Differentiable Simulation of a Liquid Argon TPC for
High-Dimensional Calibration

Pierre Granger, Neutrino group APC S. Gasiorowski, Y. Chen, Y. Nashed, P. Granger,
C. Mironov, D. Ratner, K. Terao, K. V. Tsang

arXiv:2307 . XXXXX
July 26, 2023

APC - CNRS

1. Some context
2. Writing a differentiable simulator

3. Results

Some context

Some context with the DUNE experiment

1300 km

Normal MH

[P
[
W=+

— 6,,=0 (solar term)

Sanford Underground
Research Facility

Fermilab

1
Neutrino Energy (GeV)

1300 km
Normal MH

[D
W0
W scp=m2

— ;=0 (solar term)

e DUNE: Deep Underground Neutrino Experiment

e Challenging measurement of the oscillation parameters

e Requires improved resolutions and increased mass

— Using LArTPC technology

Projection Chambers

Anode- and charge
readout plane

@ [onized atom
@ |onization electron

uBooNE
Ll
CharQEd partic‘e : RUN 10811, EVENT 2549. APRIL 9, 2017.
Signal production steps: e Allows to get precise 3D picture of
e Argon ionisation the interaction
e lonisation electrons drifted by E field o Relies on multiple physical processes

o L
e Electrons readout on anode plane » importance of calibration

Typical LArTPC calibration

DUNE:ProtoDUNE-SP Date: 1/11/2018
T 1 L

350 . . _ s R aans e

N 2/ ndf 13.59/ 15] E s —+ Predicted 3
T I Constant 288+0.8618 z ET —- Fitted E
o B e’ Lifetime [ms] 10.39 + 0.2586 1 E 4 o]
2300 [~ — = i E
£ L 1 S s E
A B b g 3SE Region of 2 minimization ~ J
c = B E B
3 - £ =% (250 MeV - 450 MeV)]
0250 (— — = F E
8 L — 2.5 » ol -

L E E =+ 3
s T] 2 = o P E
S200 - i) S—) 3
e} - = F MicroBooNE E
© F — oo by by b v b B b b b 00y -

L - l(l 50 100 150 200 2;0 3")0 3;0 4|!'0 4;0 500

L - Kinetic Energy (MeV)

150 L | L L P | L L L s | L s L L | L
05 10 15 20 . . .
Hit Time [ms] Energy conversion calibration.

e lifetime calibration

Calibration of the different physical parameters are typically done in different studies.

Using gradient-based optimization

Synthetic Data

Forward
Model
Parameters
ap

Differentiable
Foward Model

Requires forward '

model to be . Gradient Descent'

differentiable: (RIS x
Ve L(R(),X) OO (R(ov), X)

o* = argmin L(R(«a), X)

Writing a differentiable simulator

Starting from a non-differentiable LArTPC simulator

Our work: take existing DUNE
near-detector simulation (arXiv:2212.09807)
and make it differentiable.

e Retain physics quality of a tool used
collaboration-wide while adding ability
to calculate gradient

e Demonstrate the use of this
differentiable simulation for
gradient-based calibration

— How to do it practice?

Birks’ model (A, k),
Electric field (&)

Ag

@recomb = & 7
u dE

4 dE
»d

Drift velocity (Vgrit),
Lifetime (z),
Transverse/ ~ srreese
longitudinal diffusion
(Dr, Dy

Vdrift = H - €

P
oLr = \/2 “tarift - D

dE,
. Track segments (—)
» dx

Quenching

dE

n =—
elec
Wion

}

Drifting

}

4 Number of ionized
.- electrons per segment
»

recomb _ o
elec — Yrecomb " Melec

final _ ,recomb . ,~iqyift/e
. ¢~ drift
n n lec €

n

elec —

4 Electron distribution

B at readout
»

Current

}

*a Current induced on
each pixel

Electronics

4 ADC counts per
pixel/time

https://arxiv.org/abs/2212.09807

Rewriting the simulator

Numba code using CUDA JIT compiled kernels — Framework change for diff version:

e Differentiable version rewritten using EagerPy(backend agnostic)/PyTorch, which
are based around tensor operations.

e New version rewritten in a vectorized way to fit within these frameworks

Performance drawbacks: %91 .
e Use of dense tensors to represent a 301 o o
sparse problem 7 40 .
(]
e Moving from CUDA JIT compiled §3o — ,_':'.q'
dedicated kernel to a long chain of 5 201 3! .
generic kernels (vectorized 10 !,-"
operations). . o
s also impacting memory usage 8.00 025 050 0.75 1.00 1.25 1.50 1.75 2.00

Non-diff time [s]

https://eagerpy.jonasrauber.de/

Memory challenge

Because of the use of dense tensors, memory o< A, X cot 0. (length in drift direction

and angle) — introduced automatic memory estimation for each batch to estimate

best pixel chunk size.

141
12
10

Estimated batch peak memory [Gb]

o N M O

00 25 50 7.5 100 125 15.0
Measured batch peak memory [Gb]

Relative speedup

00g000°®
8 n-o'u""-"."."“ *
g00°®
71 .--.'
0
61 0y
L]
°
5 °
L]
4 °
°

3
2 4
1 4

10 20 30 40 50

Pixel chunk size

— gradient accumulation required by backward pass also saturate the memory

Memory challenge: checkpointing

Reducing the memory used

through PyTorch checkpointing:

e Gradient accumulation
memory intensive due to
stored intermediate results

e Trades memory for
computation time by
recomputing intermediates

Forward pass Orange nodes are the ones

O O kept in memory to compute

—s — _. the gradient update for this
node
Checkpoint <— <—O<—

Backward pass

Orange nodes are the ones
kept in memory to compute
O > O > the gradient update for this
node
~ -O0-0=-0-0O

This node is being recomputed and kept in memory
temporarily

source

10

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb

Differentiable relaxations

The base simulation contains discrete operations — non-differentiable.

Requires differentiable relaxations to be able to get usable gradients.

35 le=15
1.0 —— Hard Mask (x> 0) === Discrimination Threshold .
~—— Sigmoid Mask, s = 5 —— Linear Interpolation L[]
" L]
Sigmoid Mask, s = 10 3.01 @ Crossing Point .
0.8 —— Sigmoid Mask, s = 20 o) °
—— Sigmoid Mask, s = 100 ‘S 2.5 °
&
s °
0.6 8
= 3 2.0 o
3 X
3 Hard Mask: y =e™ - (x> 0) b=
€04 Sigmoid Mask: y =e % -1 £15 °
E
E
g 10
4 < L]
0.2 o
05 M
00 ®
(]
0.0 L
T T T T T T T T 0.0
-2 -1 0 1 2 3 4 5 140 145 150 155

Time Ticks [0.1 ps Sampling]

e Cuts (e.g. x > 0) — smooth sigmoid threshold

e Integer operations (e.g. floor division) — floating point (e.g. regular division)
e Discrete sampling — interpolation

11

Checking the result

Checking that the
relaxations don’t
modify the simulator
output.

Average deviation of 0.04
ADC/pixel — well below
the typical noise level of

few ADCs.

Non-diff

40 —— 140 140

130 130

20

F120 k120

I 110 I 110

r 100 r 100

—-40

90 90

—60

80 80

—80

12

Optimization choices: Loss function

Loss function choice is
crucial for minimization

quality

Euclidean distance

Dynamic Time Warping

y |

po000000000 es00s00000d

Two main ways of computing the loss:

Source

e Comparison of 3D voxel grids of charges (x, y, t — z, q).
e Difficulty of taking gradients through discrete pixelization.

e Risk of flat loss if not enough overlap in distributions.

e Considering the waveforms for each pixel (time sequence) and using
Dynamic Time Warping

e Using a relaxed SoftDTW version that is differentiable.

https://rtavenar.github.io/blog/dtw.html

Results

Input sample and simulated detector
e Input sample consisting of 1 GeV " . I
simulated muon tracks o B

e Second sample of muons, pions and 1 l
protons (1 GeV to 3 GeV) I | | N
10 2
e Geometry of a DUNE ND module: 2 0
- S 20
60cm x 60cm x 120cm 8 =40
/10/\“ ~60
e Noise model available in simulator but . R .
not used. ’

Doing a "closure test" based on simulated data:

— Fit of 6 physical parameters simulteanously on simulated data for multiple targets

and initial values.

14

Results

0.925
0.900
0.875
0.850

Y

< 0.825
0.800
0.775

0.750

0.070

< 0.0651

'cm3/Me!

S 0.055

V.g

X 0.050

ke [

0.045

0.040

S 0,060

0 1000 2000 3000 4000 5000
Iterations
ﬁ:{"wh
N Vg WO
e
o n, NTS
I Wiy 4
L. A,
Vi
0 1000 2000 3000 4000 5000
Iterations

4000

30001

T [us]

2000

1000

N4
A
VY

AL

s A, -
1 M

ot

[1000 2000 3000 4000 5000

Iterations

0.60

0.55

& [kVicm]
o
@
S

0

1000

2000 3000
Iterations

4000

5000

We have convergence of the fits for all the parameters.

[1000 2000 3000 4000 5000
Iterations
le=5
- A A\
J A
A eyl
W fatin
A -
N LA Ml T
I 1 Al
0 1000 2000 3000 4000 5000
Iterations

15

Results

= o
8
2 2 o ©
A 3 5
g , &
k] 2 S
. 2
/ 10! S
v 0
PP a— *M'”m” 2 "~ 0 1000 2000 3000 4000 5000
. Electric Field (&) [kV / cm] } Iterations
Example of fits “paths” in 2D. 6D simulteanous fit converging under L

Demonstration of gradient-based calibration on simulation data through a

“closure test”.
16

(7))
[77]
Q
=
=]
G
Q
(]
=
-
=
©
=
.
()]
c
Q
£
N
=
=
£
(S
o
c
.2
s
(v}
~
s}
0
c
o
£
[}
(@]

3]
S o < =}
S 3 s =
g4 3 ©
I+ g >
sS §f B
Tt g 2
o o -+
T Il i
<)

- g I

<@

25 —2.5 0.0 2.5 —2.5 0.0 25

(6 —60)/06

—25 0.0 25 -25 0.0 25 -25 0.0

-25 0.0 25

The various physical parameters are correlated. Fitting them independently leads to

some inaccuracies and biases.

17

Fit sensitivity

—-—- Noise Baseline

2.5 2.5 A
3204 520
2 s
(0] (6]
a a)
<154 < 151
[v
g e
o o
£ 1.0 £10{ 77T
a a
g 5
5 0.5 5054
a Q.

0.0 0.0

-100 =50 0 50 160 150 —1‘00 —;50 6 5‘0 160 150
Percent Difference, Parameter Value [%] Percent Difference, Parameter Value [%]
Different sensitivities to the various physical Decrease in sensitivity when considering
parameters (w.o. noise). noise.

18

140
130
120

110

w0 I Inverse mapping step to developp
o -
z]
-0 20 o
0

S =20 y
,3%0 =40 100
- 1“/&“ ~60
N
x ® e N ~80 90
; =
, F) "
Energy deposits dE /dx
(inaccessible in data) 7 iem

Detector readout
Combining our differentiable simulator with an inverse mapping would allow for direct

model constraining, fully data driven: Lcc = (F(NN(ygata)) — Yaata)® 1

Conclusions

Proof of concept for the calibration of a LArTPC using a differentiable simulator.
Multidimensional fit converging correctly on simulated data with the differentiable

simulator.

Upcoming challenges:

e Applying this framework to real data (DUNE 2x2 ND data)
e Improving the performances (not limiting at the moment)

e Fitting more physical parameters
Going further:

e Extend the framework to inverse problem solving.

20

	Some context
	Writing a differentiable simulator
	Results

