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Some context



Some context with the DUNE experiment
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e DUNE: Deep Underground Neutrino Experiment

e Challenging measurement of the oscillation parameters

e Requires improved resolutions and increased mass

— Using LArTPC technology



Projection Chambers
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Typical LArTPC calibration
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e lifetime calibration

Calibration of the different physical parameters are typically done in different studies.



Using gradient-based optimization
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Writing a differentiable simulator



Starting from a non-differentiable LArTPC simulator

Our work: take existing DUNE
near-detector simulation (arXiv:2212.09807)
and make it differentiable.

e Retain physics quality of a tool used
collaboration-wide while adding ability
to calculate gradient

e Demonstrate the use of this
differentiable simulation for
gradient-based calibration

— How to do it practice?
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https://arxiv.org/abs/2212.09807

Rewriting the simulator

Numba code using CUDA JIT compiled kernels — Framework change for diff version:

e Differentiable version rewritten using EagerPy(backend agnostic)/PyTorch, which
are based around tensor operations.

e New version rewritten in a vectorized way to fit within these frameworks

Performance drawbacks: %91 .
e Use of dense tensors to represent a 301 o o
sparse problem 7 40 .
(]
e Moving from CUDA JIT compiled §3o — ,_':'.q'
dedicated kernel to a long chain of 5 201 3! .
generic kernels (vectorized 10 !,-"
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https://eagerpy.jonasrauber.de/

Memory challenge

Because of the use of dense tensors, memory o< A, X cot 0. (length in drift direction

and angle) — introduced automatic memory estimation for each batch to estimate

best pixel chunk size.
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— gradient accumulation required by backward pass also saturate the memory




Memory challenge: checkpointing

Reducing the memory used

through PyTorch checkpointing:

e Gradient accumulation
memory intensive due to
stored intermediate results

e Trades memory for
computation time by
recomputing intermediates

Forward pass Orange nodes are the ones

O O kept in memory to compute

—s — _. the gradient update for this
node
Checkpoint <— <—O<—

Backward pass

Orange nodes are the ones
kept in memory to compute
O > O > the gradient update for this
node
~ -O0-0=-0-0O

This node is being recomputed and kept in memory
temporarily

source
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https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb

Differentiable relaxations

The base simulation contains discrete operations — non-differentiable.

Requires differentiable relaxations to be able to get usable gradients.
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e Cuts (e.g. x > 0) — smooth sigmoid threshold

e Integer operations (e.g. floor division) — floating point (e.g. regular division)
e Discrete sampling — interpolation
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Checking the result

Checking that the
relaxations don’t
modify the simulator
output.

Average deviation of 0.04
ADC/pixel — well below
the typical noise level of

few ADCs.
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Optimization choices: Loss function

Loss function choice is
crucial for minimization

quality

Euclidean distance

Dynamic Time Warping

y |

po000000000 es00s00000d

Two main ways of computing the loss:

Source

e Comparison of 3D voxel grids of charges (x, y, t — z, q).
e Difficulty of taking gradients through discrete pixelization.

e Risk of flat loss if not enough overlap in distributions.

e Considering the waveforms for each pixel (time sequence) and using
Dynamic Time Warping

e Using a relaxed SoftDTW version that is differentiable.



https://rtavenar.github.io/blog/dtw.html

Results




Input sample and simulated detector
e Input sample consisting of 1 GeV " . I
simulated muon tracks o B

e Second sample of muons, pions and 1 l
protons (1 GeV to 3 GeV) I | | N
10 2
e Geometry of a DUNE ND module: 2 0
- S 20
60cm x 60cm x 120cm 8 =40
/10/\“ ~60
e Noise model available in simulator but . R .
not used. ’

Doing a "closure test" based on simulated data:

— Fit of 6 physical parameters simulteanously on simulated data for multiple targets

and initial values.
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Results
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Results

= o
8
2 2 o ©
A 3 5
g , &
k] 2 S
. 2
/ 10! S
v 0
PP a— *M'”m” 2 "~ 0 1000 2000 3000 4000 5000
. Electric Field (&) [kV / cm] } Iterations
Example of fits “paths” in 2D. 6D simulteanous fit converging under L

Demonstration of gradient-based calibration on simulation data through a

“closure test”.
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The various physical parameters are correlated. Fitting them independently leads to

some inaccuracies and biases.
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Fit sensitivity
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Combining our differentiable simulator with an inverse mapping would allow for direct

model constraining, fully data driven: Lcc = (F(NN(ygata)) — Yaata)® 1



Conclusions

Proof of concept for the calibration of a LArTPC using a differentiable simulator.
Multidimensional fit converging correctly on simulated data with the differentiable

simulator.

Upcoming challenges:

e Applying this framework to real data (DUNE 2x2 ND data)
e Improving the performances (not limiting at the moment)

e Fitting more physical parameters
Going further:

e Extend the framework to inverse problem solving.
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