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Some context



Some context with the DUNE experiment

• DUNE: Deep Underground Neutrino Experiment

• Challenging measurement of the oscillation parameters

• Requires improved resolutions and increased mass

→ Using LArTPC technology
3



Liquid Argon Time Projection Chambers (LArTPCs)

Signal production steps:

• Argon ionisation

• Ionisation electrons drifted by E field

• Electrons readout on anode plane

• Allows to get precise 3D picture of
the interaction

• Relies on multiple physical processes
→ importance of calibration

4



Typical LArTPC calibration

e− lifetime calibration

Energy conversion calibration.

Calibration of the different physical parameters are typically done in different studies.

→ can be simplified with a differentiable simulator
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Using gradient-based optimization
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Writing a differentiable simulator



Starting from a non-differentiable LArTPC simulator

Our work: take existing DUNE
near-detector simulation (arXiv:2212.09807)
and make it differentiable.

• Retain physics quality of a tool used
collaboration-wide while adding ability
to calculate gradient

• Demonstrate the use of this
differentiable simulation for
gradient-based calibration

→ How to do it practice?
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Rewriting the simulator

Numba code using CUDA JIT compiled kernels → Framework change for diff version:

• Differentiable version rewritten using EagerPy(backend agnostic)/PyTorch, which
are based around tensor operations.

• New version rewritten in a vectorized way to fit within these frameworks

Performance drawbacks:

• Use of dense tensors to represent a
sparse problem

• Moving from CUDA JIT compiled
dedicated kernel to a long chain of
generic kernels (vectorized
operations).
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https://eagerpy.jonasrauber.de/


Memory challenge

Because of the use of dense tensors, memory ∝ ∆z × cot θ. (length in drift direction
and angle) → introduced automatic memory estimation for each batch to estimate
best pixel chunk size.
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→ gradient accumulation required by backward pass also saturate the memory 9



Memory challenge: checkpointing

Reducing the memory used
through PyTorch checkpointing:

• Gradient accumulation
memory intensive due to
stored intermediate results

• Trades memory for
computation time by
recomputing intermediates

source
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https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb


Differentiable relaxations

The base simulation contains discrete operations → non-differentiable.

Requires differentiable relaxations to be able to get usable gradients.
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• Cuts (e.g. x > 0) → smooth sigmoid threshold
• Integer operations (e.g. floor division) → floating point (e.g. regular division)
• Discrete sampling → interpolation
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Checking the result

Checking that the
relaxations don’t
modify the simulator
output.

Average deviation of 0.04
ADC/pixel → well below
the typical noise level of
few ADCs.
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Optimization choices: Loss function

Loss function choice is
crucial for minimization
quality

Source
Two main ways of computing the loss:

• Comparison of 3D voxel grids of charges (x, y, t → z, q).
• Difficulty of taking gradients through discrete pixelization.
• Risk of flat loss if not enough overlap in distributions.

• Considering the waveforms for each pixel (time sequence) and using
Dynamic Time Warping

• Using a relaxed SoftDTW version that is differentiable. 13

https://rtavenar.github.io/blog/dtw.html


Results



Input sample and simulated detector

• Input sample consisting of 1GeV
simulated muon tracks

• Second sample of muons, pions and
protons (1GeV to 3GeV)

• Geometry of a DUNE ND module:
60 cm × 60 cm × 120 cm

• Noise model available in simulator but
not used.

Doing a "closure test" based on simulated data:

→ Fit of 6 physical parameters simulteanously on simulated data for multiple targets
and initial values.
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Results
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We have convergence of the fits for all the parameters. 15



Results
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Demonstration of gradient-based calibration on simulation data through a
“closure test”.
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Demonstration of multidimensional fit usefulness
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The various physical parameters are correlated. Fitting them independently leads to
some inaccuracies and biases.
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Fit sensitivity
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Different sensitivities to the various physical
parameters (w.o. noise).

Decrease in sensitivity when considering
noise.
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Going further

Energy deposits dE/dx
(inaccessible in data)
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Detector readout
Combining our differentiable simulator with an inverse mapping would allow for direct
model constraining, fully data driven: LCC = (F(NN(ydata))− ydata)
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Conclusions

Proof of concept for the calibration of a LArTPC using a differentiable simulator.
Multidimensional fit converging correctly on simulated data with the differentiable
simulator.

Upcoming challenges:

• Applying this framework to real data (DUNE 2x2 ND data)

• Improving the performances (not limiting at the moment)

• Fitting more physical parameters

Going further:

• Extend the framework to inverse problem solving.
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