
Differentiable Simulation of a Liquid Argon TPC for
High-Dimensional Calibration

Pierre Granger, Neutrino group APC S. Gasiorowski, Y. Chen, Y. Nashed, P. Granger,
C. Mironov, D. Ratner, K. Terao, K. V. Tsang

arXiv:2307.XXXXX
July 26, 2023

APC - CNRS 1

Outline

1. Some context

2. Writing a differentiable simulator

3. Results

2

Some context

Some context with the DUNE experiment

• DUNE: Deep Underground Neutrino Experiment

• Challenging measurement of the oscillation parameters

• Requires improved resolutions and increased mass

→ Using LArTPC technology
3

Liquid Argon Time Projection Chambers (LArTPCs)

Signal production steps:

• Argon ionisation

• Ionisation electrons drifted by E field

• Electrons readout on anode plane

• Allows to get precise 3D picture of
the interaction

• Relies on multiple physical processes
→ importance of calibration

4

Typical LArTPC calibration

e− lifetime calibration

Energy conversion calibration.

Calibration of the different physical parameters are typically done in different studies.

→ can be simplified with a differentiable simulator
5

Using gradient-based optimization

Forward
Model

Parameters

Differentiable
Foward Model

Loss
Requires forward
model to be
differentiable:

Gradient Descent
on

Synthetic Data

Real Data, X

-

6

Writing a differentiable simulator

Starting from a non-differentiable LArTPC simulator

Our work: take existing DUNE
near-detector simulation (arXiv:2212.09807)
and make it differentiable.

• Retain physics quality of a tool used
collaboration-wide while adding ability
to calculate gradient

• Demonstrate the use of this
differentiable simulation for
gradient-based calibration

→ How to do it practice?

Drifting

Quenching

Current

Electronics

Track segments ()
dE
dx

Number of ionized
electrons per segment

Electron distribution
at readout

Current induced on
each pixel

ADC counts per
pixel/time

Birks’ model (,),
Electric field ()

AB kB
ε

Drift velocity (),
Lifetime (),
Transverse/

longitudinal diffusion
(,)

vdrift
τ

DT DL

nelec =
dE

Wion

nfinal
elec = nrecomb

elec ⋅ e−tdrift/τ

nrecomb
elec = αrecomb ⋅ nelec

αrecomb =
AB

1 + kB

ε ⋅ ρ
dE
dx

vdrift = μ ⋅ ε

σL,T = 2 ⋅ tdrift ⋅ DL,T

7

https://arxiv.org/abs/2212.09807

Rewriting the simulator

Numba code using CUDA JIT compiled kernels → Framework change for diff version:

• Differentiable version rewritten using EagerPy(backend agnostic)/PyTorch, which
are based around tensor operations.

• New version rewritten in a vectorized way to fit within these frameworks

Performance drawbacks:

• Use of dense tensors to represent a
sparse problem

• Moving from CUDA JIT compiled
dedicated kernel to a long chain of
generic kernels (vectorized
operations).

→ also impacting memory usage 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Non-diff time [s]

0

10

20

30

40

50

60

Di
ff

tim
e

[s
]

8

https://eagerpy.jonasrauber.de/

Memory challenge

Because of the use of dense tensors, memory ∝ ∆z × cot θ. (length in drift direction
and angle) → introduced automatic memory estimation for each batch to estimate
best pixel chunk size.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Measured batch peak memory [Gb]

0

2

4

6

8

10

12

14

Es
tim

at
ed

 b
at

ch
 p

ea
k

m
em

or
y

[G
b]

0 10 20 30 40 50
Pixel chunk size

1

2

3

4

5

6

7

8

Re
la

tiv
e

sp
ee

du
p

→ gradient accumulation required by backward pass also saturate the memory 9

Memory challenge: checkpointing

Reducing the memory used
through PyTorch checkpointing:

• Gradient accumulation
memory intensive due to
stored intermediate results

• Trades memory for
computation time by
recomputing intermediates

source

10

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb

Differentiable relaxations

The base simulation contains discrete operations → non-differentiable.

Requires differentiable relaxations to be able to get usable gradients.

2 1 0 1 2 3 4 5
x

0.0

0.2

0.4

0.6

0.8

1.0

m
od

el
(x

)

Hard Mask: y = e x (x > 0)
Sigmoid Mask: y = e x 1

1 + e s x

Hard Mask (x > 0)
Sigmoid Mask, s = 5
Sigmoid Mask, s = 10
Sigmoid Mask, s = 20
Sigmoid Mask, s = 100

140 145 150 155
Time Ticks [0.1 s Sampling]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ac
cu

m
ul

at
ed

 P
ixe

l C
ha

rg
e

[C
]

1e 15
Discrimination Threshold
Linear Interpolation
Crossing Point

• Cuts (e.g. x > 0) → smooth sigmoid threshold
• Integer operations (e.g. floor division) → floating point (e.g. regular division)
• Discrete sampling → interpolation

11

Checking the result

Checking that the
relaxations don’t
modify the simulator
output.

Average deviation of 0.04
ADC/pixel → well below
the typical noise level of
few ADCs.

20 0 20
X [cm]

80

60

40

20

0

20

40

Y
[c

m
]

Non-diff

20 0 20
X [cm]

80

60

40

20

0

20

40

Y
[c

m
]

Diff

80

90

100

110

120

130

140

80

90

100

110

120

130

140

12

Optimization choices: Loss function

Loss function choice is
crucial for minimization
quality

Source
Two main ways of computing the loss:

• Comparison of 3D voxel grids of charges (x, y, t → z, q).
• Difficulty of taking gradients through discrete pixelization.
• Risk of flat loss if not enough overlap in distributions.

• Considering the waveforms for each pixel (time sequence) and using
Dynamic Time Warping

• Using a relaxed SoftDTW version that is differentiable. 13

https://rtavenar.github.io/blog/dtw.html

Results

Input sample and simulated detector

• Input sample consisting of 1GeV
simulated muon tracks

• Second sample of muons, pions and
protons (1GeV to 3GeV)

• Geometry of a DUNE ND module:
60 cm × 60 cm × 120 cm

• Noise model available in simulator but
not used.

Doing a "closure test" based on simulated data:

→ Fit of 6 physical parameters simulteanously on simulated data for multiple targets
and initial values.

14

Results

0 1000 2000 3000 4000 5000
Iterations

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

A B

0 1000 2000 3000 4000 5000
Iterations

0.040

0.045

0.050

0.055

0.060

0.065

0.070

k B
 [k

V.
g/

cm
3 /M

eV
]

0 1000 2000 3000 4000 5000
Iterations

1000

2000

3000

4000

 [
s]

0 1000 2000 3000 4000 5000
Iterations

0.40

0.45

0.50

0.55

0.60

 [k
V/

cm
]

0 1000 2000 3000 4000 5000
Iterations

0.4

0.6

0.8

1.0

1.2

1.4

D
T [

cm
2 /

s]

1e 5

0 1000 2000 3000 4000 5000
Iterations

0.2

0.4

0.6

0.8

1.0

D
L [

cm
2 /

s]

1e 5

We have convergence of the fits for all the parameters. 15

Results

0 1000 2000 3000 4000 5000
Iterations

10 3

10 2

10 1

100

Co
nv

er
ge

nc
e

le
ve

l

Example of fits “paths” in 2D. 6D simulteanous fit converging under L∞

Demonstration of gradient-based calibration on simulation data through a
“closure test”.

16

Demonstration of multidimensional fit usefulness

2.5 0.0 2.5

AB

kB

DL

DT

AB AB ±

2.5 0.0 2.5

kB kB ±

2.5 0.0 2.5

±

2.5 0.0 2.5

DL DL ±

2.5 0.0 2.5

DT DT ±

0 0 down

0 0 + up

(0)/

= up down

2

= Fitted Value

2.5 0.0 2.5

±

The various physical parameters are correlated. Fitting them independently leads to
some inaccuracies and biases.

17

Fit sensitivity

100 50 0 50 100 150
Percent Difference, Parameter Value [%]

0.0

0.5

1.0

1.5

2.0

2.5

Pe
rc

e
n
t

D
if
fe

re
n
ce

,
A

D
C

 V
a
lu

e
 [

%
]

100 50 0 50 100 150
Percent Difference, Parameter Value [%]

0.0

0.5

1.0

1.5

2.0

2.5

Pe
rc

e
n
t

D
if
fe

re
n
ce

,
A

D
C

 V
a
lu

e
 [

%
]

Noise Baseline

Different sensitivities to the various physical
parameters (w.o. noise).

Decrease in sensitivity when considering
noise.

18

Going further

Energy deposits dE/dx
(inaccessible in data)

NN(F(x))

F(x)

Inverse mapping step to developp

20 0 20
X [cm]

80

60

40

20

0

20

40

Y
 [

cm
]

80

90

100

110

120

130

140

Detector readout
Combining our differentiable simulator with an inverse mapping would allow for direct
model constraining, fully data driven: LCC = (F(NN(ydata))− ydata)

2
19

Conclusions

Proof of concept for the calibration of a LArTPC using a differentiable simulator.
Multidimensional fit converging correctly on simulated data with the differentiable
simulator.

Upcoming challenges:

• Applying this framework to real data (DUNE 2x2 ND data)

• Improving the performances (not limiting at the moment)

• Fitting more physical parameters

Going further:

• Extend the framework to inverse problem solving.

20

	Some context
	Writing a differentiable simulator
	Results

