) admit
similar efficient implementations (map-reduce).



Key Idea #3: Translate Accumulators to Specialized Constructs



Optimizing Accumulators: Matrix-Multiplication Eg

A class of optimizations refers to translating accumulators to
more specialized constructs, e.g., reductions.

Matrix Multiplication Original:

forall i = 0..n-1 // map
forall j = 0 ..n-1 // map
for k =0 .. n-1

// map—reduce
cli,j] += a[i,k] * b[k,j]



Optimizing Accumulators: Matrix-Multiplication Eg

A class of optimizations refers to translating accumulators to
more specialized constructs, e.g., reductions.

Matrix Multiplication Original:

forall i = 0..n—1 // map
forall j = 0 ..n-1 // map
for k =0 .. n-1 // map—reduce

cli,j] += a[i,k] * b[k,j]

Matrix Multiplication Reverse-AD with accumulators:

forall i = 0..n—1
forall j =0 ..n-1
forall k =0 .. n-1

ali k] +=b[k,j] * c[i,]]
blk,j] += a[i,k] * c[i,j]

Rewrite the accumulations as classical reductions. This requires:



Optimizing Accumulators: Matrix-Multiplication Eg

A class of optimizations refers to translating accumulators to
more specialized constructs, e.g., reductions.

Matrix Multiplication Original:

forall i = 0..n—1 // map
forall j = 0 ..n-1 // map
for k =0 .. n-1 // map—reduce

cli,j] += a[i,k] * b[k,j]

Matrix Multiplication Reverse-AD with accumulators:

forall i = 0..n—1
forall j =0 ..n-1
forall k =0 .. n-1

ali k] += b[k,j] * €[i,j]
blk,j] += a[i,k] * c[i,j]
Rewrite the accumulations as classical reductions. This requires:
= to distribute the loop-nest over each statement

= bring innermost the parallel loop to which the write access is
invariant to.



MMM Example: Optimizing Generalized Reductions

= Distribute the loop-nest over each statement.
= Bring innermost the parallel loop to which the write access is

invariant to.
forall i = 0..n—1 forall k =0 .. n-1
forall k =0 .. n-1 forall j = 0 ..n-1
forall j = 0 ..n-1 forall i = 0..n—1
ali,k] += b[k,j] = c[i,j] b[k,j] += a[i,k] * ¢[i,j]

Perform a strength reduction: result can be summed and
accumulated once



MMM Example: Optimizing Generalized Reductions

= Distribute the loop-nest over each statement.

= Bring innermost the parallel loop to which the write access is
invariant to.

forall i = 0..n—1 forall k =0 .. n-1
forall k =0 .. n-1 forall j = 0 ..n-1
forall j = 0 ..n-1 forall i = 0..n—1
ali, k] += b[k,j] = c[i,j] b[k,j] += a[i,k] * c[i,j]

Perform a strength reduction: result can be summed and
accumulated once

forall i = 0..n-1 forall k =0 .. n-1
forall k = 0 .. n-1 forall j =0 ..n-1
acc = 0 acc = 0
for j =0 ..n-1 for i = 0..n—-1
acc = acc + b[k,j] * c[i,j] acc = acc + afi,k] = c[i,j]

ali,k] += acc b[k,j] += acc



MMM Example: Optimizing Generalized Reductions

forall i = 0..n—1 // map forall k =0 .. n-1 // map
forall k = 0 .. n-1 // map forall j =0 ..n—1 // map
acc = 0 acc = 0
for j =0 ..n-1 // map-reduce for i = 0..n-1 // map—reduce
acc = acc + b[k,j] * c[i,]] acc = acc + afi,k] * c[i,j]
afi,k] += acc b[k,j] += acc

Now re-write (most of) the accumulations as classical reductions:

map(\i — map(\ k —
map(\ k —> map(\ | —>
let acc = map2 (*) b[k] c[i] let acc = map2 (*) a[:,k] c[:,]]
|> reduce (+) O |> reduce (+) 0
let a[i,k] += acc in @ let E[k,]] += acc in b
) (iota n) ) (iota n)
) (iota n) ) (iota n)

In this form, the (enhanced) Futhark compiler would apply block
and register tiling, and also implement the technique of
parallelizing the innermost dimension proposed by
[Rasch,Schulze, and Gorlatch, 2019]



Experimental Results: Competitive with State of the Art



Sequential CPU Benchmarks - ADBench
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ADBench: a collection of
AD benchmarks for
comparing sequential AD
tools.

Benchmarked Futhark
using its C backend.

Performance measured in
AD overhead:

differentiated runtime
original runtime

the lower the better

On BA, bottleneck is due
to packing the result in
CSR format.



GPU Benchmarks - vs. Enzyme

= Performance measured in AD

00 Futhark © overhead:
6| |l0Enzyme -
[l differentiated runtime
o original runtime
410 ~
,\. N
~ = Enzyme is state-of-the-art LLVM
2l compiler plugin that performs AD on
a low-level imperative IR.
= RSBench and XSBench are
0 < < N comprised of a large parallell loop
Q?é‘(’ %é\(’ Ny with inner sequential loops and
& +© branches.

= | BM consists of a large sequential
loop containing a parallel loop.



k-means by Newton’s Method on NVIDIAs A100 GPU

lo Fut-AD
[0 Fut-Manual
0o PyTorch
I JAX S
In JAX-VMap —
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= Performance measured in miliseconds.
= PyTorch and JAX use hand-tuned matrix primitives;
= JAX(vmap) instead uses JAX’s vectorizing map operation.



Sparse k-means on Nvidia’s A100 GPU

00 Fut-AD
[ 0Fut-Manual = Performance
00 PyTorch :
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GMM: GPU Performance vs PyTorch on A100 & MI100

We test benchmark GMM from ADBench on 32-bit floats.

This is neutral ground.

Measurement Do D, D, D- D, Ds
PyT.Jacob.(ms) | 7.4 158 152 59 125 64.8
g Fut. Speedup 21 22 14 16 15 1.0
< PyT. Overhead 35 49 28 32 40 3.2
Fut. Overhead 20 18 19 27 238 2.8
PyT.Jacob. (ms) | 20.9 51.5 425 20.7 385 1931
S Fut. Speedup 33 40 21 29 25 1.7
S PyT.Overhead | 59 53 24 26 31 28
Fut. Overhead 30 29 30 28 238 2.8




LSTM: GPU Performance vs PyTorch & JAX

This is PyTorch’s home ground, because matrix-multiplications
take about 75% of runtime, and matrix-multiplication is a
primitive in PyTorch, while Futhark needs to work hard for it.

Speedups

PyTorch Jacob. | Futhark nn.LSTM JAX JAX(vmap)
g Do 45.4ms 3.0 11.6 45 0.3
< Dy 740.1 ms 3.3 221 6.4 0.9
g Do 89.8 ms 2.6 4.0 — —
$ D 1446.9 ms 1.8 54 - -

Overheads

PyTorch Futhark nn.LSTM JAX JAX(vmap)
g Dg 4.1 2.1 2.7 35 1.4
< Dy 4.3 3.9 2.2 37 0.8
g Dy 5.0 4.2 7.2 - -
s D 7.9 3.9 6.6 — —

cuDNN-based refers to the (manual) torch.nn.LSTM library.



GPU Benchmarks - Depth and Memory Consumption

°
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0o Depth = AD Memory overhead:
loMem. Overhead

differentiated mem.

r DRI s original mem.
2+ LN
15 o 4t o
: = Loop strip-mining
1l — reduces LBM’s memory
2 overhead to 8.7 x, at
0.5} the cost of 1.3x
increase in runtime.
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Strong performance on programs with non-trivial depth demonstrates
the viability of a recomputation-based approach to AD.



Conclusions

= AD in a nested-parallel, high-level and hardware-neutral
functional language.

Key idea: high-level differentiation using specialized rules
for parallel combinators.

= Keyidea: re-computation instead of a tape (except for loops!).

Strong performance against state-of-the-art AD competitors.

The implementation is available now in the Futhark
compiler-try it out!

https://futhark-lang.org


https://futhark-lang.org
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Illustrative Example: k-means clustering in 2D




Illustrative Example: k-means clustering in 2D




Illustrative Example: k-means clustering in 2D




Illustrative Example: k-means clustering in 2D

cluostrer Sizes
[ r =
| 141161 =4
[ 1+I+1t141 = 5




Illustrative Example: k-means clustering in 2D

cluostrer Sizes
[t =

| 141161 =4
[ V¥1414141 = 5

Cluster sums

| o =+
I * 7%t 0t e, =+

[ 0,0 10,40, 40,24




Illustrative Example: k-means clustering in 2D

cluostrer Sizes
[t =

| 141161 =4
[ V¥1414141 = 5

Cluster sums

| o =+
I * 7%t 0t e, =+

[ 0,0 10,40, 40,24




Illustrative Example: k-means clustering in 2D

cluostrer Sizes
[t =

| 141161 =4
[ V¥1414141 = 5

Cluster sums

I .l =+
8 ta =

{ o #o.b+oq+os+o‘ =+




Illustrative Example: k-means clustering in 2D

cluostrer Sizes
[t =

| 141t161 =Y
[ 11414141 = 5

Cluster sums

I ‘l =+
8 ja =

{ o 403+oq+os+o‘ =+

Genralized histograms allow a two-slide efficient implementation.

[2] Troels Henriksen, Sune Hellfritzsch, P. Sadayappan and Cosmin Oancea, "Compiling
Generalized Histograms for GPU”, In Procs of SC20: International Conference for High

Performance Computing, Networking, Storage and Analysis, 2020.



Mathematical Formulation of k-means clustering

Given a set of n points P in a d-dimensional space, one must find
the k points C that minimize the cost function:

7€) =Y min{[lp - c|l*,c e ¢}

peP



Mathematical Formulation of k-means clustering

Given a set of n points P in a d-dimensional space, one must find
the k points C that minimize the cost function:

7€) =Y min{[lp - c|l*,c e ¢}

peP

This problem can be solved by applying Newton’s Method, i.e.,

Civ1 =G — VF(G) - Hy(C))?

AD: worthy to be supported as a first-class citizen of parallel
languages?
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= Sequential loops are sugar for tail-recursive functions.

= Loop parameters are variables which are variant through the
loop and are returned as the result of the loop.

loopy=2fori=0...n-1do y=2
lety =yxy fori=0...n-1do
iny y=yx*y

(Imperative analog)

= Storing the loop parameter y on the tape for each iteration is
required in order to be able to execute the loop backwards.

= Parallel constructs do not require such check-pointing.



Differentiating Loops

lety’ = 2 let ysg = scratch(n,
loopy=ysfori=0...n-1do 3 sizeO0£f(yy))
StMSjo0p 4 let (v, ys) =
iny’ 5 loop (y, ys) = (Yo, ¥so) Primal Trace

6 fori=0...n-1do
. 7 letyslil=y
1. Re-execute the original 8 stmsipp
loop, save the value of y 9 in(y’, ys)
in each iteration in ys 12tet (7, s =
Y3 13 voop (7. fis) = (77, Fsip)
14 fori=n-1...0do
15 lety =ys|i]
16 stmsiop Reverse Sweep
17 StMSigop
18 din(y/, fvs))
19 let jjg +=y”




Differentiating Loops

lety’ = 2 let ysg = scratch(n,
loopy=ysfori=0...n-1do 3 sizeO0£f(yy))
StMSjo0p 4 let (v, ys) =
iny’ 5 loop (y, ys) = (Yo, ¥So) Primal Trace

6 fori=0...n-1do
L. 7 letys[i]l=y
1. Re-execute the original 8 stmsipgp

loop, save the value of y 2 in(y. )

. . L 12 let (y7, fis)=
in each iteration in ys. 13 Loop (7, fvs.) = (77, frsg)

2. Compute the adjoint 14 fori=n-1...0do
contributions of the 15 lety =ys[i]
lo op 16 stmsioep Reverse Sweep
’ 17 Stmsiep

18 in(y/, fvs))

19 let yy +=y""




lety’ =
loopy=ypfori=0...n-1do
StMSo0p
iny’

1. Re-execute the original
loop, save the value of y
in each iteration in ys.

2. Compute the adjoint
contributions of the
loop.

» Run the loop
backwards

2 let ysg = scratch(n,
3 size0f(yp))
4let (y", ys) =
5 loop (¥, ¥s) = (Yo, ¥So0)
6 fori=0...n-1do
7 letys[i]=y
8 stmsjoep
9 in(y, ys)
12 let (y, frs) =
13 loop (¥, fvs;) = (v, frsy,)
14 fori=n-1...0do
15 lety =ys|i]
—
16 stmsioep
17 stmsiep
18 in (Y, fvs))

19 let yp +=y""

Differentiating Loops

Primal Trace

Reverse Sweep



lety’ =
loopy=ypfori=0...n-1do
StMSo0p
iny’

1. Re-execute the original
loop, save the value of y
in each iteration in ys.

2. Compute the adjoint
contributions of the
loop.

» Run the loop
backwards

» Restore the value of y
from ys

2 let ysg = scratch(n,
3 size0£f(yp))
4 let (v, ys) =
5 loop (¥, ¥s) = (Yo, ¥So0)
6 fori=0...n-1do
7 letys[i]l=y
8 stmsjoep
9 in(y, ys)
12 let (y, frs) =
13 loop (¥, fvs;) = (v, frsy,)
14 fori=n-1...0do
15 lety = ys[i]
s
16 stmsioep
17 stmsiep
18 in (Y, fvs))

19 let yp +=y""

Differentiating Loops

Primal Trace

Reverse Sweep



lety’ =
loopy=ypfori=0...n-1do
StMSo0p
iny’

1. Re-execute the original
loop, save the value of y
in each iteration in ys.

2. Compute the adjoint
contributions of the
loop.

» Run the loop
backwards

» Restore the value of y
from ys

» Re-execute the body
of the original loop

2 let ysg = scratch(n,
3 size0£f(yp))
4 let (v, ys) =
5 loop (¥, ¥s) = (Yo, ¥So0)
6 fori=0...n-1do
7 letys[i]l=y
8 stmsjoep
9 in(y, ys)
12 let (y, frs) =
13 loop (¥, fvs;) = (v, frsy,)
14 fori=n-1...0do
15 lety =ys|i]
—
16 stmsioep
17 stmsiep
18 in (Y, fvs))

19 let yp +=y""

Differentiating Loops

Primal Trace

Reverse Sweep



Differentiating Loops

lety’ =
loopy=ypfori=0...n-1do
StMSo0p
iny’

1. Re-execute the original
loop, save the value of y
in each iteration in ys.

2. Compute the adjoint
contributions of the
Lloop.

» Run the loop
backwards

» Restore the value of y
from ys

» Re-execute the body
of the original loop

» Compute the adjoints
of the body

2 let ysg = scratch(n,

3 sizeO0£f(yy))
4let (y", ys) =

5 loop (y, ys) = (Yo, ¥so0)

6 fori=0...n-1do

7 letys[i]l=y

8 stmsjoep

9 in(y’, ys)

12let (y7, frs) =
13 loop (¥, fvs;) = (v, frsy,)
14 fori=n-1...0do
15 lety =ys|i]
—
16 stmsioep
17 stms,oa,,i
18 din(y, fvs))

19 let yp +=y""

Primal Trace

Reverse Sweep



Loop Strip-mining implements the Space-Time Trade-off

= Loop strip-mining partitions a loop into a loop nest

loop y =y loopy;=yo forj=0...n-1do
fori=0...n°-1do = loopy =y fork=0...n-1do
stms loopyn, =y form=0...n-1do
leti=j*«n*+kxn+m
stms

= For the original loop, we save n® versions of y on the tape.
= For the strip-mined loop, only 3n versions are saved.
= Strip-mining is controlled by the user via a simple annotation.

Strip-mining a loop k times results in up to kx slowdown, but
memory overhead decreases from a factor of n“x to n - kx.



Summary: Tape vs Redundant Execution

= whenever a new scope is entered, the code generation of the
reverse trace first re-executes the primal trace of that scope;

= the re-execution overhead is at worst proportional with the
deepest scope nest of the program (which is constant);

= “the tape”is part of the program and subject to aggressive
optimizations (especially in a purely functional context);

= in most cases, it is more efficient to re-compute scalars
rather than to access them from the tape (global memory);

= loops require checkpointing, parallel constructs do not.
= Subject to checkpointing are only the loops appearing

directly in the current scope of the reverse-trace code
generation (i.e., inner loops of the primal trace are not).



Reverse-AD: Core Re-Write Rule
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Key Idea #2: Parallel Constructs are Differentiated at a High Level
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Map without Free Variables

= Map is equivalent to a parallel for-loop

let xs=map (\ab — letres=a * binres)as bs

i}
forall/=0...n-1

xs[i] = as[i] = bsi]



Map without Free Variables

= Map is equivalent to a parallel for-loop

let xs=map (\ab — letres=a * binres)as bs

i}
forall/=0...n-1

xs[i] = as[i] = bs]i]
= Differentiating map is straightforward in the absence of free
variables

let as,bs =map (\a b X ag by —
letres=axb
leta=ap+bx*xx
letb=bg+axx
in @, b) as bs Xs asg bsy



Map with Free Variables

= Maps involving free variables are more complicated to
differentiate

let xs=map (\a — axb) as
= Naive approach: turn free variables into bound variables.
let xs=map (\a b’ — axb') as (replicate nb)

= Problem: asymptotically inefficient for partially used free
arrays.



Efficient Maps with Free Variables

= [n an impure language, asymptotics-preserving adjoint
updates for free array variables can be implemented as a
generalized reduction:

» preserves the useful properties of maps (parallel loops),
» generalization of map, reduce, reduce-by-index, scatter.

= |n this setting, the adjoint of a free aray variable as|i] can be
updated with an operation as[i] += v.

= |n our pure setting, we introduce accumulators.

» Write-only view of an array.
» Guarantees the generalized reduction properties at the type
level.

= An important set of optimizations refer to specializing
generalized reductions to maps, reduce, reduce-by-index.
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Handling of Loops with In-Place Updates

The brownian loop brindge from OptionPricing, FinPar suite:

let bbrow =
loop bbrow for i in 1..<num_dates do
let bbrow[ bi[i]-1] =
sd[i] * gauss[i] +
rw[i] * bbrow[ri[i]-1] +
lw[i] * bbrowl[li[i]-1]
in bbrow

Checkpointing bbrow for each iteration breaks work asymptotics!

If the loop exhibits only true (RAW) dependencies, then:



Handling of Loops with In-Place Updates

The brownian loop brindge from OptionPricing, FinPar suite:

let bbrow =
loop bbrow for i in 1..<num_dates do
let bbrow[ bi[i]-1] =
sd[i] * gauss[i] +
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On primal: before the loop, checkpoint the indices of bbrow
written through the loop (e.g., the whole array);
On reverse: after computing the adjoint of the loop, restore the
bbrow array to the state before the loop.

Rationale:



Handling of Loops with In-Place Updates

The brownian loop brindge from OptionPricing, FinPar suite:

let bbrow =
loop bbrow for i in 1..<num_dates do
let bbrow[ bi[i]-1] =
sd[i] * gauss[i] +
rw[i] * bbrow[ri[i]-1] +
lw[i] * bbrowl[li[i]-1]
in bbrow

Checkpointing bbrow for each iteration breaks work asymptotics!

If the loop exhibits only true (RAW) dependencies, then:
On primal: before the loop, checkpoint the indices of bbrow
written through the loop (e.g., the whole array);
On reverse: after computing the adjoint of the loop, restore the
bbrow array to the state before the loop.

Rationale:
= Parallel prog means avoiding (cross-iteration) dependencies;
= WAR & WAW are named false dependencies for a reason!
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