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Why we did it
 
The topics of the workshop are still new to fundamental physics. 
Deeply interesting, but also outside of our usual wheelhouse. 

Goals:  

• provide venue where there is  
a lot of space for discussions and time to think 

• bring together physicists and computer scientists  
for an extended period of time



Format
Format: 1-2 Talks a day - Rest is discussion!

https://www.munich-iapbp.de/probabilistic-programming/schedule 

Talks available here (not sometimes it’s a URL)

https://www.munich-iapbp.de/probabilistic-programming/schedule


Impromptu Sessions
We had many unplanned impromptu sessions as well: Measure 
Theory, Julia, Distributed DiffProg, Theorem Proving, Geant4 

Takeaway (as HEPer): a lot of folks have deep expertise in things 
that often don’t surface in HEP context. The format helped a lot.



Topical Workshop
We had a more traditional workshop for 3 days as well (~ 80 attendees) 

Let me fix this



Why we did it

Francois Lenusse: First Talk of the Program



Why ProbProg and DiffProg
 
From a certain point of view Differentiable and Probabilistic 
Programming are closely connected. 

• but not a lot of cross-talk between communities 

Program

x ϕ

y = fϕ(x)

Diffable Program

x ϕ

y = fϕ(x) ∇ϕy

Prob. Program

x ϕ

y = fϕ(x) log p(y |ϕ)



DiffProg Needs ProbProg
To differentiate through some of the non-differentiable operations 
we often to, it’s useful to make the program stochastic first 
(see. M. Kagan’s Talk)

Discrete Jumps

Smooth Expectation 
Value



ProbProg needs DiffProg
Statistical Inference with PPLs often require gradients for efficient 
exploration of the parameter space

∇θlog p(x, θ)



ProbProg needs DiffProg
Statistical Inference with PPLs often require gradients for efficient 
exploration of the parameter space

∇θlog p(x, θ)
Probabilistic programming aims to build and 

deliver a toolchain that does the same for 

probabilistic machine learning;

The rapid exploration of the deep learning approach to 

artificial intelligence has been triggered to a large degree 

by the emergence of programming language tools that 

automate the tedious and troublesome derivation and 

calculation of gradients for optimization.



A few Takeaways



Tooling
 
The tooling is continuously improving and is growing (or always 
has been) beyond ML.  

 
JAX: the quasi-default for a lot of “new” differentiable programming 
work in particle physics


 
Why? Most people got exposed to DP through ML. DP as a way to 
add physics inductive bias. JAX much better suited than other ML 
frameworks



Case in Point:
Astro-folks are investing a lot into rewriting simulation code in 
JAX (and TF). From primordial fields to final inference. 
 
Target: HMC

Chirag Modi
Francois Lenusse



Beyond JAX
JAX can be a good choice for new projects, but most of our code 
is not even implemented in Python let alone JAX  

A lot of tooling developing for multi-language AD and scientific 
computing in particular 

TAPENADE CoDiPack Enzyme CLAD



Takeaway: It Scales
If things are differentiable, we shouldn’t be scared of large-scale 
codebases and applications 



A Taste of what’s possible
MadJax: Differentiable Matrix Elements from MadGraph (FORTRAN)


 
In JAX: painful compilation


In CoDiPack, Tapenade:  
Gradients within O(day) on original 
code (C++ and/or Fortran)


Extra: Derivgrind derivatives on compiled artefact
MadJAX without JAX ?



A Taste of what’s possible
RooFit: after ~10 years, it actually is becoming differentiable 
 
Maybe indicative: first small-scale rewrite in JAX (pyhf) to 
demonstrate feasibility and added value, and then motivate 
larger effort & deployment (with C++ / CLAD)

[Garima Singh]



Beyond Automatic Differentiation
Standard AD is not a magic black-box machine 

 
Jan Hückelheim:  

“AD is for people who already know what the gradients are” 

There are a lot of “tricks-of-the-trade” that one has to be aware 
of and that should be added to languages as features 



Examples

∂θargminx f(x, θ)

∂θ ∫Ω(θ)
∂θ𝔼p(x,θ)

∂θodesolve( f, x0)

Possible Outcome of 
Workshop: Handbook  

of AD constructs 
(B. Pearlputter, G. Baydin)



Application: Differentiable Rendering

Differentiably 
Tracing Photons might be a 

good starting point for 
differentiably tracking more particles



Special Role of HEP
Notable difference in uptake of DP in Astro and HEP 

HEP: local algorithms become differentiable or we have big 
surrogates (fits, track reconstruction, generative models)


• Natural blockage at discrete changes in data representation 

Astro: ambition is more towards soup-to-nuts differentiable pipelines


• A lot of applications are more “inherently differentiable” 



Special Role of HEP
Notable difference in uptake of DP in Astro and HEP 

HEP: 
 

 
Astro:

ODE/PDE Solving



Why do we do differentiable programming. Presumably to gain 
performance. But how much is there to gain? 

What is the hierarchy of approaches, how big are the gaps? 

? %

A Big Question

Default 
Reconstruction

+ Analysis 
Specific Tuning

+ End-to-end 
Optimization

+ Detector Design 
under same budget

? % ? %



Why do we do differentiable programming. Presumably to gain 
performance. But how much is there to gain? 

What is the hierarchy of approaches, how big are the gaps? 

? %

A Big Question

Default 
Reconstruction

+ Analysis 
Specific Tuning

+ End-to-end 
Optimization

+ Detector Design 
under same budget

? % ? % Possible outcome  

statistical analysis on impact 

of various inference simplifications  

we often do in HEP



The Main Takeaway



Currently exploring options around the world 

We should do it again sometime!




