
MIAPbP Workshop on 
Differentiable and Probabilistic 
Programming

Lukas Heinrich, TUM

MIAPbP
MIAPbP: Munich Institute for Astro- Particle- and Biophysics

45 Seats for 4 Weeks. Funded by TUM and ORIGINS Cluster of Excellence

Sanmay Ganguly

Our workshop was one of the first 
“Data Science/Computing” themed 
MIAPbP Workshop (together with QC)

Organizing Team

Lukas Heinrich 
(TUM)

Michael Kagan 
(SLAC)

Torsten Ensslin 
(MPA) Atılım Güneş Baydin 

(Oxford)
Vassil Vassilev 

(Princeton)

Why we did it
 
The topics of the workshop are still new to fundamental physics.
Deeply interesting, but also outside of our usual wheelhouse. 

Goals:

• provide venue where there is  
a lot of space for discussions and time to think

• bring together physicists and computer scientists  
for an extended period of time

Format
Format: 1-2 Talks a day - Rest is discussion!

https://www.munich-iapbp.de/probabilistic-programming/schedule

Talks available here (not sometimes it’s a URL)

https://www.munich-iapbp.de/probabilistic-programming/schedule

Impromptu Sessions
We had many unplanned impromptu sessions as well: Measure
Theory, Julia, Distributed DiffProg, Theorem Proving, Geant4

Takeaway (as HEPer): a lot of folks have deep expertise in things
that often don’t surface in HEP context. The format helped a lot.

Topical Workshop
We had a more traditional workshop for 3 days as well (~ 80 attendees)

Let me fix this

Why we did it

Francois Lenusse: First Talk of the Program

Why ProbProg and DiffProg
 
From a certain point of view Differentiable and Probabilistic
Programming are closely connected.

• but not a lot of cross-talk between communities

Program

x ϕ

y = fϕ(x)

Diffable Program

x ϕ

y = fϕ(x) ∇ϕy

Prob. Program

x ϕ

y = fϕ(x) log p(y |ϕ)

DiffProg Needs ProbProg
To differentiate through some of the non-differentiable operations
we often to, it’s useful to make the program stochastic first 
(see. M. Kagan’s Talk)

Discrete Jumps

Smooth Expectation 
Value

ProbProg needs DiffProg
Statistical Inference with PPLs often require gradients for efficient
exploration of the parameter space

∇θlog p(x, θ)

ProbProg needs DiffProg
Statistical Inference with PPLs often require gradients for efficient
exploration of the parameter space

∇θlog p(x, θ)
Probabilistic programming aims to build and

deliver a toolchain that does the same for

probabilistic machine learning;

The rapid exploration of the deep learning approach to

artificial intelligence has been triggered to a large degree

by the emergence of programming language tools that

automate the tedious and troublesome derivation and

calculation of gradients for optimization.

A few Takeaways

Tooling
 
The tooling is continuously improving and is growing (or always
has been) beyond ML.

 
JAX: the quasi-default for a lot of “new” differentiable programming
work in particle physics

 
Why? Most people got exposed to DP through ML. DP as a way to
add physics inductive bias. JAX much better suited than other ML
frameworks

Case in Point:
Astro-folks are investing a lot into rewriting simulation code in
JAX (and TF). From primordial fields to final inference. 
 
Target: HMC

Chirag Modi
Francois Lenusse

Beyond JAX
JAX can be a good choice for new projects, but most of our code
is not even implemented in Python let alone JAX

A lot of tooling developing for multi-language AD and scientific
computing in particular

TAPENADE CoDiPack Enzyme CLAD

Takeaway: It Scales
If things are differentiable, we shouldn’t be scared of large-scale
codebases and applications

A Taste of what’s possible
MadJax: Differentiable Matrix Elements from MadGraph (FORTRAN)

 
In JAX: painful compilation

In CoDiPack, Tapenade:  
Gradients within O(day) on original 
code (C++ and/or Fortran)

Extra: Derivgrind derivatives on compiled artefact
MadJAX without JAX ?

A Taste of what’s possible
RooFit: after ~10 years, it actually is becoming differentiable 
 
Maybe indicative: first small-scale rewrite in JAX (pyhf) to
demonstrate feasibility and added value, and then motivate 
larger effort & deployment (with C++ / CLAD)

[Garima Singh]

Beyond Automatic Differentiation
Standard AD is not a magic black-box machine

 
Jan Hückelheim:

“AD is for people who already know what the gradients are”

There are a lot of “tricks-of-the-trade” that one has to be aware
of and that should be added to languages as features

Examples

∂θargminx f(x, θ)

∂θ ∫Ω(θ)
∂θ𝔼p(x,θ)

∂θodesolve(f, x0)

Possible Outcome of 
Workshop: Handbook  

of AD constructs 
(B. Pearlputter, G. Baydin)

Application: Differentiable Rendering

Differentiably 
Tracing Photons might be a

good starting point for 
differentiably tracking more particles

Special Role of HEP
Notable difference in uptake of DP in Astro and HEP

HEP: local algorithms become differentiable or we have big
surrogates (fits, track reconstruction, generative models)

• Natural blockage at discrete changes in data representation 

Astro: ambition is more towards soup-to-nuts differentiable pipelines

• A lot of applications are more “inherently differentiable”

Special Role of HEP
Notable difference in uptake of DP in Astro and HEP

HEP: 
 

 
Astro:

ODE/PDE Solving

Why do we do differentiable programming. Presumably to gain
performance. But how much is there to gain?

What is the hierarchy of approaches, how big are the gaps?

? %

A Big Question

Default 
Reconstruction

+ Analysis 
Specific Tuning

+ End-to-end 
Optimization

+ Detector Design 
under same budget

? % ? %

Why do we do differentiable programming. Presumably to gain
performance. But how much is there to gain?

What is the hierarchy of approaches, how big are the gaps?

? %

A Big Question

Default 
Reconstruction

+ Analysis 
Specific Tuning

+ End-to-end 
Optimization

+ Detector Design 
under same budget

? % ? % Possible outcome  

statistical analysis on impact 

of various inference simplifications  

we often do in HEP

The Main Takeaway

Currently exploring options around the world

We should do it again sometime!

