

Cross section measurements for ¹⁰³Rh + n in the resonance region at GELINA

A.Oprea, C. Paradela, P. Schillebeeckx, S. Kopecky, A. Plompen

European Commission, Joint Research Centre, Geel (BE)

Andreea.oprea@ec.Europa.eu

Motivation

- Spent Nuclear Fuel (SNF) criticality calculations are required for a safe, secure, ecological and economic handling, transport, intermediate storage and final disposal.
- Burnup credit: accounts for reduction in reactivity of SNF due to fuel burnup. More cost-effective, but requires inventory (burnup history) and comprehensive use of nuclear data

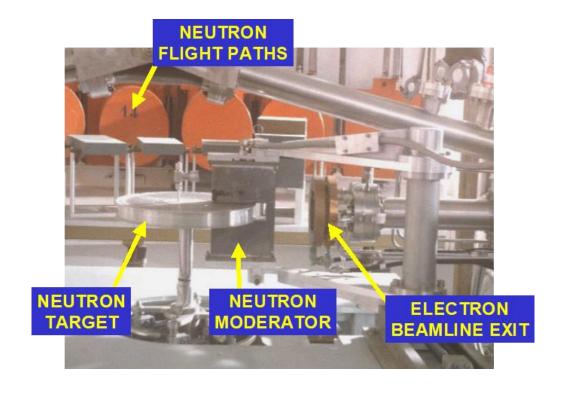
Dedicated programme [CEA Cadarache - JRC Geel] to improve the status of cross sections for fission products important for criticality safety studies. => total +capture xs

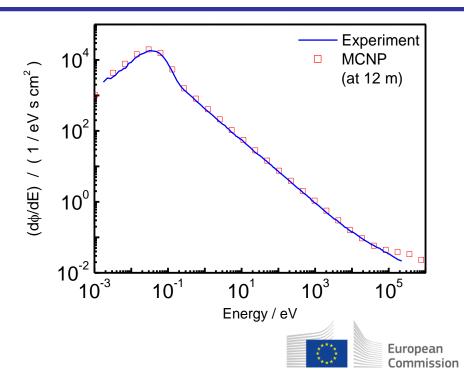
- 103Rh is an important nuclide for any criticality safety assessment relying on a BUC approach including fission products.
- High absorption cross section and high production rate in nuclear reactors.

 103Rh(n,γ) cross section in the energy region important for Light Water Reactors are overestimated by about 10%.

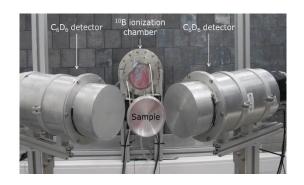
Oscillator meas. at MINERVE. Calc. and Exp. reactivity 100*(C-E)/C

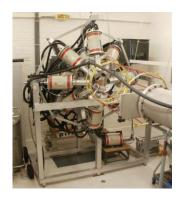
Sample	Over-thermalized	BWR	PWR-UO2	PWR-MOX
¹⁰³ Rh	-0.4 (81)	8.3 (29)	11.7 (33)	10.8(40)


GELINA: Geel Electron LINear Accelerator


- Electron linac driven pulsed white neutron source (10 meV < En < 20 MeV)
- Neutron energy: time of flight (TOF)
- Multi-user facility: 12 flight paths (10 m 400 m)
- Measurement stations with special equipment:
 - Total cross section measurements
 - Partial cross section measurements

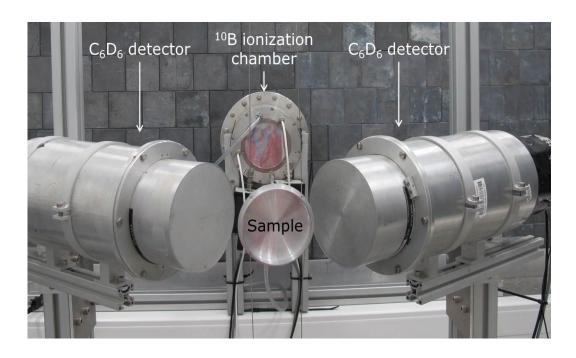
GELINA: neutron production




- e⁻accelerated to E_{e-,max} ≈ 140 MeV
- Bremsstrahlung in U-target
 - (rotating & cooled with liquid Hg)
- $(\gamma, n), (\gamma, f)$ in U-target
- Low energy neutrons by moderation (water moderator in Be-canning)

GELINA - Experimental set-ups

- Transmission
 - 10 m, 30 m, 50 m
- Capture
 - 10 m, 30m, 60 m
- Elastic, in-elastic scattering
 - $-30 \,\mathrm{m}$
- In-elastic scattering (n,n'γ)
 - 30 m, 100 m
- Fission, (n,p), (n,α)
 - $-10 \,\mathrm{m}$


GELINA – (n,γ) at FP5- 12.5 m

- Total energy detection principle
 - C₆D₆ liquid scintillators
 (Boron free quartz window!)
 - 125°
 - Pulse Height Weighting Technique

$$C_{w} = \int C_{c}(E_{d}) WF(E_{d}) dE_{d}$$

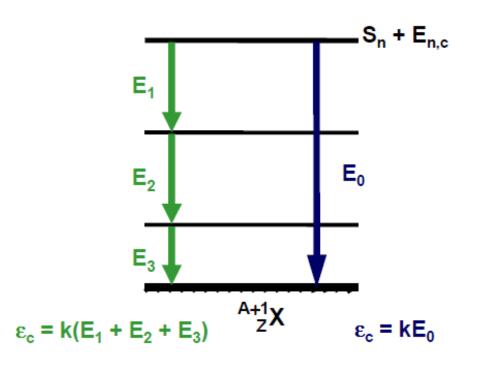
$$\varepsilon_{\gamma} \propto E_{\gamma} \implies \varepsilon_{c} \propto S_{n} + E_{n} \frac{A}{1 + A}$$

- WF: from MC simulations
- Fluence rate measurements (IC)
 - $^{10}B(n,\alpha)$

$$Y_{\text{exp}} = N \frac{C_{\text{w}} - B_{\text{w}}}{C_{\phi} - B_{\phi}} Y_{\phi}$$

Total energy detection principle

Probability to detect capture event = efficiency to detect at least one γ -ray


$$\varepsilon_c = 1 - \prod_i (1 - \varepsilon_{\gamma_i})$$

1) Detection efficiency: $\varepsilon_{\gamma} << 1$

$$\varepsilon_c \approx \sum_i \varepsilon_{\gamma,i}$$

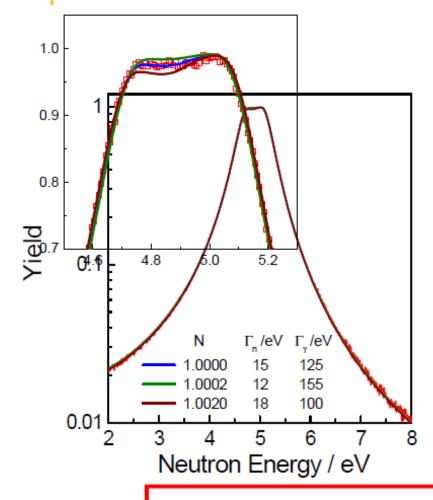
2) Detection efficiency: $\varepsilon_{\gamma} = kE_{\gamma}$

$$\Rightarrow \epsilon_{c} \approx \sum_{i} \epsilon_{\gamma,i} = k \sum_{i} E_{\gamma,i} \approx k (S_{n} + E_{n,c})$$
 independent of γ -ray cascade

Capture measurements

- Moderated neutron beam, 50Hz, 15 days
- > 103Rh 80 mm diameter metallic disc, 0.26 mm thickness, 15.663 g
- → 197Au 0.5 mm thick (normalisation)
- 208Pb (neutron induced background)
- Cd 0.05mm (flight path length determination)
- No sample meas.(sample independent bkg characterisation)
- Black resonance filters (S, Na, Co(fixed))
- Black resonance filters W, Ag for flux bkg
- \triangleright Pb filters to attenuate the γ -flash

Data reduction


Analysis of Geel Spectra (AGS)

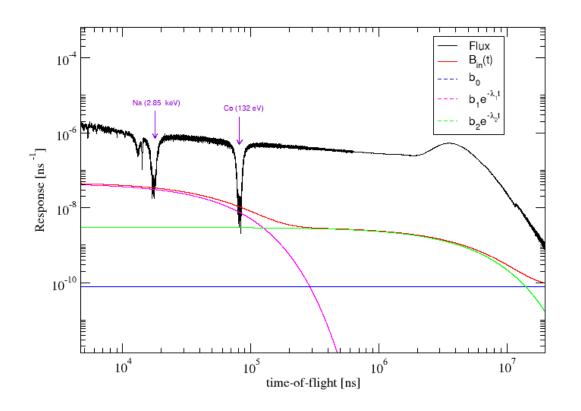
- Transforms count rate spectra into observables (transmission, yields)
- Full uncertainty propagation starting from counting statistics
- Output: complete covariance matrix

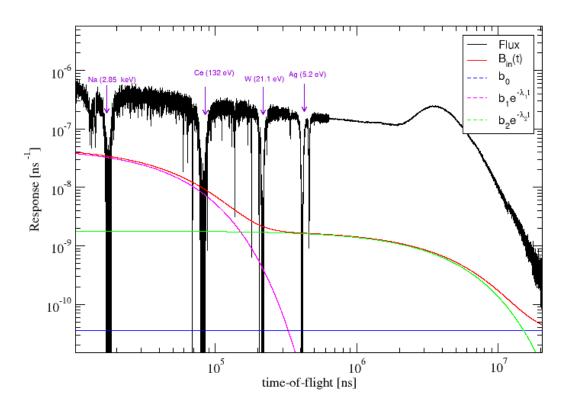
- Special format for covariance matrix
 - –Reduce space for data storage (<u>EXFOR</u>)
 - Document the sources of uncertainties due to each step in the data reduction process
 - —Verify the contribution of <u>each quantity</u> introducing <u>a</u> <u>correlated uncertainty component!</u>

Normalization

$$\begin{array}{l} n\sigma_{tot} >> 1 \text{ and } \sigma_{\gamma} \approx \sigma_{tot} \\ \\ Y_{\gamma} \cong \frac{\sigma_{\gamma}}{\sigma_{tot}} (1 - e^{-n\sigma_{tot}}) + ... \\ \\ Y_{\gamma} \cong 1 \\ \\ \Rightarrow N = \frac{1}{Y_{\phi}} \frac{C_{\phi} - B_{\phi}}{C_{w} - B_{w}} \end{array}$$

N is independent of:


- sample thickness
- nuclear data


 σ_{ϕ} : only the relative energy dependence is required $\Rightarrow^{10} B(n,\alpha) \sim 1/v$

$$\frac{u_{Y_{exp}}}{Y_{exp}} \le 2 \%$$

Flux: background

$$B(t) = b_0 + b_1 e^{-\lambda_1 t} + b_2 e^{-\lambda_2 t}$$

0-ambient radiation+bkg contributions without time correlation 1- n scatt. inside the detector station and n scatt from other FP 2- slow neutrons coming from previous accelerator pulses

Capture: background

$$B_c(t)=b0+b_1(t)+b_2(t)$$
 t =time of flight

b₀: TOF independent background, due to ambient background and activity (determined just after the neutron beam is switched off)

b₁(t): TOF dependent, but sample independent background (estimated from measurements without sample in the beam)

 $b_2(t)$: Dominated by prompt TOF and sample dependent background due to neutron and γ -ray scattering in the sample

 $b_{2n}(t) = b_{2n,1}(t) + b_{2n,2}(t)$

 $b_{2n,1}(t)$: direct or prompt component, follows resonance structure of (n,X) cross section

 $b_{2n,2}(t)$: delayed component neutron is scattered from the sample and creates a detected event after several scatterings in the measurement station or detector environment

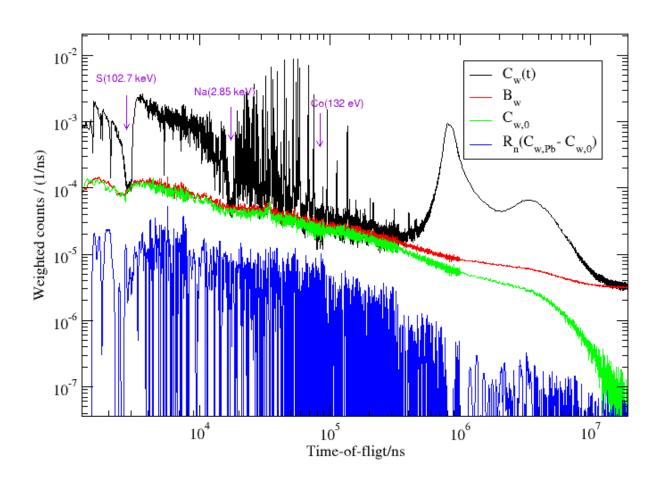
 \Rightarrow The complicated part of the procedure (measurement + data reduction) In particular time and sample dependent component $b_2(t)$

Capture: background

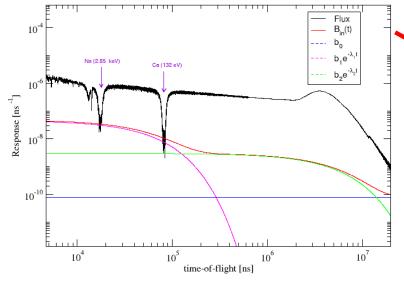
(1): ambient (or activity)

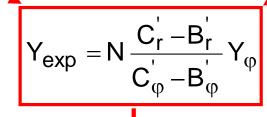
(2): weighted response without sample (corrected

for ambient)

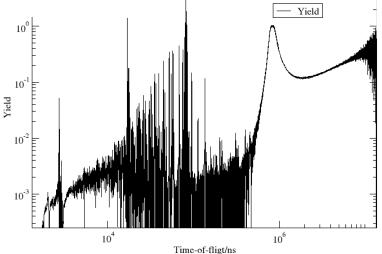

(3): weighted response with a ²⁰⁸Pb sample

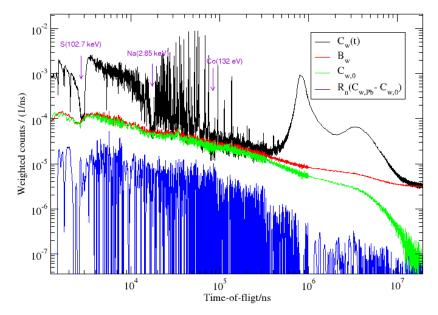
All spectra are weighted using the weighting function for the sample under investigation and corrected for dead time


(4): correction factor (TOF-dependent) accounts for difference in Y_n for X and ²⁰⁸Pb (or carbon for light samples)

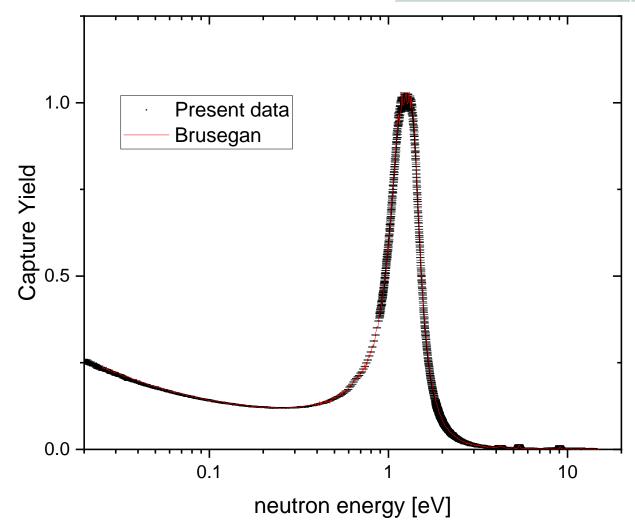

$$k_2 R_n = \frac{\mathsf{Y}_{\mathsf{n}}(^{A}X)}{\mathsf{Y}_{\mathsf{n}}(^{208}Pb)}$$

(1) (2) (3)
$$B_{w}(t) = b_{0} + k_{1}C_{w,0}(t) + k_{2}R_{n}(t)[Cw_{Pb} - C_{w,0}]$$



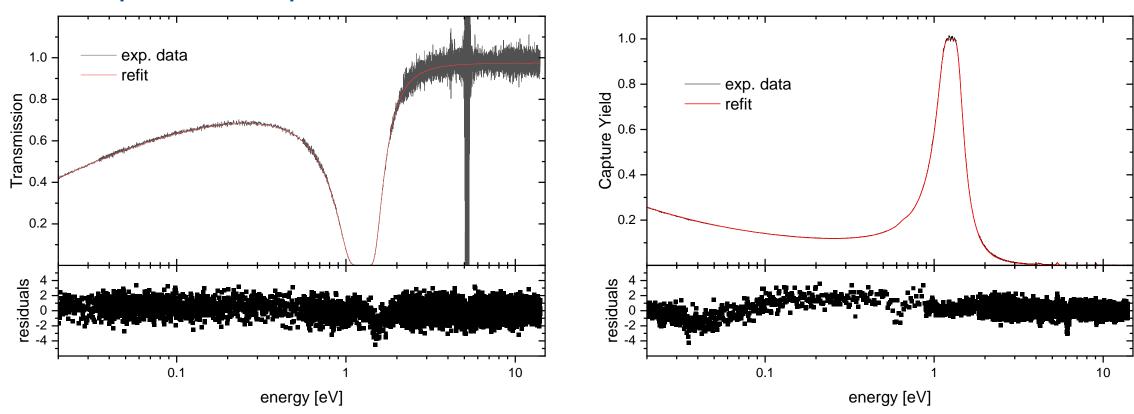

Y_{exp} for ¹⁰³Rh(n, γ)

Fixed background filters $=>\delta B'_{\varphi}/B'_{\varphi} \le 3\%$ With $B'_{\varphi}/C'_{\varphi} \le 1\%$ at 1.26 eV $\le 0.5\% \quad 0.025 \text{eV}$



Fixed background filters $=>\delta B_c/B_c \le 3\%$ With $B_c/C_c \le 1\%$ at 1.26 eV $\le 10\% \ 0.025 eV$

Y_{exp} for $^{103}Rh(n,\gamma)$


Reference	Year	s ₀ (b)	Method
Dilg and Mannhart	[1974]	144.9 (7)	TOF (trans.)
Lee et al. (JENDL)	[2003]	133.0 (90)	TOF (capture)
Brusegan et al.(JEFF)	[2004]	142.0 (15)	TOF (capture)

The capture cross section at a neutron energy of 0.0253 eV obtained from the combined analysis of the 103 Rh capture and transmission data is σ_{γ} = 142 (1.5) b.

T_{exp} vs Y_{exp}

The resonance parameters for 103Rh were obtained from a simultaneous shape analysis of the capture and transmission data using the REFIT code.

GELINA: (n,γ) methodology => $\leq 2\%$

Total energy principle: C₆D₆ with weighting function

- Weighting function which account for the threshold and sample properties
- Correction for neutron and γ -ray transport in the sample (Borella et al., NIMA)

Background

- Use fixed background filters
- Perform background measurements with additional filters
- Perform additional background measurements with Pb and/or carbon

Neutron fluence rate

- Double ionisation chamber (2 thin layers of ¹⁰B)
- Energy dependence: traceable to ¹⁰B(n,a) reaction cross section

Normalization

Internal: 1.26 eV saturated resonance

Perspectives: Data evaluation

Thank you for your attention!

