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Introduction

Let’s get this straight once and for all: 
• O(100) —> Low-granularity (Jets data) 
• O(1000) —> Mid-granularity (simplified Calorimeter data) 
• O(10000) —> High granularity (ILD Calo. prototype, D3 

Calo. Challenge) 
• +O(1000000) —> Ultra high granularity (HL-LHC, PXD) 

The Pixel Vertex Detector (PXD): is the innermost sub-
detector for charged particles at Belle II. 
The PXD is assembled from 40 sensors, where each sensor 
consists of 250  768 pixels       —> more than 7.5M 
information channels per event —> “Ultra-High 
granularity”

×
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Introduction

Having an annulus-like topology: 
The inner layer: 16 sensors implemented into 8 ladders 
The outer layer: 24 sensors implemented into 12 ladders 

Problem:  
High time-complexity for simulating background events online 
High space-complexity for producing and storing PXD background data 

Solution: Amortised Simulation: Generate the PXD background on the fly of analysis
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Figure �.��: �e ladder numbering for the
PXD

Figure �.��: �e sensor numbering for the
PXD

Each ladder hosts two sensors, labelled in the following way: the �rst sensor starting from the
forward part of a ladder (the part which is most positive in the z axis) is given the ID �. �e
second sensor, located on the backward part of the ladder, is represented by ID �. Figure �.��
shows the sensor numbering for the PXD. Addressing a given sensor requires the three IDs for
layer, ladder and sensor. �e notation agreed upon is for the IDs to be listed in the order of
layer, ladder and sensor using a point character (“ . ”) as the delimiter. For example: “�.�.�”
speci�es the �rst layer, fourth ladder and second sensor. In this example this would be the
backward sensor, which is located on the fourth ladder of the �rst (innermost) layer of the
PXD. An asterisk can be used to address all layers, ladders or sensors. For example: “�.*.�”
speci�es all backward sensors of the �rst layer. To keep the notation short, trailing asterisks can
be omitted: the notation “�.*.*” is equivalent to “�” and describes all ladders and sensors of the
�rst layer. Figure �.�� shows an example of the use of this notation.
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Challenges

PXD background generation challenges: 
Ultra-High Resolution Data 40x250x768 —> More than 7.5 M information channels 
Non-Trivial (Annulus) Detector Topology —> [[1-40]] Sensor dependent information are not sequential  
Extremely Sparse and Fine-Grained events —> Lack of continuity and connectivity of data manifold   
Existence of Intra-Event sensor-by-sensor Correlation —> PXD hits are correlated within an event
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Task: Fine-Grained Generation

Conditional Deep Generative Model (cDGM):  

[[1-40]] PXD sensors  

Fine-grained conditional image generation:  

A. Different classes show both statistical and semantic similarity 
B. Similar Natural datasets: The Stanford Cars, iNaturalist 
C. The objective is to create objects from subordinate categories  

  such as breeds of dogs or models of cars.  
D. The small inter-class and large intra-class variation inherent  

  to fine-grained image analysis makes it a challenging problem. 
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Intra-Event Aware Reasoning: Theory

Traditional DGM:  

Treating the sensor/layer information the same as the hit/kinematics level information —> almost works! 

It is like doing video generation while treating the temporal and spatial domain the same —> Stationarity 
assumption! 

 Convolutions introduce the bias of translation invariance —> can be limiting when dealing with hits that 
contain patterns that change scale, rotate, or do other affine transformations through different sensors/
layers.  

Paradigm shift in sampling: Differentiate between Event features and sensor/hit features 

How to formulate it in a unified perspective? 

Theoretical Perspective: 

A. Having an Event as a category, the objects of this category are the sensors/layers (finite sets of 
detector hits). 

B. The map between the objects (morphisms) are the relations between the sensors/layers.  

 How to use this relational inductive bias to approximate an Event? 

Bidirectional and one-shot, like Bert family: IEA-GAN (arXiv:2303.08046)  

https://arxiv.org/abs/2303.08046
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IEA-GAN Model

Paradigm shift in sampling: Intra-Event Aware Reasoning 

How to approximate the concept of an “Event” while we simulate the detector response?  
Proper Sampling: Defining an image per class sampler (generating event by event) and shuffling within each batch (event). 

Intra-event relational reasoning (Contextual): Using a Relational Reasoning Module over an event to weight the importance 
of each sample with respect to each other. Thus, the model will understand the class-to-class relations in a single event. 

Maintaining the Discriminator’s Generalisability (Information Entropy) 

Transferring Discriminator’s Intra-event contextual knowledge to the Generator

Self-Supervised Learning + Knowledge Distillation + Relational Inductive Bias = IEA-GAN 
     (Deep Metric Learning)
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IEA-GAN Model (Discriminator)

Relational Reasoning Module (RRM)

L2C(xi, yi; t) = −
1
N

N

∑
i=1

log ( exp(h(xi)Te(yi)/t)
exp(h(xi)Te(yi)/t) + ∑m

k=1 1k≠i . exp(h(xi)Th(xk)/t) )
Luniform(h; t) = log 𝔼xi,xj∼pdata

[exp(−t∥h(xi) − h(xj)∥2
2)]

Ldis = LAdv + λ2CL2C + λuniformLuniform

Hypersphere dimension: 1024 
SN-MLP dimension: 512 
Number of Heads: 4 
Number of Layers: 1

 h( . ) : Relational embedding
e( . ) : proxy (class embedding)

 By imposing uniformity condition over the feature vectors on the unit 
hypersphere, they preserve as much information as possible since the uniform 
distribution carry high entropy. 
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IEA-GAN Model (Generator)

Relational Reasoning Module (RRM)

L2C(xi, yi; t) = −
1
N

N

∑
i=1

log ( exp(h(xi)Te(yi)/t)
exp(h(xi)Te(yi)/t) + ∑m

k=1 1k≠i . exp(h(xi)Th(xk)/t) )
LIEA(xf , xr) = DKL(∑

i, j

σ(h(x(r)
i )h(x(r)

j )⊤) |σ(h(x( f )
i )h(x( f )

j )⊤))

Lgen = LAdv + λ2CL2C + λIEALIEA
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IEA-GAN Model (Generator)

Relational Reasoning Module

LIEA(xf , xr) = DKL(∑
i, j

σ(h(x(r)
i )h(x(r)

j )⊤) |σ(h(x( f )
i )h(x( f )

j )⊤))
Hypersphere dimension: 128 
MLP dimension: 128 
Number of Heads: 2 
Number of Layers: 1

 
 

 
 

h( . ) : Relational embedding
e( . ) : proxy (class embedding)
σ( . ) : Softmax function
x( f ) : generated images
x(r) : real images

Upon minimising it, we are putting a self-supervised penalising system over 
the intra-event awareness of the the generator by encouraging it to look 
for more detailed connections among the images.  

In the end we want to maximise the agreement of data points on two unit 
hyperspheres of real image and generated image embeddings.
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Validation of generated PXD images

Validation Metrics over the test set in comparison to SOTA in High Resolution Image Generation: 
Pixel Energy above the threshold:

BigGAN-deep, Brock, A., Donahue, J., Simonyan, K.: Large Scale GAN Training for High Fidelity Natural Image 
Synthesis, arXiv (2019). https://doi.org/10. 48550/arXiv.1809.11096 . 
ContraGAN: Contrastive Learning for Conditional Image Generation. In: Advances in Neural Information Processing 
Sys- tems, vol. 33, pp. 21357–21369. 
PE-GAN:  Hashemi et al.: Pixel Detector Background Generation using Generative Adversarial Networks at Belle II. 
vCHEP(2021). https://doi.org/10. 1051/ep jconf/202125103031 
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Validation of generated PXD images

Validation Metrics over the test set in comparison to SOTA in High Resolution Image Generation: 
Occupancy Density and Mean Occupancy :

BigGAN-deep, Brock, A., Donahue, J., Simonyan, K.: Large Scale GAN Training for High Fidelity Natural Image 
Synthesis, arXiv (2019). https://doi.org/10. 48550/arXiv.1809.11096 . 
ContraGAN: Contrastive Learning for Conditional Image Generation. In: Advances in Neural Information Processing 
Sys- tems, vol. 33, pp. 21357–21369. 
PE-GAN:  Hashemi et al.: Pixel Detector Background Generation using Generative Adversarial Networks at Belle II. 
vCHEP(2021). https://doi.org/10. 1051/ep jconf/202125103031 
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Validation of generated PXD images

Validation Metrics over the test set: 
FID and KID: 

The use of activations of the last layer from the Inception-V3 model trained on the PXD images to 
summarise each image, gives the score. The lower the FID/KID the better the image diversity and 
Fidelity. 

Possible interpretation of FID at the pixel level:
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Validation of generated PXD images

Validation Metrics over the test set: 
Spearman’s correlation between the occupancy of Geant4 simulated images (left), and generated 
images from IEA-GAN (center), generated images from PE-GAN (right).
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Validation of generated PXD images

How important are these correlations?  

•For high momentum regime  
•Shuffling the events —> losing the correlation

pT > 0.4 GeV
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Validation of generated PXD images

IEA-GAN vs PE-GAN:  

•For high momentum regime pT > 0.4 GeV
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Summary and Outlook 

IEA-GAN:  

Successful simulation of fine-grained, ultra-high resolution (+7.5M), correlated PXD 
images based on the sensor positions. 

Take-away messages:  

In general, if you wanna generate/approximate event based data, IEA mechanism is 
something to consider. 

IEA-GAN being the first application of Self-Supervised Learning (SSL) in the 
detector simulation, SSL methods would create better opportunities to model particle 
physics fine-grained data. 

Accepted at ML4PS workshop at NeurIPS 2022: https://ml4physicalsciences.github.io/
2022/ 

Open-source code: https://github.com/Hosein47/IEA-GAN, 

Full Paper: (arXiv:2303.08046)

https://github.com/Hosein47/IEA-GAN
https://arxiv.org/abs/2303.08046
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Thank You 
Let’s Brainstorm Now 
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Back up Slides

The Base Model:
Technologies: 

Residual blocks 
Spectral Normalisation 
Orthogonal Weight init. 
Orthogonal regularisation 
Contrastive Learning 
Hinge Loss 
Consistency Regularisation 
Differentiable Augmentation 
IEA Loss 
5x10^-5 lr for both G and D
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Overlay Problem

Realistic detector simulation has to take into account effects from 
background processes 

Simulation requires many PXD hitmaps with statistically independent background. 
Overlay hits from simulated background or random trigger data to hits from signal MC. 
PXD hits have the highest storage consumption. 
Requires distributing over all sites where MC is produced. 

Solution: Generating the background data on the way of analysis with GANs instead of 
storing them.
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Validation of generated PXD images

Validation Metrics over the test set: 
Physics Analysis: Helix parameter resolutions


