Differentiable Simulation of a Liquid Argon TPC for High-Dimensional Calibration

Pierre Granger, Neutrino group APC

July 26, 2023

S. Gasiorowski, Y. Chen, Y. Nashed, P. Granger, C. Mironov, D. Ratner, K. Terao, K. V. Tsang arXiv:2307.XXXXX

Outline

1. Some context

2. Writing a differentiable simulator

3. Results

Some context

Some context with the DUNE experiment

- DUNE: Deep Underground Neutrino Experiment
- Challenging measurement of the oscillation parameters
- Requires improved resolutions and increased mass
- $\rightarrow \ \mathsf{Using} \ \mathsf{LArTPC} \ \mathsf{technology}$

Liquid Argon Time Projection Chambers (LArTPCs)

Signal production steps:

- Argon ionisation
- Ionisation electrons drifted by E field
- Electrons readout on anode plane

- Allows to get precise 3D picture of the interaction
- Relies on multiple physical processes
 - \rightarrow importance of calibration

Typical LArTPC calibration

Energy conversion calibration.

e metime cambration

Calibration of the different physical parameters are typically done in different studies.

ightarrow can be simplified with a differentiable simulator

Using gradient-based optimization

Writing a differentiable simulator

Starting from a non-differentiable LArTPC simulator

Our work: take existing DUNE near-detector simulation (arXiv:2212.09807) and make it differentiable.

- Retain physics quality of a tool used collaboration-wide while adding ability to calculate gradient
- Demonstrate the use of this differentiable simulation for gradient-based calibration

 \rightarrow How to do it practice?

Rewriting the simulator

Numba code using **CUDA JIT compiled kernels** → Framework change for diff version:

- Differentiable version rewritten using EagerPy(backend agnostic)/PyTorch, which are based around tensor operations.
- New version rewritten in a vectorized way to fit within these frameworks

Performance drawbacks:

- Use of dense tensors to represent a sparse problem
- Moving from CUDA JIT compiled dedicated kernel to a long chain of generic kernels (vectorized operations).
- ightarrow also impacting memory usage

Memory challenge

Because of the use of dense tensors, memory $\propto \Delta_z \times \cot \theta$. (length in drift direction and angle) \rightarrow introduced automatic memory estimation for each batch to estimate best pixel chunk size.

^{ightarrow} gradient accumulation required by backward pass also saturate the memory

Memory challenge: checkpointing

Reducing the memory used through PyTorch checkpointing:

- Gradient accumulation memory intensive due to stored intermediate results
- Trades memory for computation time by recomputing intermediates

source

Differentiable relaxations

The base simulation contains discrete operations \rightarrow non-differentiable.

Requires differentiable relaxations to be able to get usable gradients.

- \bullet Cuts (e.g. $x>0) \to smooth$ sigmoid threshold
- ullet Integer operations (e.g. floor division) o floating point (e.g. regular division)
- Discrete sampling \rightarrow interpolation

Checking the result

Checking that the relaxations don't modify the simulator output.

Average deviation of 0.04 ADC/pixel \rightarrow well below the typical noise level of few ADCs.

Optimization choices: Loss function

Loss function choice is crucial for minimization quality

Source

Two main ways of computing the loss:

- Comparison of 3D voxel grids of charges (x, y, t \rightarrow z, q).
 - Difficulty of taking gradients through discrete pixelization.
 - Risk of flat loss if not enough overlap in distributions.
- Considering the waveforms for each pixel (time sequence) and using Dynamic Time Warping
 - Using a relaxed SoftDTW version that is differentiable.

Results

Input sample and simulated detector

- Input sample consisting of 1 GeV simulated muon tracks
- Second sample of muons, pions and protons (1 GeV to 3 GeV)
- Geometry of a DUNE ND module: $60 \text{ cm} \times 60 \text{ cm} \times 120 \text{ cm}$
- Noise model available in simulator but not used.

Doing a "closure test" based on simulated data:

 \rightarrow Fit of 6 physical parameters **simulteanously** on simulated data for multiple targets and initial values.

Results

We have convergence of the fits for all the parameters.

Results

Example of fits "paths" in 2D.

6D simulteanous fit converging under L_{∞}

Demonstration of gradient-based calibration on simulation data through a "closure test".

Demonstration of multidimensional fit usefulness

The various physical parameters are correlated. Fitting them independently leads to some inaccuracies and biases.

Fit sensitivity

Different sensitivities to the various physical parameters (w.o. noise).

Decrease in sensitivity when considering noise.

Going further

Energy deposits dE/dx (inaccessible in data)

Detector readout

Combining our differentiable simulator with an inverse mapping would allow for direct model constraining, fully data driven: $\mathcal{L}_{CC} = (\mathcal{F}(NN(y_{\text{data}})) - y_{\text{data}})^2$

Conclusions

Proof of concept for the calibration of a LArTPC using a differentiable simulator. **Multidimensional fit converging** correctly on simulated data with the differentiable simulator.

Upcoming challenges:

- Applying this framework to real data (DUNE 2x2 ND data)
- Improving the performances (not limiting at the moment)
- Fitting more physical parameters

Going further:

• Extend the framework to inverse problem solving.