

LEGEND-1000

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

David Radford

Second International Summit on the Future of DBD SNOLAB 27 April 2023

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

LEGEND

- Recap: Why $0\nu\beta\beta$ Decay? Why now?
- Why germanium-76?
- Requirements: Mass and backgrounds
 - Background sources and mitigation
- The LEGEND Design
 - Two possible sites
- Cost and Schedule
- Status and Progress
- Conclusion
 - Readiness
 - Timeliness
 - Cost-effectiveness
 - International Character

Ū.

Recap: Why Neutrinoless Double Beta Decay?

- The discovery of 0vββ decay would dramatically revise our foundational understanding of physics and the cosmos
 - Lepton number is not conserved
 - The neutrino is a fundamental Majorana particle
 - There is a potential path for understanding the matter antimatter asymmetry in the cosmos, through leptogenesis
 - There is a new mechanism demonstrated for the generation of mass
- The search for $0\nu\beta\beta$ decay is one of the most compelling and exciting challenges in all of contemporary physics
- The LEGEND Collaboration aspires to meet this challenge through LEGEND-1000, a ton-scale search for $0\nu\beta\beta$ decay of ^{76}Ge

- The search for 0vββ decay at the ton scale was a priority recommendation in the 2015 Long Range Plan from the Nuclear Sciences Advisory Committee
- We anticipate the same priority being assigned to 0vββ decay in the new NSAC LRP (currently under development) with very strong community support
- There has been tremendous progress in developing and demonstrating the required technologies
- The projects and collaborations are in an advanced state of planning
- The field is now ready to proceed

I hope to convince you that ⁷⁶Ge provides

- A solid basis for unambiguous discovery
 - Superb energy resolution: σ / $Q_{\beta\beta}$ = 0.05 %
 - Background around $Q_{\beta\beta}$ is flat and well understood
 - No background peaks anywhere near the energy of interest
 - Background will be measured, with no reliance on background modeling
 - All this leads to an excellent likelihood that an observed signal will be *convincing*
- Low risk, high impact
 - Demonstrated performance of the entire technology chain
 - Requires no extrapolation from current detector performance
 - Previous Ge experiments have demonstrated the lowest background per FWHM of any experiment, and the best resolution
 - Proven track record, with history of leading limits

The LEGEND Collaboration

Our mission:

"Develop a phased, ⁷⁶Ge based double-beta decay experimental program with discovery potential at a half-life beyond 10²⁸ years"

260 members

47 institutions around the world

- The goal of the LEGEND-1000 project is to build an experiment with clear *discovery* potential at a half-life beyond 10²⁸ years
 - For comparison, the age of the universe is 1.3×10^{10} years
- This is less than one decay per year per ton of material
- Strategy:
 - Amass an array of detectors totaling about 10^{28} Ge-76 atoms (1000 kg)
 - Operate the detectors for 10 years (accumulate 10 ton-years of "exposure")
 - Look for a handful of $0\nu\beta\beta$ decays (2039 keV)
- Need a very good signal-to-background ratio to get statistical significance
 - An extremely low background event rate
 - The best possible energy resolution

2023-04-27

LEGEND

DBD

Second Int

Radford

Enriched HPGe Detectors for LEGEND-1000

- Large-mass "Inverted-Coaxial Point-Contact" (ICPC) detectors: About four times lower backgrounds compared to detectors used in previous experiments
- Superb energy resolution: $\sigma / Q_{\beta\beta} = 0.05 \%$
- Insensitive to alpha particles on outer high-voltage contact
- Small signal-readout contact: Event topology discrimination

Requirements: Low Backgrounds

- Background-free: Sensitivity rises linearly with exposure Background-limited: Sensitivity rises as the square root of exposure
- Our background goal is the red line, 0.025 counts/(FWHM t y), "quasi-background-free"
 - Less than one background count expected at the energy of interest after 10 t y of exposure (FWHM: Full Width at Half Maximum; 2.355 σ for a Gaussian peak)

Sources of Background Events

- Background events that can mimic a 0vββ decay can come from
 - Gamma rays from the uranium and thorium decay chains
 - Alpha and Beta particles hitting the surfaces of the detectors
 - Cosmogenic radioactive isotopes produced by cosmic rays at the earth's surface, or by neutron capture inside the deep-underground laboratory

2023-04-27

LEGEND

DBD

Summit

Int´

Second

Radford

 \Box

- Mitigation strategies
 - Use only ultra-pure materials, e.g. copper from electroforming underground
 - Minimize structural material around the Ge detectors
 - Use pulse-shape analysis of the Ge detector signals
 - Illustrated on next slide
 - Operate the Ge detectors in a bath of pure liquid argon
 - Cools the detectors to the correct operating temperature
 - Shields the detectors from incident gamma rays
 - Scintillates when energy is deposited from a gamma, beta, or alpha
 - Detecting the scintillation light lets us identify and reject background events
 - But argon extracted from the atmosphere contains radioactive ⁴²Ar
 - ⁴²Ar is itself a source of background events
 - Solution: Use underground argon; argon extracted from underground gas wells where ⁴²Ar production is strongly suppressed

1000

400

200

Signal [a.u.]

Ū.

11

Pulse-Shape Analysis: ICPC Ge Detector Event Topologies LEGEND

Ovββ signal candidate (single-site)

Pulse-Shape Analysis: ICPC Ge Detector Event Topologies LEGEND

Surface- β (⁴²K from ⁴²Ar) on outer contact

Gamma-ray background (multi-site)

1400 1000 1200 1600

Alpha-particle on read-out contact

Liquid Argon Instrumentation

LEGEND

GERDA: Detection of liquid argon scintillation light

Low-background wavelength-shifting fibers and silicon photo-multiplier arrays for 128 nm single photon detection

LEGEND-200

First phase of the LEGEND program, located at Laboratori Nazionali del Gran Sasso (LNGS)

LEGEND-200

LEGEND

First phase of the LEGEND program, located at Laboratori Nazionali del Gran Sasso (LNGS)

- Re-uses the GERDA cryostat and infrastructure
- With an improved liquid argon system
- Will have 135 kg of novel ICPC detectors (92% enr. ⁷⁶Ge) plus 62 kg of PPC and BEGe detectors
- Sensitivity goal: 10²⁷ years half-life
- Recently transitioned from commissioning to physics data taking, with 10 strings of detectors (142 kg)
 installed

ICPC average resolution @ $\mathsf{Q}_{\beta\beta}$: 2.2 keV (FWHM)

LEGEND-1000: Experiment Overview

1000 kg of enriched Ge detectors (enriched to 92% ⁷⁶Ge)

- 2.6 kg average mass
- Mounted in "strings" using components made from electroformed copper and scintillating plastic, PEN
- ASIC readout front-end electronics

- Underground-sourced LAr active shield
- Dual fiber-curtain LAr instrumentation
- EFCu Reentrant tubes

LEGEND-1000: Experiment Overview

1000 kg of enriched Ge detectors (enriched to 92% ⁷⁶Ge)

- 2.6 kg average mass
- Mounted in "strings" using components made from electroformed copper and scintillating plastic, PEN
- ASIC readout front-end electronics

- Underground-sourced LAr active shield
- Dual fiber-curtain LAr instrumentation
- EFCu Reentrant tubes

Enriched Germanium Procurement

- LEGEND-1000 requires 1100 kg of Ge enriched to 92% in $^{76}{\rm Ge}$
- New geopolitical realities prevent procurement of that material from major suppliers in Russia
- LEGEND-200 also procured some material from a second vendor in the Netherlands
- Negotiations to secure the isotope from that alternative source are advancing very well
 - Planning for a dedicated ^{76}Ge enrichment cascade with \sim 200 kg/year capacity

Underground-Sourced Argon Procurement

- Underground argon production has been pioneered by the DarkSide experiment
 - ³⁹Ar is a major background for dark-matter searches using liquid argon, like DarkSide
 - Argon extracted from the atmosphere contains trace quantities of ³⁹Ar and ⁴²Ar produced by cosmic rays
 - Extracting argon from underground gas reservoirs avoids that cosmogenic process
 - Production at the URANIA facility in Colorado, and purification at the ARIA facility in Sardinia
 - MOU with the Ar DM community (GADMC Collaboration) approved by both collaborations

LEGEND-1000 Underground Site

- Two reference designs to accommodate two sites
- SNOLAB Cryopit
 - Deepest site, rock overburden 6000 m.w.e.
 - Vertical access through mine shaft
 - All experimental areas are class 2000 clean rooms
- LNGS Hall C
 - Lower overburden increases background only slightly
 - Horizontal access reduces cost and schedule risk

LEGEND-1000 at LNGS

- Proposed location: Hall C, at Borexino location
- GERDA data show that we can achieve similar background to SNOLAB but with 7% efficiency loss
- Single re-entrant tube, rather than four
- Earlier start to phased data-taking

The LEGEND-1000 design for LNGS Hall C

The LEGEND-1000 Background Model

- Flat, featureless background is calculated to be below our requirements
- Will be measured; no need to rely on simulations

Designed for an Unambiguous Discovery

Even a signal at the bottom of the inverted ordering will be visible to the eye.

24

- Assumes technically driven funding profile
- Key Dates:
 - CD-1: Q3,FY24
 - First 250 kg Commissioning Complete (start of physics data): Q3,FY31 Q4,FY32
 - Early Finish: Commissioning Complete:
 - Late Finish (36 months of float):

Q2,FY35

Q2,FY38

- Total US scope cost estimate is \$380M (SNOLAB site) or \$330M (LNGS site)
 - Fully burdened, escalated, includes management and engineering costs, and 48% contingency
 - Assumes technically driven funding profile
- Anticipated US Project scope is 55% to 60% of the total (DOE accounting)
 - Total scope estimate using DOE accounting; fully burdened & escalated costs, with 48% contingency
 - A proposal to NSF for a Mid-Scale Research Infrastructure 2 grant is under development
- Raw cost (unburdened procurements only) for anticipated non-US scope is approx. \$70M
- Funding required for CD-1:
 - OPC funds in hand are sufficient for conceptual design and front-end planning through end of FY23
 - Expect to require ~ \$2M additional OPC funding in FY24 Q1-2 (assuming CD-1 ESAAB approval in Q2)

Towards a ton-scale experiment

LEGEND

- The LEGEND-1000 project is ready to proceed to final design and construction
 - Demonstrated performance of the entire technology chain
 - Requires no extrapolation from current detector performance
 - Cost-effective and innovative design
- The physics is highly compelling and timely
- LEGEND-200 greatly reduces the risk for LEGEND-1000
 - Validates the design concepts and technologies
 - Provides an excellent test bed for LEGEND-1000 hardware
- The collaboration is
 - Experienced
 - Diverse and strongly international
 - Passionate about the physics and the LEGEND-1000 project
 - Ready to transition from LEGEND-200 commissioning to LEGEND-1000

Why Germanium-76?

LEGEND

- Solid basis for unambiguous discovery
 - Superb energy resolution: $\sigma / Q_{\beta\beta} = 0.05 \%$
 - Background is flat and well understood, with no background peaks anywhere near the energy of interest
 - Background will be measured, with no reliance on background modeling
 - All this leads to an excellent likelihood that an observed signal will be *convincing*
- Low risk, high impact
 - Demonstrated performance of the entire technology chain
 - Previous Ge experiments have demonstrated the lowest background per FWHM of any experiment, and the best resolution
 - Proven track record, with history of leading limits

100 Simulated Experiments

- Background is flat and well understood. ullet
 - No reliance on background modeling
 - No risk of 2vββ background

Total Backgrounds: Components

Background Index After Cuts

Projected background index after all cuts:

Approx. 9 x 10⁻⁶ counts / (keV kg yr)

Proposed US-DOE LEGEND-1000 Project Profile

DOE CAP costs only, technically driven

Have maintained 48% overall contingency (conservative)

This scenario assumes CD-1 ICR and IPR in FY24 Q1

Critical Decision	Date
CD-0	FY19 Q1
CD-1	FY24 Q2
CD-2	FY25 Q2
CD-3	FY26 Q3
CD-4 (early date)	FY35 Q2

