

^{50,53}Cr (n,γ) cross section measurement at n TOF@CERN

P. PÉREZ-MAROTO, C. GUERRERO, A. CASANOVAS

AND THE N TOF COLLABORATION

H2020-ARIEL 2ND SCIENTIFIC WORKSHOP & PROGRESS MEETING. 15/03/2023

Motivation: nuclear data for criticality safety

NEA Nuclear Data High Priority Request List, HPRL

Request ID	98		Type of the request	High Priority request	
Target	Reaction and process	Incident Energy	Secondary energy or angle	Target uncertainty	Covariance
24-CR-53	(n,g) SIG	1 keV-100 keV		8-10	Υ
Field	Subfield	Created date	Accepted date	Ongoing action	Archived Date
Fission		20-JAN-18	05-FEB-18	Υ	

Send a comment on this request to NEA.

Requester: Dr Roberto CAPOTE NOY at IAEA, AUT

Email: roberto.capotenoy@iaea.org

Project (context):

Neutron absorption in the Cr isotopes of structural materials affects the criticality of fast reactor assemblies [Koscheev2017]. These cross sections are also of interest for stellar nucleosynthesis [Kadonis10].

Accuracy:

8-10% in average cross-sections and calculated MACS at 10, 30, 100 keV.

Selected criticality benchmarks with large amounts of Cr (e.g., PU-MET-INTER-002, and HEU-COMP-INTER-005/4=KBR-15/Cr) show large criticality changes of the order of 1000 pcm due to 30% change in Cr-53 capture in the region from 1 keV up to 100 keV [Trkov2018]. On the other side different evaluations (e.g., BROND-3.1, ENDF/B-VII.1, ENDF/B-VIII.1, ENDF/B-VII.1, ENDF

Justification document

Criticality benchmarks can test different components of stainless steel (SS), including Cr which is a large component of some SS. Currently, a large part of the uncertainty in SS capture seems to be driven by uncertainty in Cr capture [Koscheev2017]. Indeed, some benchmarks highly sensitive to Cr (as a component of SS) indicate a need for much higher capture in Cr for both Pu and U fueled critical assemblies (e.g., HEU-COMP-INTER-005/4=KBR-15/Cr and PU-MET-INTER-002=ZPR-6/10).

- Stainless Steel is often used as a structural material in nuclear reactors and contains between 11-26% of chromium.
- There are serious discrepancies (~30%) between the different evaluated data of ⁵⁰Cr and ⁵³Cr capture cross section, which are not present in the corresponding estimated uncertainties.
- OECD NEA-HPRL (High Priority Request List)
 - \rightarrow 50,53Cr(n, γ) within 8-10% at 1 to 100 keV

Why the discrepancies?

- The main problem for measuring $Cr(n,\gamma)$ is the large neutron multiple-scattering effects.
- In the previous measurements thick samples were used, aiming for good statistics in a very wide energy range.

$$Y_0 = (1 - e^{n\sigma_t}) \frac{\sigma_{\gamma}}{\sigma_t}$$

Capture yield
$$\rightarrow Y = Y_0 + Y_1 + Y_2 + Y_3 \dots$$
 (captures/neutron)

Analytical Numerical (accurate) (approximate)

Why the discrepancies?

• The main problem for measuring $Cr(n,\gamma)$ is the large neutron multiple-scattering effects.

In the previous measurements thick samples were used, aiming for good statistics in a very wide energy range.

$$Y_0 = (1 - e^{n\sigma_t}) \frac{\sigma_{\gamma}}{\sigma_t}$$

How to improve $\sigma(n,\gamma)$ down to a few %?

- Enriched (expensive and scarce) material with high purity → 94,6% ⁵⁰Cr & 97,7% ⁵³Cr
- Controlling multiple-scattering effects:
 - Very thin/thin sample approach
 - C₆D₆ detectors (low sensitivity to scattered neutrons)

Experiment	Beer (1975)	Stieglitz (1971)	Brusegan (1986)	Kenny (1977)	Guber (2011)	This work (2022)
Facility	FZK	RPI	GELINA	ORELA	ORELA	n_TOF
L (m)	0,7	27	60	40	40	185
Energy (keV)	1-300	1-200	1-200	1-200	0,01-600	1-100
Density ⁵⁰ Cr (10 ⁻³ at/barns)	18	8	7	5/8	-	0,6/1,9
Density ⁵³ Cr (10 ⁻³ at/barns)	14	14	12/60	8/12	14	1,2/6

Our "thicks" are thinner than all previous

→ lower multiple scattering corrections

How to improve $\sigma(n,\gamma)$ down to a few %?

- Enriched (expensive and scarce) material with high purity \rightarrow 94,6% ⁵⁰Cr & 97,7% ⁵³Cr
- Controlling multiple-scattering effects:
 - Very thin/thin sample approach
 - C₆D₆ detectors (low sensitivity to scattered neutrons)
- Complementing with ⁵⁰Cr activation measurement → HiSPANoS@CNA

Nucleus	T _{1/2} (days)	E _γ (keV)	Ι _γ (%)
⁵¹ Cr	27,7	320,1	9,9
¹⁹⁸ Au	2,69	411,8	95,5

More info on the last slide...

STABLE

The neutron Time-Of-Flight facility at CERN

n_TOF@CERN

from 37 institutes

The neutron Time-Of-Flight facility at CERN

N. Colonna

Samples and detector set-up (EAR1)

Cr₂O₃ poder pressed in a PEEK capsule & Al holder

Samples and detector set-up (EAR1)

Complementary measurements			
^{nat} Cr	Resonance identification	1	
¹⁹⁷ Au	Normalization		
²⁷ Al	Calibration		
Empty	Background		
Dummy	Background	65	
^{50,53} Cr & Dummy with filters	²⁰⁶ Bi and ²⁷ Al filters Background		

Cr₂O₃ poder pressed in a PEEK capsule & Al holder

Preliminary results (53Cr: thin vs. thick)

Preliminary results (53Cr: thin vs. thick)

⁵⁰Cr MACS measurement at HiSPANoS@CNA

	Time of flight technique	Neutron activation	
Energy and resonance shape Very well defined		Limited "resolution" (MB distribution)	
Absolute value	Susceptible to systematic effects	Very accurate	

- An integral measurement can be very helpful with the analysis.
- "Development of a 90 keV Maxwellian neutron spectrum and measurement of the 30 & 90 keV ⁵⁰Cr MACS for criticality safety" accepted within H2020-ARIEL Transnational Access (performed last week).

⁵⁰Cr MACS measurement at HiSPANoS@CNA

⁵⁰Cr MACS measurement at HiSPANoS@CNA

H:SP NoS

- 3 Lithium-glass neutron monitors
- 1 LaBr₃ for ⁷Be decay
- 1 LaBr₃ for ¹⁹⁸Au and ⁵¹Cr decay

Summary & Outlook

- The goal is to improve the 50,53 Cr(n, γ) cross section to 8-10% accuracy at 1-100 keV.
- Two experiments:
 - n_TOF@CERN (Summer'22)
 - HiSPANoS@CNA (March'23)
- Preliminary results show high quality data.
- Next steps:
 - Counts/pulse → Yield (capture/neutrons)
 - Identify (and correct?) systematic effects
 - Resonance analysis
 - ⁵⁰Cr activation @CNA data analysis

Thank you!

Pablo Pérez Maroto ppmaroto@us.es

Backup. Tomography of the samples

Backup. Preliminary results: calibration

Source	Photopeak (keV)	Compton edge (keV)	
¹³⁷ Cs	661,7	477,3	
88γ	898,0	699,1	
	1836,1	1611,8	
Am-Be	4438,9	4197,3	

For calibration → gaussian fitting of the high-energy tail of the Compton edge

Backup. Preliminary results: ⁵⁰Cr cascades

Backup. Preliminary results: 53Cr cascades

Backup. ⁵⁰Cr(n,γ) cascades at EAR2

Backup. ⁵³Cr (n,γ) cascades at EAR2

