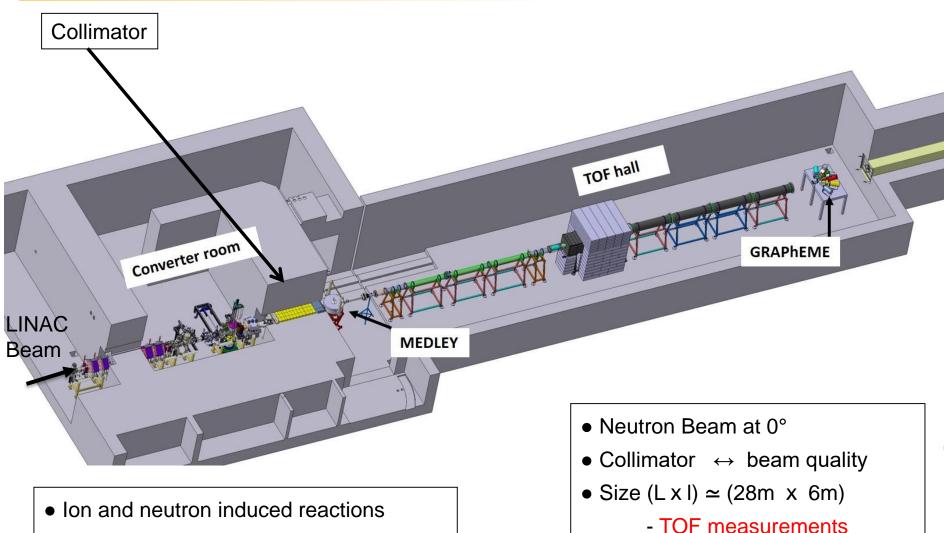


First results of the Neutrons For Science Facility

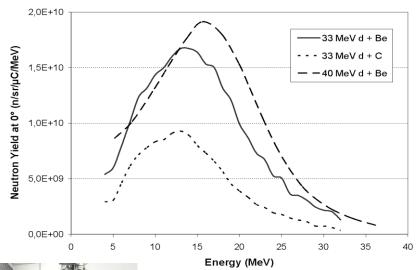
- X. Ledoux on behalf of the NFS collaboration
 - 1. The NFS facility
 - 2. Neutron spectra measured at NFS
 - 3. First experiments



NFS layout

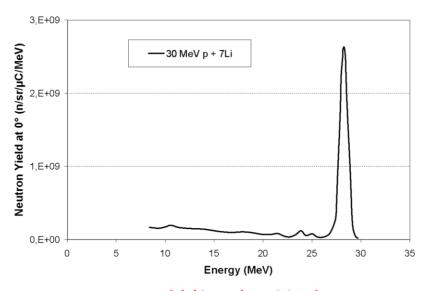
• Beam line extension

• Irradiation station (n, p, d)


- free flight path

Neutron production reaction

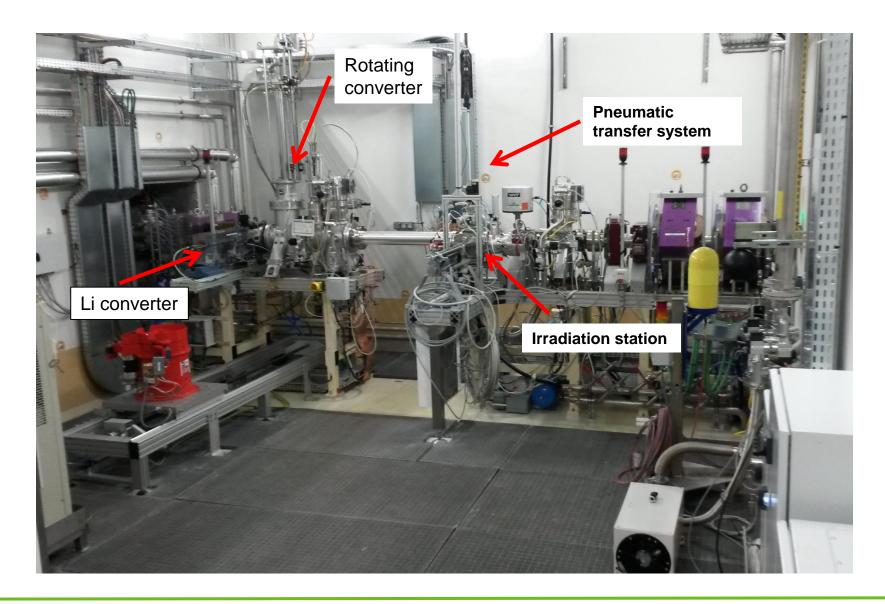
Continuous spectrum $E_{max} = 40 \text{ MeV}$, $\langle E \rangle = 14 \text{ MeV}$



40 MeV d + Be at 50 μA

Rotating converter
thick target C or B (8mm)
P< 2 kW

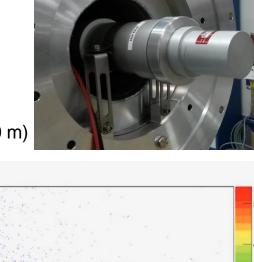
Quasi-monoenergetic spectrum $E_n = up to 31 MeV$

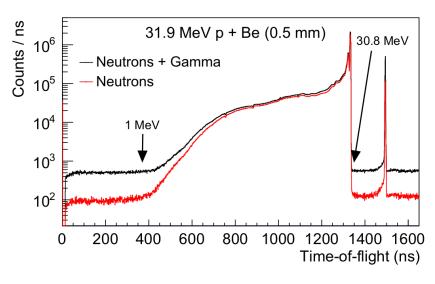

p + Li (1mm) at 20 μA

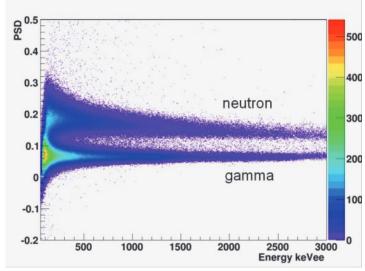
NFS: The converter room

NFS: The TOF area

- 1. The NFS facility
- 2. Neutron spectra measured at NFS
- 3. First experiments

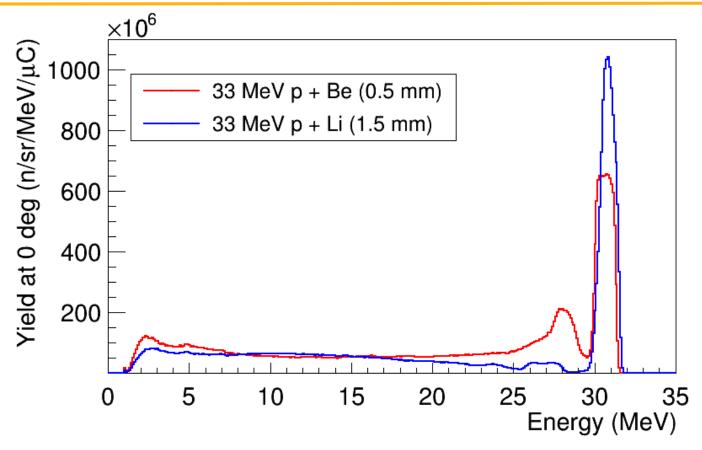



Neutron spectra measurements: E> 2 MeV



Detectors based on liquid scintillator EJ309

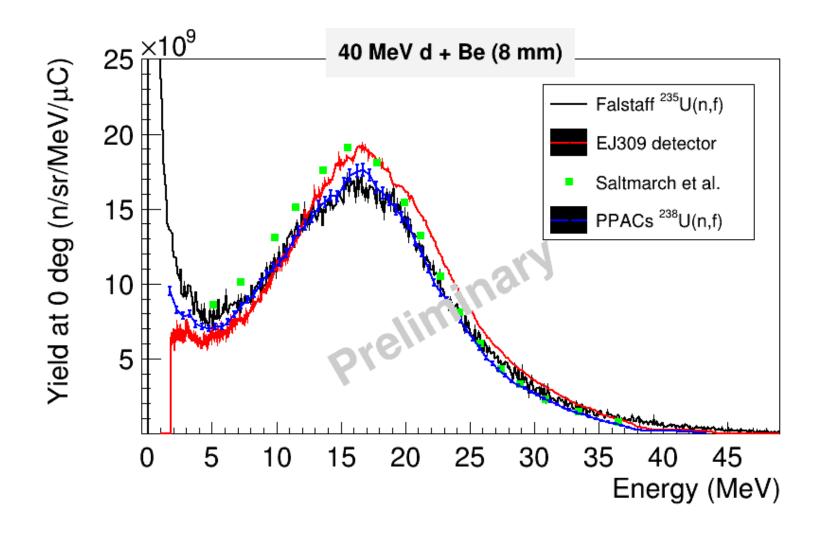
- ☐ Neutron spectrum and flux measurement by the TOF technique
- **□** n-γ discrimination by pulse shape analysis
- ☐ EJ309 cell (2 inches in diameter, 3 inches in length)
- ☐ Placed in the beam pipe downstream of the rotating converter (15 to 30 m)



- ☐ Adaptation of the SCINFUL code:
 - Light response of EJ309 included
 - Efficiency determination

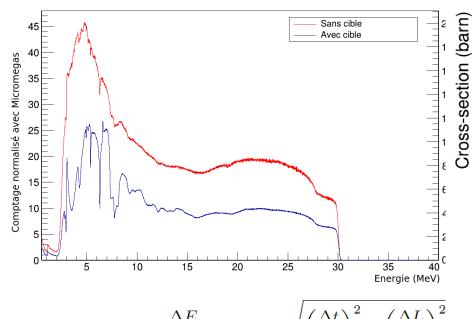
Quasi-mono-energetic spectra

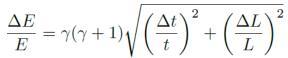
33 MeV p + Li (1,5 mm)

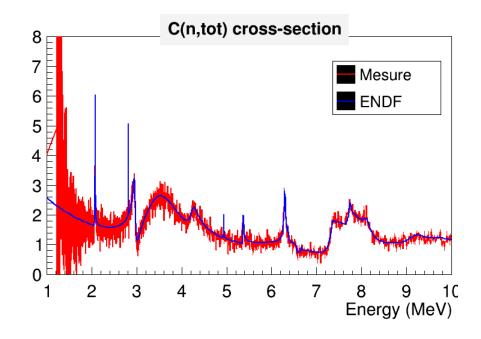

Neutron yield in the mono-energetic peak 1,2 109 n/sr/μC

at 20 μ A and d=500cm \rightarrow Φ = 10⁵ n/s/cm²

Continuous spectrum

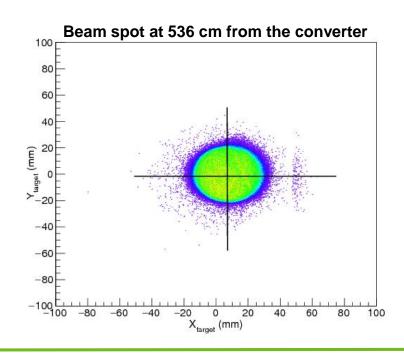

Transmission measurement

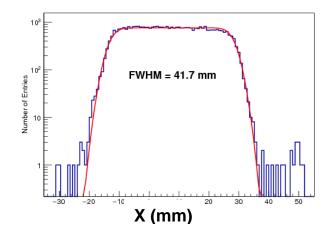


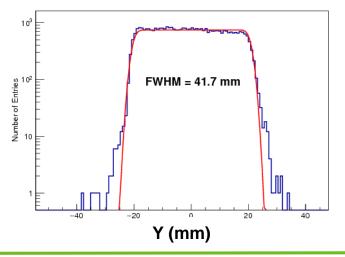

- ☐ Transmission measurement with Carbon samples (2, 4 and 6 cm thick)
- Total cross-section reaction measurement
- NFS Energy resolution estimation

$$\sigma_T = -\frac{1}{nl} \ln \frac{R_i - B_i}{R_o - B_o}.$$

Neutron beam profile




☐ The beam has a conical shape :


- r=21 mm at 5 m downstream from the collimator
- r=28 mm at 29 m

■ Beam profile measurement :

- PPAC detector with U238 sample (IJCLab)
- o Graphchromic film at 29 m

- 1. The NFS facility
- 2. Neutron spectra measured at NFS
- 3. First experiments

PAC 2020 to 2022

• NFS accepted experiments

NUM	Title	Spokesperson	UT Allocated
E799	Excitation functions of short-lived isotopes in proton induced reactions on ^{nat} Fe	E. Simeckova, NPI, Rez	5
E800	LIONS - Light-Ion Production Studies with Medley at the NFS facility	A.V. Prokofiev, Uppsala University	17
E802	GARIC - Gas pRoduction In Chromium by neutrons	A.V. Prokofiev, Uppsala University	21
E804	Measurement of fission cross sections standards relative to elastic n-p scattering at neutron energies 1- 40 MeV	D. Tarrio, Uppsala University	31
E807	Study of the (n,xn) and (n,f) reaction for U238	G. Bélier, CEA-DAM	12
E811	Study of the (n,alpha) reactions of interest for nuclear reactors - the SCALP Project	F. R. Lecolley, lpc Caen	12
E814	235U Fission fragment study with FALSTAFF at NFS	D. Doré, CEA/IRFU/DPhN	11
E832	Deuteron activation of natMo - focus on short-lived products	E. Simeckova, NPI, Rez	4
E833	Pygmy dipole resonance in 140Ce using the (n,n'g) reaction at NFS	M. Vandebrouck, CEA Saclay	23
E835	Measurement of the neutron induced activation in materials	V. Blieanu, CEA Saclay	3
E838	Shedding new light on the structure of 56Ni using (n,3n) reaction at NFS	E. Clément, Ganil	22
E856	Study of neutron induced reactions on 239Pu	G. Bélier, CEA-DAM	42
E858	GARROS - Gas production in iron by neutrons	A. Prokofiev, Uppsala University	22
E859	238U(n, 2ng) and (n, 3ng) reaction cross sections measurements	M. Kerveno, IPHC, Strasbiurg	31

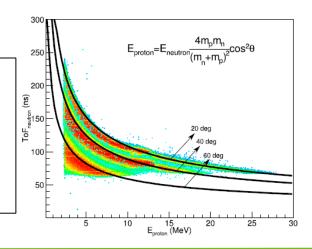
1 UT = 8h

800: Ion Production Studies with Medley at the NFS facility

Spokesperson: D. Tario, Uppsala University

■ Neutron-Induced Light charged particles emission with MEDLEY

- 8 Si-Si-Csl telescopes
- Double-differential cross sections :
- Cancer therapy and dosimetry (H,C,O, Ca...)
- o Radiation effects in microelectronics (Si, O)
- Energy applications: Gen-IV or fusion reactors (building materials, fuel, coolants, etc)



- High particle-identification capability
- Simultaneous measurement of charged-particles energy and neutron ToF (digital

Accepted experiments with MEDLEY

- LIONS (Light ION production Studies with Medley) 21/22
- GARIC (GAs pRoduction In Chromium by neutrons) 22/23
- GARROS (Gas pRoduction in iROn by neutronS) -
- FISHES (FISsion versus Hydrogen Elastic Scattering)

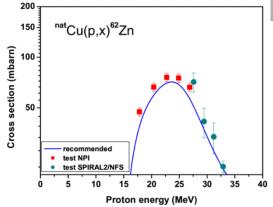
E799: Excitation functions of short-lived isotopes in proton-induced reactions on ^{nat}Fe

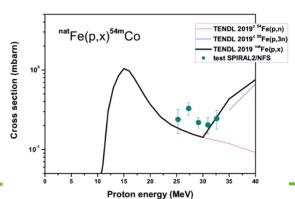
Spokesperson : E. Simeckova, NPI, Rez

Measurement of reaction cross-sections by activation technique:

- data for IFMIF facility design
- improvement of reaction model

Goal: measure the ^{58m}Co and ^{58g}Co alimentation

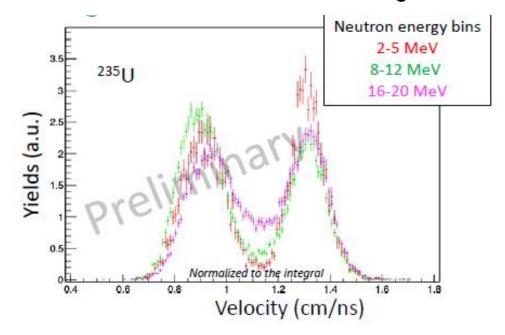

Commissioning: Irradiation station tested in December 2019

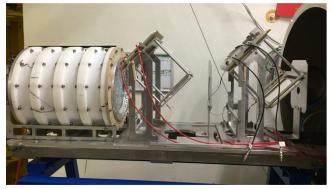

- 33 MeV proton beam
- 80 nA beam intensity
- Fe and Cu samples irradiated
- Good agreement between production cross section of 62Zn and recommended values ->proves the validity of the method in
- natFe(p,x) 54mCo measure for the first time the production cross section of the short-lived isomeric state of 54Co

Experiment E799 performed in October 2021

Following experiment E832: "Deuteron activation of natMofocus on short-lived products" performed in October 2022

E814: ²³⁵U Fission fragment study with FALSTAFF at NFS




Spokesperson: D. Doré, CEA-IRFU

Perform experiments in the fast domain to characterize actinide fission fragments

- Neutron Sawtooth Curve
- Important piece of information about scission
 - Excitation energy sharing
 - Shell effects
 - Energy balance

(n, 2-3n γ) cross sections measurements SPIRAL2/NFS

Spokesperson: M. Kerveno, IPHC Strasbourg

Study of (n, 2-3n γ) reactions @SPIRAL2/NFS

Check the feasibility of the prompt γ-ray spectroscopy method at 30 m from the neutron source.

Questions :

- × How well is the beam defined at 30 m (after the second collimation)?
- \times How are the backgrounds (n & γ) conditions?
- \bowtie How to deal with low γ -flash for tof measurement in the Fission Chamber?

	09/2021	11/2022
Detectors	3 HPGe	3 HPGe, Fission chamber (3 ²³⁸ U), 1 LaBr3
Acquisition syst.	FASTER	FASTER
sample	natW @ 28.936 m Thick. =0.2 mm, m=41.2 g	natW @ 29.2 m Thick. =0.2 mm, m=41.2 g
Beam d + Be	${\sim}16\mu A$; $E_{\rm d}$ = 40 MeV; $F{=}440$; 220 kHz	$\sim\!7.5~\mu\text{A}$; $E_{\rm d}$ = 40 MeV; F=880 ; 440; 220 kHz (Be target fixed)
effective UT	~1	~25 (11 parasitic mode @220 kHz)

Conclusions:

- Beam size and halo as expected (following MCNP simulations)
- Special care has to taken when (re)mounting the second collimator to guarantee the alignment
- 🗷 No major problem identified with background at this stage analysis.
- ≠ tof measurements possible with HPGe
- \mathbf{x} For tof measurement with FC, special care must be taken for the calibration of the time spectrum, but possible. Additional work is needed to confirm the neutron flux

Collaboration IPHC/CNRS (Fr) - EC-JRC Geel (Be)- IFIN-HH (Ro)

has developed two germanium arrays at EC-JRC-GELINA

for $(n,xn \gamma)$ cross sections measurements using the prompt y-ray spectroscopy method

Neutron Time of flight facility GELINA@EC-JRC(Geel)

30 nuclei for nuclear reactor interest from mass 7 to 238.

producing many

neutron inelastic XS

GRAPHEME

1 segmented Planar HPGE detector

GAINS

dedicated to meas. with light and interm.

masses nuclei

12 high-efficiency HPGe detectors

PAC 2022 December 8th, 2022 (remotive

E859 22

²³⁸U(n, 2ny) and (n, 3ny) reaction cross sections measurements

Spokesperson: Maëlle Kerveno E-mail: maelle.kerveno@iphc.cnrs.fr Co-spokesperson : Greg Henning

PHC, Strasbourg: Ph. Dessagne, G. Henning, M. Kerveno, N. Dari <u>Bako</u> IFIN-HH Bucharest: C. Borcea, M. Boromiza, A. Negret, A. Olacel ESRIG, University of Groningen: N. Kalantar, M. Kavatsyuk
CEA/DAM, Bruveres le Chatel: M. Dupuis

of th

(V)

Pygmy dipole resonance (PDR) in 140Ce using the (n,n'γ) reaction at SPIRAL2-NFS

Spokespersons: Marine VANDEBROUCK (CEA Saclay Irfu/DPhN) and Iolanda MATEA (IJCLab)

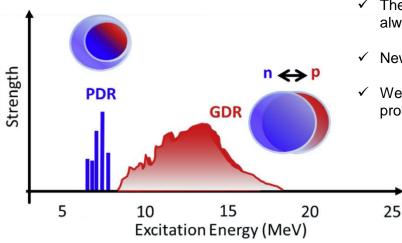
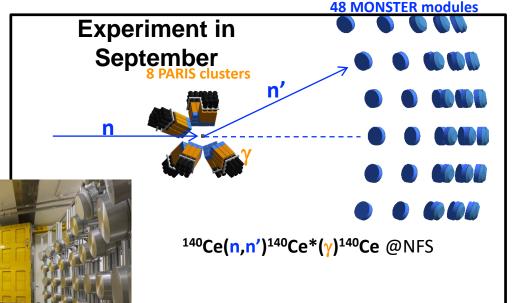


Figure extracted from A. Bracco et al. Prog. Part. Nucl. Phys. 106 (2019)

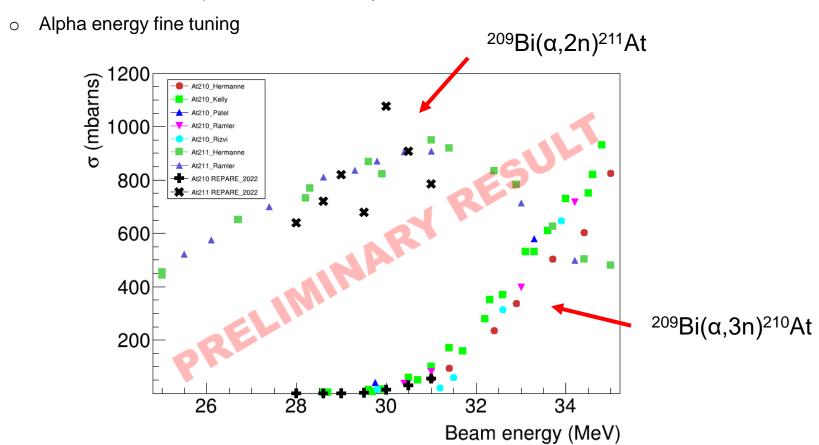

GDR (Giant Dipole Resonance)

- oscillation of neutrons against protons
- exhausts ~ 100% of the dipole strength

PDR (Pygmy Dipole Resonance)

- oscillation of a neutron skin against a symmetric proton/neutron core
- small additional dipole strength at lower energy

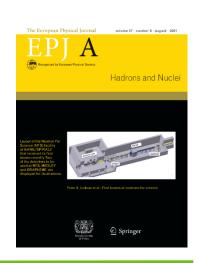
- ✓ The use of different reactions to excite the PDR showed different responses, not always compatible with the neutron skin picture
- ✓ New probes are necessary to resolve the complexity of the PDR structure
- ✓ We propose to use neutron inelastic scattering reaction at SPIRAL2-NFS as a new probe



209 Bi(α ,3n) 210 At excitation function

Goal: produce ²¹¹At (α emitter, $T_{1/2} = 7.2$ h) by ²⁰⁹Bi(α ,2n) and minimize the production of ²¹⁰At

- o ²⁰⁹Bi(α,3n)²¹⁰At excitation function close to the energy threshold
- Irradiation station + pneumatic transfer system



Summary

- □ Neutrons for Science is now operational
- ☐ 7 Experiments and 3 tests have already been performed
 - Lcp particle production
 - Fission process
 - n,xnγ reactions
 - P and d induced reaction cross-section measurements
- ☐ Everyone can propose an experiment
 - 1 PAC session per year: next PAC in November
 - GANIL web site "proposing an experiment" and contact me
- NFS is in the European Projects (Transnational Access):
 - ARIEL
 - RADNEXT

