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Neuromorphic Computing

Spiking Neural Networks (SNN)

Examples, work in progress



… and NeuroscienceHistory of Physics

1943 First neuron model – McCulloch & Pitts

1873 Silver staining method, continuous system viewpoint - Golgi
1888 Evidence for discontinuity, individual nerve cells - Cajal
1891 “Neuron” introduced - Waldeyer

1906 Receptive fields of neurons in the skin described – Sherrington

1958 Perceptron machine – Rosenblatt

Laws of motion / gravity – Newton 1687

Maxwells equations 1864

Special theory of relativity – Einstein 1905

Bohrs model of atoms 1913
General theory of relativity – Einstein 1916

Quantum physics 1925-7
Antimatter predicted – Dirac 1928

1949 Hebbian learning – Hebb
1952 Spiking neuron model - Hodgkin & Huxley

1839 Cells, Theodor Schwann

More info: Rafael Yuste, From the neuron doctrine to neural networks, Nature Reviews Neuroscience (2015)



Carver Mead, How we created neuromorphic engineering, Nature Electronics (2020)

Neuromorphic engineering aims to create computing 

hardware that mimics biological nervous systems

Image credit: Rodney Douglas

It had become clear to me that industrial 

practice was on a problematic path: in the race 

to release new product generations, it was 

faster to scale old designs to smaller feature 

sizes than to innovate at the architecture level.



Image: Gerstner et al., Neuronal Dynamics
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104 cells and several km
of nerves (axons) per mm3

Image: Decadal Plan for Semiconductors

See: Frenkel, Bol and Indiveri, Bottom-Up and Top-Down Approaches for the Design of Neuromorphic Processing Systems: Tradeoffs and Synergies Between 

Natural and Artificial Intelligence, Proceedings of the IEEE (2023); DOI: 10.1109/JPROC.2023.3273520.

Image: Neuronal Dynamics, Chapter 12



Herbert Jaeger, Neuromorph. Comput. Eng.1 (2021);    https://doi.org/10.1088/2634-4386/abf151

Lecture: https://www.youtube.com/playlist?app=desktop&list=PL2Mh0Lr7X-WWEk8-NRB28rUqrLXitFaZ4

Towards a generalized theory of computing 

https://doi.org/10.1088/2634-4386/abf151
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Gartner #1 emerging technology that

you need to know about

expected to disrupt many of the 
current AI technology developments

substantial impact on existing
products and markets

3–6 yrs to cross over from early-
adopter status to early majority
adoption



Data at network edge increasingly valuable

Zhou, et al. (2019) “Edge Intelligence”

Covi, et al. (2021) “Adaptive Extreme Edge Computing for Wearable Devices”

Ye, et al. (2021) “Challenges and Emerging Technologies for Low-Power 

Artificial Intelligence IoT Systems”
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Adapted from Mehonic & Kenyon, Brain-inspired computing needs a master plan, Nature (2022)

x1 000 000 000

x10 000 000

x100 000

x1000

x10

Deep learning is too resource intensive

https://ourworldindata.org/artificial-intelligence


Energy-efficiency gap

~20 W 21 MW



Shalf, The future of computing beyond Moore’s Law (2020);  DOI: 10.1098/rsta.2019.0061

Xiu, Time Moore: Exploiting Moore's Law From The Perspective of Time (2019);  DOI: 10.1109/MSSC.2018.2882285

Rethink the constraint that

“all cycles must have the 

same duration in time”

Event-triggered sampling, 

processing and control

“Beyond Moore”, “Time Moore”

Neuromorphic

https://dx.doi.org/10.1098/rsta.2019.0061
https://doi.org/10.1109/MSSC.2018.2882285


Level-crossing ADC
L

o
g

 i
n

te
n

s
it

y

UP

DN

δ 

Tid (ms)      0       1       2       3       4       5       6 

a)

b)

High time resolution

No redundant samples

Few binary events

Signal changes by some delta → new information 



Lebesgue sampling paradigm
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a)

b)

High time resolution

No redundant samples

Few binary events

Lebesgue integration instead of Riemann integration with constant dt (clock cycle)



Source: INI & RPG Zurich

High time resolution,

low redundancy

Low time resolution,

high redundancy

Dynamic vision sensors (DVS)



Image credit: iniVation



Dynamic models of 

neurons and synapses
Analog “silicon-neuron” circuit

Conventional CMOS-transistor technology



Information Processing Concepts

Conventional

computers
mimic

logical and

analytical

thinking

Neuromorphic

processors
mimic

the senses, 

learning and

perception
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Mehonic & Kenyon, Nature, 2022

DOI: 10.1038/s41586-021-04362-w

Neuromorphic Computing Systems

https://doi.org/10.1038/s41586-021-04362-w


Image credit: Yolé



Ostrau et al, Frontiers in Neuroscience (2022). Benchmarking neuromorphic hardware and its energy expenditure; doi: 10.3389/fnins.2022.873935

Human brain Technology Chip Worse by

Housekeeping 4.8E-11 9.8E-07 RTX2070 2.0E+04

Resting potential 5.8E-11 3.8E-08 Spikey 6.6E+02

Action potential 2.0E-11 4.4E-10 Spikey 2.2E+01

Spike transmission 8.2E-15 1.1E-11 Spikey 1.3E+03

Single neuron 2.5E-10 1.5E-06 Spikey 1.3E+03

Full brain 2.1E+01 1.3E+05 Spikey 6.2E+03

Energy-efficiency comparison

https://doi.org/10.3389/fnins.2022.873935


Neurons



Bains, The Business of Building Brains, Nature Electronics (2020)

Dendrites

Typical size

4 - 100 m

Signal speed
0.5 - 10 - 150 m/s



Image credit: Neuroscience, D. Purves et al.

Nernst potential



Action potentials and “spike” approximation

About -65 mV resting potential

Surrounding bath ≡ 0 mV

Positive Na+ feedback process

if threshold voltage reached



Action potentials and “spike” approximation

About -65 mV resting potential

Surrounding bath ≡ 0 mV

Positive Na+ feedback process

if threshold voltage reached

~100 mV fluctuation for ~1 ms

– Action potential

– Mostly stereotype events, spikes,

characterized by the spike time



Spiking Neural Networks (SNN)



Spiking Neural Networks (SNN)

Spike

Address Event Representation (AER):

Address of source neuron

Spike time ≡ Physical time



https://neuronaldynamics.epfl.ch

τ𝑚
𝑑𝑢

𝑑𝑡
= 𝑢𝑟𝑒𝑠𝑡 − 𝑢 𝑡 + 𝑅𝐼 𝑡

Threshold condition: 𝑢(𝑡) = 𝜗

Then generate spike at 𝑡 and set 𝑢 = 𝑢𝑟 < 𝜗

Leaky Integrate and Fire (LIF) neuron model



http://brian2.readthedocs.io

Brette, Goodman, Stimberg, 2016

#!/usr/bin/env python

from brian2 import *

n = 100                     # No. of neurons

duration = 2*second         # Simulation time

R = 90e6 # Membrane resistance, Ohm

tau = 30*ms # Leakage time constant

E_L = -65*mV                # Leakage resting potential

v_thres = -50*mV            # Threshold potential

# LIF equations, define RI = R*I(t) as a voltage for simplicity

eqs = '''

dv/dt = (E_L - v + RI) / tau : volt (unless refractory)

RI : volt

'''

# Define a population of LIF neurons

group = NeuronGroup(n, eqs, threshold='v > v_thres',

reset='v = E_L', refractory=5*ms, method='linear')

# Define the initial value of the membrane potential

group.v = E_L

# Each neuron is fed by a different current via the RI term

group.RI = '100*mV * i / (n-1)'

# Create monitors to enable plotting of variables

monitor1 = SpikeMonitor(group)

monitor2 = StateMonitor(group, 'v', record=True)

# Run the simulation

run(duration)

# Plot results

figure(figsize=(12,4))

subplot(121)

plot(group.RI*(1e-3/mV)/R/1e-12, monitor1.count / duration, '-b')

xlabel('Input current (pA)')

ylabel('Firing rate (Hz)')

subplot(122)

plot(monitor2.t, monitor2.v[15]*1e-3/mV, '-r', label='Neuron 15')

plot(monitor2.t, monitor2.v[20]*1e-3/mV, '--g', label='Neuron 20')

legend()

xlabel('Time (s)')

ylabel('Membrane potential (mV)')

show()



LIF model spike rate versus input current



Similar to ReLU in quasistatic regime

ReLU activation in ANN



Montúfar, Universal approximation depth and errors of narrow belief networks with discrete units, Neural Computation, 26 (2014)



LIF-model example
1) Neuron responds to 20Hz stimuli that is out of phase

LIF

20 Hz

20 Hz

87 pA

87 pA



LIF-model example
1) Neuron responds to 20Hz stimuli that is out of phase

LIF
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2) Weights are lower. Neuron does not respond anymore
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20 Hz
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LIF-model example
1) Neuron responds to 20Hz stimuli that is out of phase

LIF

20 Hz

20 Hz

87 pA

87 pA

2) Weights are lower. Neuron does not respond anymore

LIF

20 Hz

20 Hz

86 pA

86 pA

3) Lower weights more. Does it respond to 20Hz in-phase stimuli?

LIF

20 Hz

20 Hz

85 pA

85 pA



LIF-model example
1) Neuron responds to 20Hz stimuli that is out of phase

LIF

20 Hz

20 Hz

87 pA

87 pA

2) Weights are lower. Neuron does not respond anymore

LIF

20 Hz

20 Hz

86 pA

86 pA

3) Lower weights more. Does it respond to 20Hz in-phase stimuli? -YES

LIF

20 Hz

20 Hz

85 pA

85 pA



Representational power of spike coding schemes?

https://homepages.cwi.nl/~sbohte/publication/paugam_moisy_bohte_SNNChapter.pdf

Population rate code ~log2(n+1) bits
(inefficient)

Binary code ~n bits

Timing code ~n log2(time precision)

Ordering code ~n log2(n)

…

Neural coding in biology ?

https://homepages.cwi.nl/~sbohte/publication/paugam_moisy_bohte_SNNChapter.pdf


Comment on end-to-end 

optimization of SNNs



https://neuronaldynamics.epfl.ch

τ𝑚
𝑑𝑢

𝑑𝑡
= 𝑢𝑟𝑒𝑠𝑡 − 𝑢 𝑡 + 𝑅𝐼 𝑡

Then generate spike at 𝑡 and set 𝑢 = 𝑢𝑟 < 𝜗

𝑑𝑢

𝑑𝑡
≈
𝑢 𝑡 + 1 − 𝑢 𝑡

∆𝑡

Threshold condition: 𝑢(𝑡) = 𝜗

𝑢 𝑡 + 1 = 𝛼 𝑢 𝑡 + 𝛽 𝐼 𝑡 + 𝜇

Discretize the LIF model 



𝑑𝑢

𝑑𝑡
≈
𝑢 𝑡 + 1 − 𝑢 𝑡

∆𝑡

𝑢 𝑡 + 1 = 𝛼 𝑢 𝑡 + 𝛽 𝐼 𝑡 + 𝜇

𝑆 𝑡 + 1 = 𝐻 𝑢 𝑡 + 1 − 𝑢𝑡ℎ𝑟
𝑢 → 𝑢𝑟𝑒𝑠𝑒𝑡

Define spiking output, S



𝑑𝑢

𝑑𝑡
≈
𝑢 𝑡 + 1 − 𝑢 𝑡

∆𝑡

𝑢 𝑡 + 1 = 𝛼 𝑢 𝑡 + 𝛽 𝐼 𝑡 + 𝜇

𝑆 𝑡 + 1 = 𝐻 𝑢 𝑡 + 1 − 𝑢𝑡ℎ𝑟
𝑢 → 𝑢𝑟𝑒𝑠𝑒𝑡

𝑆

𝛼

𝑢

𝛽

𝐼 𝑡

𝑢 𝑡

𝑆 𝑡 + 1

A time-discretized feed-forward SNN can be 
implemented and optimized as a recurrent ANN
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𝑢 𝑡 + 1 = 𝛼 𝑢 𝑡 + 𝛽 𝐼 𝑡 + 𝜇
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𝑢 𝑡

𝑆 𝑡 + 1

𝑢 𝑡 + 1 = 𝛼 𝑢 𝑡 + 𝛽 𝐼 𝑡 + 𝜇

𝑆 𝑡 + 1 = 𝐻 𝑢 𝑡 + 1 − 𝑢𝑡ℎ𝑟
𝑢 → 𝑢𝑟𝑒𝑠𝑒𝑡

𝜕𝑆

𝜕u

𝑢

Surrogate

See: Bauer et al, EXODUS: Stable and efficient training of spiking neural networks. Front. Neurosci. 17 (2023); doi: 10.3389/fnins.2023.1110444 

𝑆

𝑢



Example: Optimization of Hybrid SNN–ANN

Olof Johansson, Training of Object Detection Spiking Neural Networks for Event-Based Vision, MSc thesis, LTU (2021)

N-Caltech101 dataset

See also Kugele et al, Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for Event-Based Vision (January 2022)



Synapses and learning



Image: Neuroscience, D. Purves et al.



https://neuronaldynamics.epfl.ch/online/Ch3.S1.html



Current-based synapse approximation

τ𝑠𝑦𝑛
𝑑𝐼𝑠𝑦𝑛

𝑑𝑡
= −𝐼𝑠𝑦𝑛

𝐼𝑠𝑦𝑛 ← 𝐼𝑠𝑦𝑛 + 𝑤On presynaptic spike:

Where the weight, w, is positive for excitatory synapses
and negative for inhibitory synapses.



Short-term plasticity (STP) of synapses

Synaptic facilitation Synaptic depression



Long-term plasticity of synapses

Long-lasting changes of synaptic efficacies are
neural correlates of learning and memory formation

Long-term potentiation (LTP)

Long-term depression (LTD)



Hebbian Learning

Images: Neuronal Dynamics

“Neurons that fire together, wire together”

Locality
Joint activity



Stability of Hebbian learning

▪ Hebb’s postulate

▪ Taylor expansion of F

▪ The naive learning rule, problematic since wij cannot decrease

▪ Stable learning rules by keeping additional terms, e.g., Oja’s rule



Spike-timing-dependent plasticity (STDP)

Images: Neuronal Dynamics



Spike-timing-dependent plasticity (STDP)

Images: Neuronal Dynamics

Excitatory synapses



Image: Carver Mead, How we created neuromorphic engineering, Nature Electronics (2020)

Next steps?

Online learning (backprop on stored 

data is too resource intensive)

Dendrocentric learning (point neuron 

approximation is too simplistic)

Inhibitory and excitatory based 

learning



Examples, work on DYNAP-SE



4 chips each having

1k neurons (AdEx)

64k dynamic synapses (4 types, DPI)

Programmable connectivity via CAM

25 bias-parameters/core (4 cores/chip)

DYNAP-SE mixed-signal processor

Moradi, Qiao, Stefanini, Indiveri (2018).         doi: 10.1109/TBCAS.2017.2759700

Chicca, Stefanini, Bartolozzi, Indiveri (2014). doi: 10.1109/JPROC.2014.2313954

Comparison of chips: Basu, Deng, Frenkel, Zhang (2022). doi: 10.1109/CICC53496.2022.9772783



4 chips each having

1k neurons (AdEx)

64k dynamic synapses (4 types, DPI)

Programmable connectivity via CAM

25 bias-parameters/core (4 cores/chip)

Analog neuron & synapse circuits

→ distributions of parameter values

Digital spike-event communication

DYNAP-SE mixed-signal processor

Moradi, Qiao, Stefanini, Indiveri (2018).         doi: 10.1109/TBCAS.2017.2759700

Chicca, Stefanini, Bartolozzi, Indiveri (2014). doi: 10.1109/JPROC.2014.2313954

Comparison of chips: Basu, Deng, Frenkel, Zhang (2022). doi: 10.1109/CICC53496.2022.9772783



Cricket auditory feature detector

https://doi.org/10.1038/s41598-017-15282-z

Schöneich et al., An auditory feature detection circuit for sound pattern recognition, Science Advances 1 (2015); DOI: 10.1126/sciadv.1500325

www.youtube.com/watch?v=Pb8vhbhLwBM

https://doi.org/10.1038/s41598-017-15282-z


Cricket auditory feature detector

Schöneich et al., An auditory feature detection circuit for sound pattern recognition, Science Advances 1 (2015); DOI: 10.1126/sciadv.1500325



Configuration of cricket circuit in DYNAP-SE

Sandin & Nilsson, Frontiers in Neuroscience (2020). doi: 10.3389/fnins.2020.00150

Nilsson, Liwicki and Sandin, IJCNN (2020). doi: 10.1109/IJCNN48605.2020.9207210

Dynamics of non-spiking LN5 approximated with two 

synapses (disynaptic element)

Balance of excitatory and inhibitory postsynaptic 

currents (via bias tuning & Hebbian learning protocol)

Disynaptic

element



Disynaptic configuration in DYNAP-SE

Different PSPs due to DAC device-to-device mismatch



Control of PSP via disynaptic parameters

Sandin & Nilsson, Frontiers in Neuroscience (2020). doi: 10.3389/fnins.2020.00150



Spike-pair selectivity with one neuron

Single neuron with two 

disynaptic inputs

Output spike probability

Sandin & Nilsson, Frontiers in Neuroscience (2020). doi: 10.3389/fnins.2020.00150



Spike-pair selectivity with one neuron

Single neuron with two 

disynaptic inputs

Output spike probability

Sandin & Nilsson, Frontiers in Neuroscience (2020). doi: 10.3389/fnins.2020.00150

For spike triplets: Nilsson, Liwicki and Sandin, IJCNN (2020). doi: 10.1109/IJCNN48605.2020.9207210

More general: Nilsson, Liwicki and Sandin, ICONS (2022)



Keyword Spotting with Few (~10) Neurons

Nilsson et al, A Comparison of Temporal Encoders for Neuromorphic Keyword Spotting with Few Neurons, IJCNN 2023; 

arXiv:2301.09962



Work in progress



Optimize vibration monitoring system design

Modular software for optimization of the sensor,

filterbank, amplifier and event-triggered sampler

Process

– Simulation

– Testrig, lab

– ...

Sensor

– Dataset

– PZT, SC

– …

Amplifier & 

Filterbank

– Charge

mode amp.

– …

Application

– Detection

– Classification

– …

Event-trig.

Sampler

– Lebesgue

– Delta mod

– ...

Constraints / Gradients

Daniel Ashwani



Proposal with Christian Glaser (Uppsala) & Tommaso:

Improving radio-detection methods for neutrino astronomy



Cloud-to-Edge Computing Continuum Optimization

Proposal under review

Related paper: https://doi.org/10.3389/fnins.2023.1074439

https://doi.org/10.3389/fnins.2023.1074439
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Dendrites (compartment models), AdEx, …

https://neuronaldynamics.epfl.ch



Neuromorphic Compute Stack Co-design

Catherine D. Schuman et al., Nature Computational Science, 2022;

https://doi.org/10.1038/s43588-021-00184-y



https://portal.brain-map.org/explore/connectivity/synaptic-physiology/whats-in-the-synaptic-physiology-dataset#dynamics

Synaptic Physiology Dataset, three inhibitory interneuron subclasses (Pv, Sst, and Vip)



Idea of Tommaso Dorigo: High-Granularity Hadron 

Calorimeters with Embedded Neuromorphic Computing 

Charged pions, kaons, and protons constitute the bulk of the hadrons flowing into a hadron

calorimeter

Being able to distinguish them would bring in very large gains:

- to flavour tagging (killer app: H→ss at a future collider, where you need to tag the fast kaon

from s hadronization)

- to energy reconstruction (improved through particle flow techniques)

- to boosted-jet tagging (from improved inner structure reconstruction of jet cores)

Hadron Shower – 100 GeV K+

N

C

to back-end

5 cm

2

c

m

Macro cell with embedded 

preprocessing


