CUPID Experiment

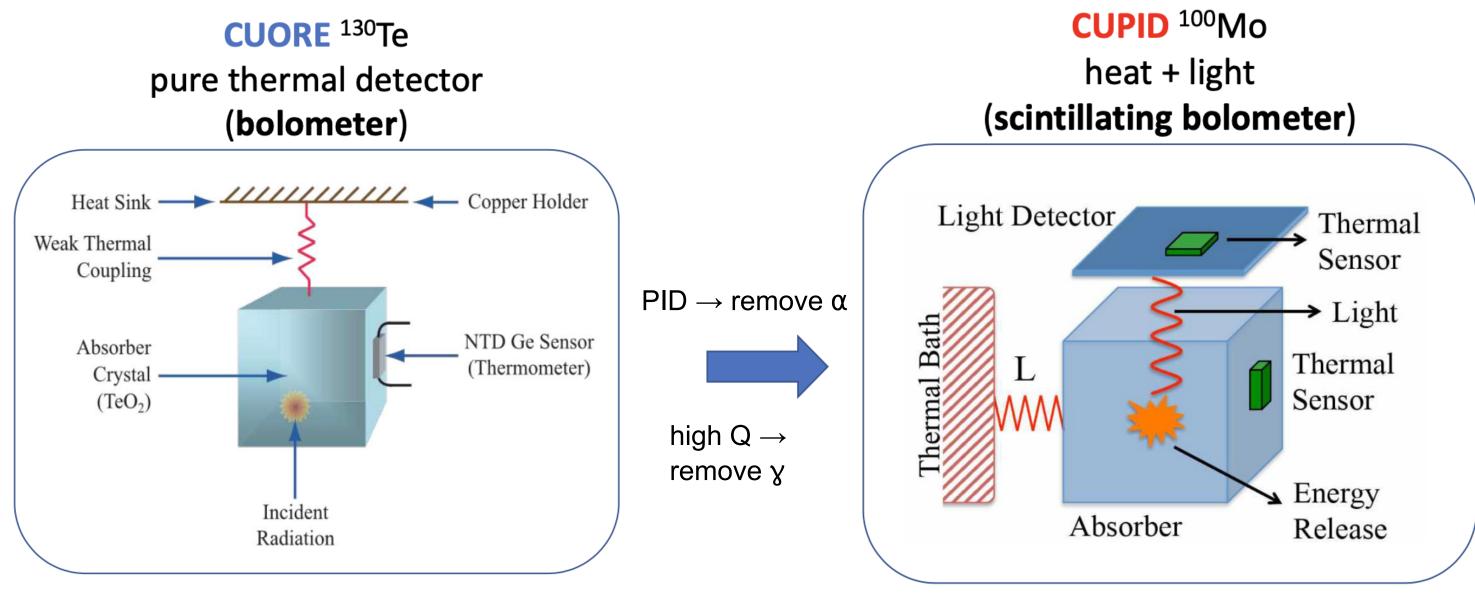
Yury Kolomensky (UC Berkeley/LBNL) **CUPID-US** Project Director Matteo Biassoni (INFN Sezione di Milano-Bicocca) **CUPID** Technical Coordinator

For the CUPID collaboration

Second International Summit on the Future of Double Beta Decay

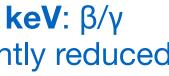
SNOLAB 27-28 April 2023

CUPID concept


Ton-scale array of high-resolution cryogenic calorimeters for the search for $0\nu\beta\beta$ and other other rare events

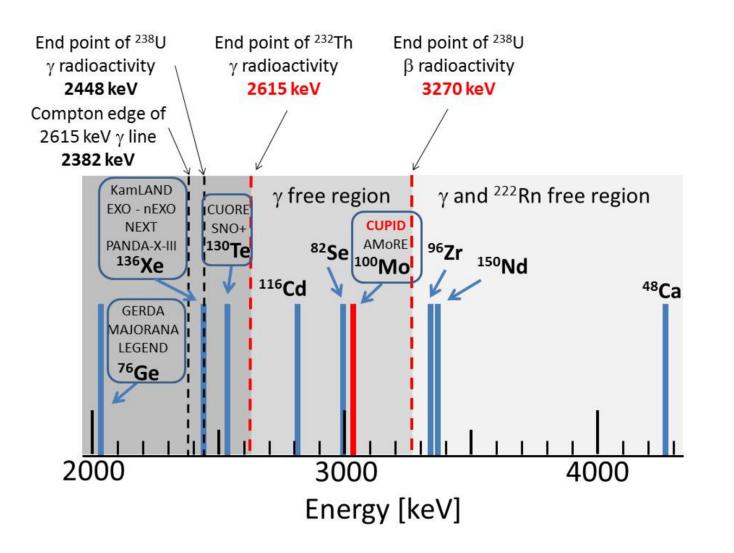
- Replace the CUORE detector with a new detector array based on Li₂MoO₄ scintillating bolometer crystals
- Similar mass as CUORE: feasibility already demonstrated with > 2 ton-years of data
- Existing cryogenic infrastructure: cost effective, low risk
- Additional detector functionality:
 - particle identification (light yield vs energy)
 - pile-up rejection with fast light detectors
 - increased number of channels (x3 compared to CUORE)

CUPID detector technology



No PID Q = 2527 keV < 2615 keV

¹⁰⁰Mo **Q-value: 3034 keV**: β/γ background significantly reduced


2nd International Summit on the Future of Double Beta Decay, SNOLab, 27-28 Apr 2023

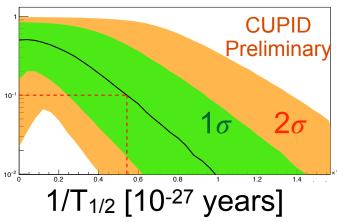
Isotope choice

Balance between **performance** (background reduction, NME, detector performance) and **cost** (isotope enrichment, crystal growth). Higher Q-value translates into smaller background

100**Mo**

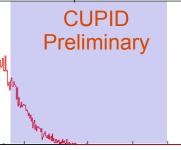
- Q-value above most of natural radioactivity
- good quality scintillating crystals for α - β discrimination
- existing enrichment technology and interest for medical applications
- CUPID requires producing ~280 kg of ¹⁰⁰Mo

CUPID Parameters and Sensitivity - 0νββ


Parameter	Baseline	Bayesian T _{1/2} limits
Isotope	$^{100}\mathrm{Mo}$	
Q-value	$Q_{\beta\beta}=3034 \text{ keV}$	to 120 - Median Sensitivity
Crystal	Li_2MoO_4	
Crystal size	$45 \times 45 \times 45 \text{ mm}^3$	
Crystal mass (g)	280	
Number of crystals	1596	40 - J
Number of light detectors	1710	
Detector mass (kg)	450	0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =
100 Mo mass (kg)	240	90% c.i. T _{1/2} [10 ²⁴ years]
Energy resolution FWHM (keV)	5	
Background index $(counts/(keV \cdot kg \cdot yr))$	10^{-4}	Bayesian mass
Containment efficiency	78%	ω ³⁰⁰
Selection efficiency	90%	Viting 200 Line of toys
Livetime	10 years	
Half-life exclusion sensitivity (Bayesian 90% C.I.)	$1.7 \times 10^{27} \text{ y}$	
Half-life exclusion sensitivity (Frequentist 90% C.L.)	$2.1 \times 10^{27} \text{ y}$	
$m_{\beta\beta}$ exclusion sensitivity (90% C.I.)	$9.6{-}16 \text{ meV}$	
$m_{\beta\beta}$ exclusion sensitivity (90% C.L.)	8.4–14 meV	E / W/
Half-life discovery sensitivity (3σ)	$1 \times 10^{27} { m y}$	
$m_{\beta\beta}$ discovery sensitivity (3 σ)	12-20 meV	

CUPID aims to cover the inverted hierarchy and a fraction of normal ordering

https://doi.org/10.48550/arXiv.1907.09376



Frequentist T_{1/2} limits

s limits

- Highest NMEs
- Smallest NMEs
- Smallest NME median sensitivity
- Highest NME median sensitivity
- IO regime (m=0)

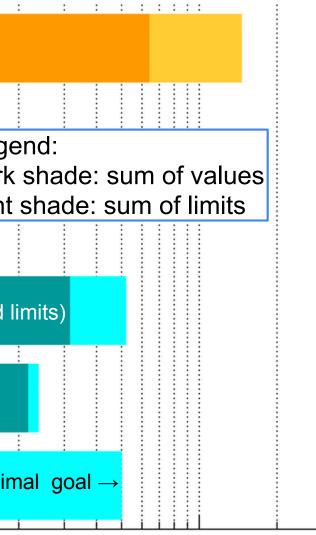
m₈₈[90 % c.i.]

CUPID physics reach - background budget

Data-driven background budget:

- CUORE, CUPID-0, CUPID-Mo background models
- measurements/limits for all materials

Path to reach CUPID requirements < 10⁻⁴ ckky

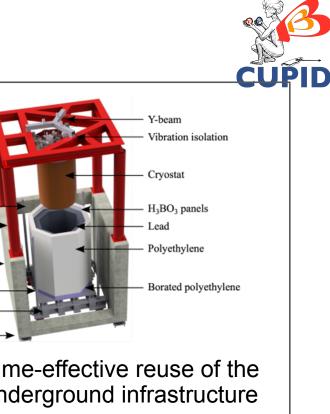

- crystal purity quality control (already demonstrated)
- cleaning of passive elements with CUORE protocols
- backgrounds from cryogenic infrastructure and shields well understood and could be improved Crystals U
- pile-up contribution minimized with current technology
- backgrounds lower than the conservative goal^{2νββ} pileup are achievable

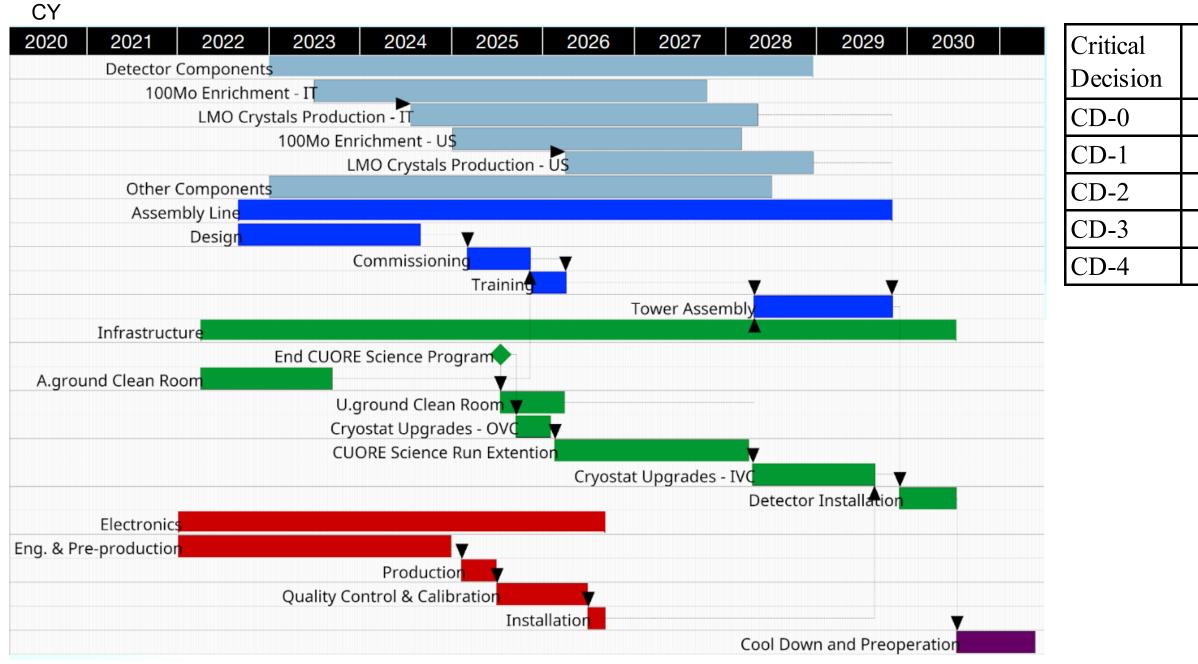
The path to achieve CUPID background goal is well understood and conservative

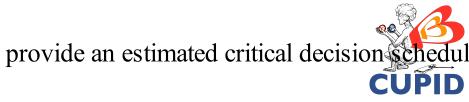
		:	:	: :	: : : : :	
Total						
		÷	1	: :		
Muons	←99% to $(simulation)$					Leg
		:	:	: :		dar
Shields	fr	om CUC	RE			ligh
Holders	from CUO	RE /CUC	RE-	0 (ur	ocertain	ty and
			-			
ls U+Th	from CUPI	D-Mo (u	ncer	tainty	y and lir	nits)
			:	: :		
b pileup	wide space	e for impi	rovei	ment	\longleftrightarrow	mini
		i	i	i i		-
	10-6				10	->

CUPID Preliminary

10⁻⁴ BI [counts/keV/kg/yr]


CUPID Collaboration & Project


CUPID Collaboration & Project



Main support plate

CUPID Schedule (technically limited)

Quarter and FY
Q1FY19
Q1FY24
Q1FY25
Q1FY25
Q4FY33

Projected costs and contributions

Country	M&S base	M&S Contingency	Total Equipment	Labor+Contingency	In-kind	2022-23 Commitments
	k\$	k\$	k\$	k\$	k\$	k\$
Italy	27,000	3,000	30,000	research	8,250	853
US	20,235	6,137	26,372	18,387	550	850
France	1,800		1,800	research	500	605
Total	49,035	9,137	58,172		9,300	2,308

Not included: underground and lab infrastructure, services (LNGS, LSC, NEXUS) Also not included: significant investments by Italy, US, France into pre-project R&D, pre-project demonstrators, and project preparation Funded separately: EU personnel costs, travel, and other research commitments

Integrated, fully-loaded schedule in Primavera P6 (LBNL). Mature cost estimates. Independent reviews and drill-downs in run-up to CD-1 planned.

Assumes project start in the US in FY24 and technically-limited schedule. Costs may continue to escalate with prolonged duration of the project.

US Pre-CD1 (OPC) Budget

Sum of Value	Column Labels Total_\$		
Row Labels	FY22	FY23	FY24
1.10	28,631.28	1,055,297.27	543,260.44
1.10.01.03 Project Management and Travel OPC		253,280.11	138,158.25
1.10.01.04 Project Controls OPC	28,631.28	304,585.62	181,301.03
1.10.01.06 Project Engineering and QA OPC		95,841.18	62,412.01
1.10.01.08 Risk Management OPC		81,470.06	53,694.32
1.10.02.01 Detector Components Management OPC		46,168.19	5,344.51
1.10.02.05 NTD Ge Thermistor OPC		43,830.29	
1.10.05.01 Data Readout Hardware & Software Management OPC		188,635.69	80,492.63
1.10.06.01 Background Control Management OPC		22,122.76	5,344.51
1.10.01.09 Senior Advisor OPC		19,363.37	16,513.19

Assumes CD-1 IPR in Q1FY24, ESAAB approval Q2FY24

Cost and Schedule Drivers, Risks

- Isotope procurement
- Crystal production
- Project start and profile: expect ~6% escalation per year

Mo-100 Isotope Vendors

- July 2021 pre-CDR and Italian pre-TDR:
 - **baseline** = purchase ¹⁰⁰Mo from JSC Isotope (Russia) through US vendor IsoFLEX USA
 - risk mitigation strategy = 100Mo from URENCO (Netherlands)
- **Developments since 2021**
 - At least four potential new vendors with headquarters in US, Europe, Asia
 - Interest in ramping up Mo-100 production driven by medical market (Mo-99/Tc-99m)
 - Maintain close contact and discussion of production capability, costs, schedule
 - NDAs signed
 - While Russian suppliers maintain the largest production capacity and relatively low costs, prospects are good for developing alternatives on the timescale of the US CD-2/3
 - Crucial to explore these alternatives to mitigate risks
 - Demonstrating viability of alternative vendors for CUPID would require project resources in FY24 and beyond

13

Li₂MoO₄ Crystals

- July 2021 pre-CDR and Italian pre-TDR:
 - **baseline** = purchase 4.5x4.5x4.5 cm³ LMO crystals from NIIC (Russia)
 - risk mitigation strategy = multiple vendors contacted: RMD and Gooch&Housego (US), Ningbo University and SICCAS (China)
- Significant progress in establishing alternative vendors
 - RMD (US): 4 crystals delivered to France for bolometric tests (currently operating at Canfranc)
 - SICCAS (China): 6 unenriched crystals validated in Hall A baseline tower test
 - Excellent prospects for validating alternative vendors by US CD-2/3

	crystal quality & bolometric performances	radiopurity (bulk & surfaces)	enriched material purification & r ecovery during production	mass production
NIIC				
SICCAS		in progress	in progress	
RMD		in progress	SBIR 2023	

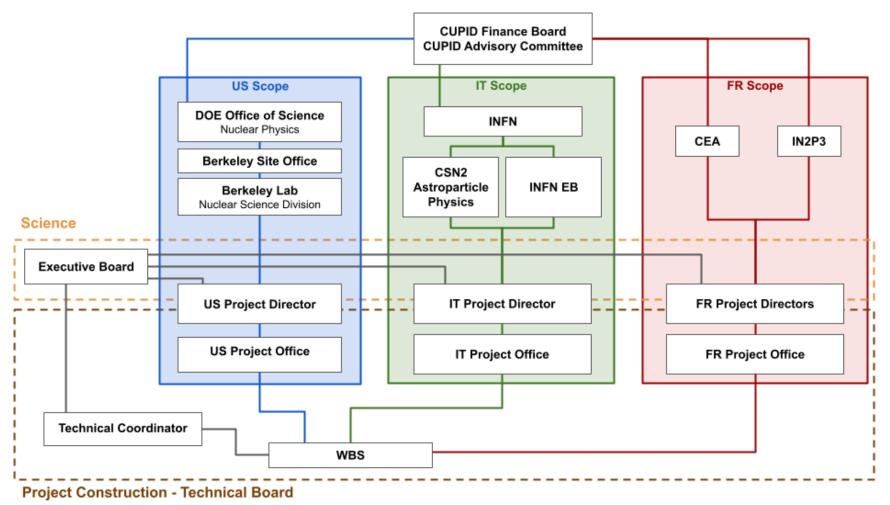
Status of the CUPID Project

- We appreciate continuing support for the CUPID project from the funding agencies
- Italy:
 - INFN Astroparticle committee committed to the CUPID budget outside of the isotope+crystals. Funds allocated for CY22-23.
 - INFN Executive Committee provisionally approved isotope+crystal budget.
- France:
 - CEA and IN2P3 have committed to their scope.
- US:
 - Preparations for CD-1 OPA review in Q1FY24. Committed OPC funding. Enthusiastic support from the lead lab (LBNL).

CUPID Experiment - Technical

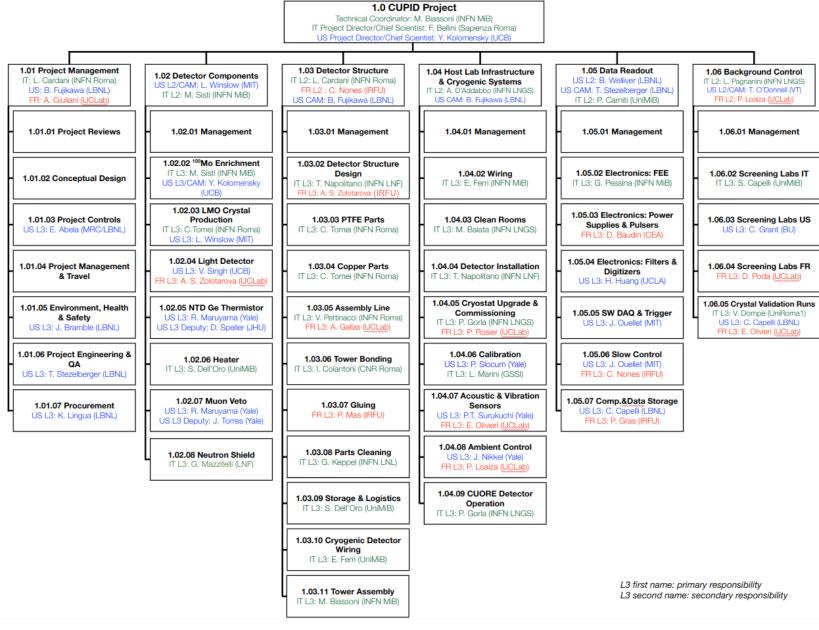
Matteo Biassoni for the CUPID collaboration

Second International Summit on the Future of Double Beta Decay


SNOLAB 27-28 April 2023

CUPID: integrated project organization

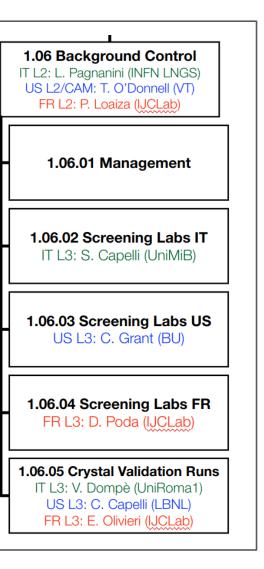
- Project mainly driven by Italy, US, and France efforts
- Collaboration structure and agreements reflect (expected) resources and financial commitment of each country
- Scope is clearly divided among countries with the corresponding line responsibility in the project management
- Each country manages its own contingency and risks
- Schedule is managed jointly through Primavera P6 (at LBNL)
- Coordination through Technical Coordination Board, Executive Board, and oversight committees



CUPID project organization

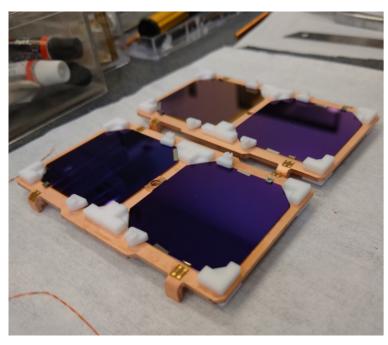
- All construction activities up to detector commissioning are organized in the project WBS and coordinated by the **Technical Coordination Board**
- The TCB is responsible for the construction of the experiment according to specific parameters defined for each component or subsystem

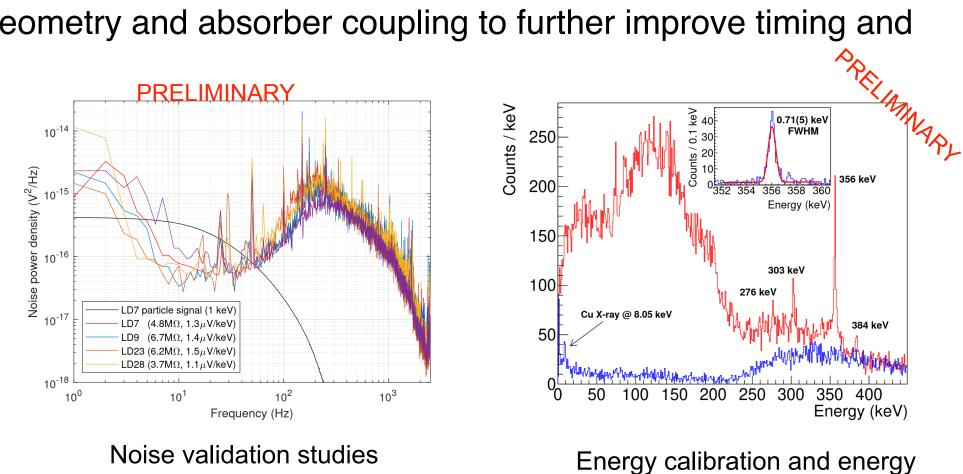
Parameter	Value	Parameter	Value
Crystal	Li ₂ 100MoO ₄	LD light absorption	>90%
Size	45×45×45 mm³	LD energy resolution	<100 eV RMS
Number of crystals	1596	LD pileup resolution	<0.17 ms
Number of light detectors	1710	LD risetime*resolution	<1 msec*80 eV-FWHM
Detector mass	450 kg	Muon detector efficiency	>90%
Enrichment	95%	Crystal radiopurity	CUPID-Mo
¹⁰⁰ Mo mass	240 kg	Surface radiopurity	CUORE
Energy resolution	5 keV	Cu, PTFE radiopurity	CUORE
Light yield (β)	0.3 keV/MeV	DAQ bandwidth, storage	~10×CUORE
Background index	10-4 counts/(kg*keV*year)	Calibration system	External (CUORE)
Selection Efficiency	90%	Cryogenics	CUORE



CUPID project organization

- Activity already ongoing across all the WBS in preparation for construction
- Focus on most critical items


1.02.02 ¹⁰⁰ Mo Enrichment IT L3: M. Sisti (INFN MiB) US L3/CAM: Y. Kolomensky (UCB) 1.02.03 LMO Crystal Production IT L3: C.Tomei (INFN Roma) US L3: L. Winslow (MIT)	More details in this part of the talk	1.02.04 Light Detector US L3: V. Singh (UCB) FR L3: A. S. Zolotarova (IRFU) 1.03.02 Detector Structure Design IT L3: T. Napolitano (INFN LNF) FR L3: A. S. Zolotarova (IRFU)
Covered by Yury's slides		1.02.07 Muon VetoUS L3: R. Maruyama (Yale)US L3 Deputy: J. Torres (Yale)1.02.08 Neutron ShieldIT L3: G. Mazzitelli (LNF)



Detector Components - LDs

- NTD thermistors are a robust technology from predecessors, both for crystals and light • detectors readout
- current baseline choice for light detectors: Ge wafers with AR coating and NTD readout
 - detector performance extensively studied in 2022
 - optimization of size, geometry and absorber coupling to further improve timing and S/N in 2023

Assembled light detectors for test in Pulse Tube cryostat

2nd International Summit on the Future of Double Beta Decay, SNOLab, 27-28 Apr 2023

arXiv:2304.04674

resolution within specs

Detector Components - LDs

Situation assessment:

- Technology of current baseline has **little engineering margin** to guarantee the requirement performance for all detectors
- Unlikely to improve background beyond the $\sim 5 \times 10^{-5}$ c/keV/kg/y

Adaptive strategy

Exploit delays in project startup to select an alternative with better performance and larger risk mitigation margin

Neganov-Trofimov-Luke (NTL) amplification

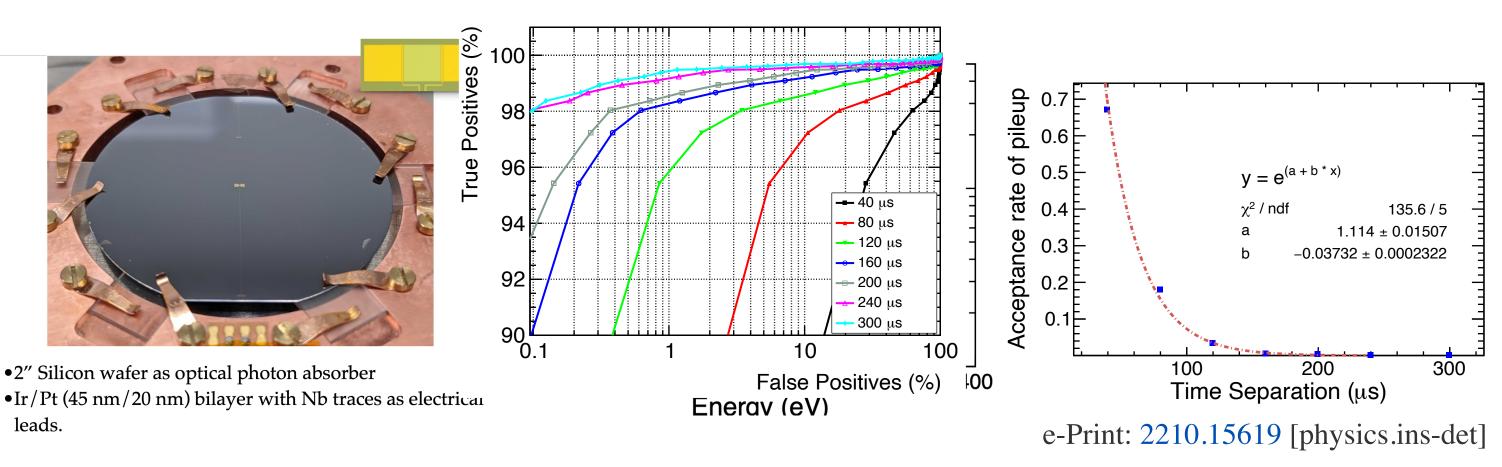
- add an electrode on the Ge wafer (~x10 SNR)
- signal read-out still NTD-based

Transition Edge Sensors

- NTD replaced by TES (~x10 faster RT)
- new read-out system: SQUID based with multiplexing: spinoff from CMB

Detector Components - LDs with NTL amplification

- NTL technology already exploited by other experiments (EDELWEISS, SuperCDMS, Ricochet) - adaptation to CUPID geometry ongoing
- Same readout technology but add electrodes to apply electric field
- Major improvement in SNR with signal amplification
- Minor impact on other subsystems, no changes in DAQ and analysis


Copper holder

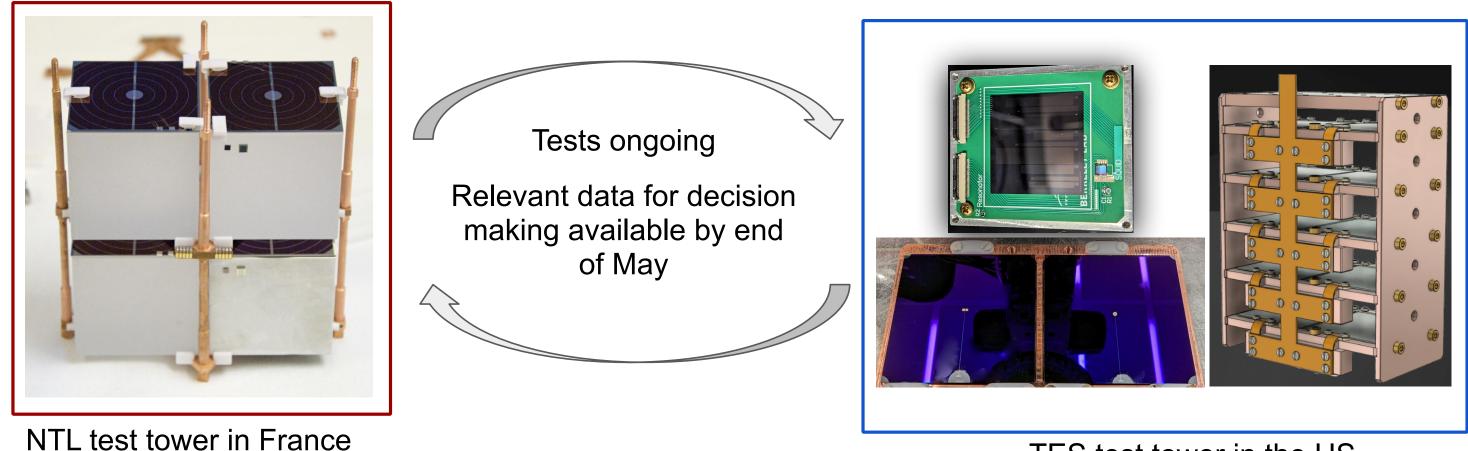
Detector Compor

- Technology already $exp \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 \end{bmatrix}$ micro-calorimeters, CME $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 20 & 40 & 60 & 80 & 100 \\ d_M (arb.) \end{pmatrix}$
- Off-project R&D by the Curiu conaporators
- Significant improvement both in SNR and timing
- Relevant impact on several subsystems, including electronics and DAQ

---- 160 μs

----- 300 μs

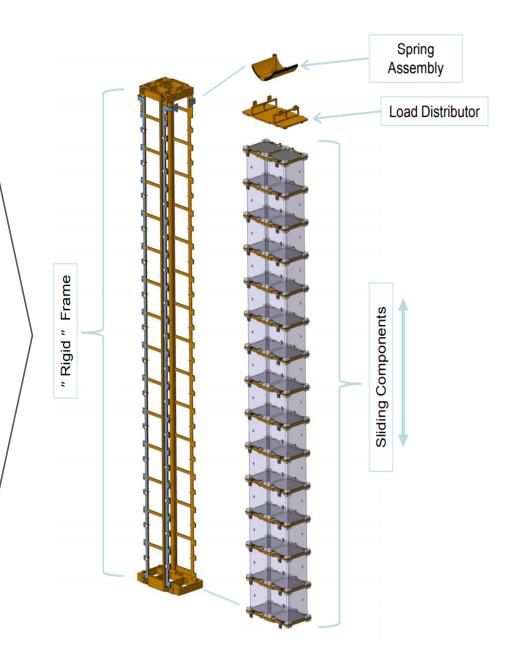
200 μs 240 μs



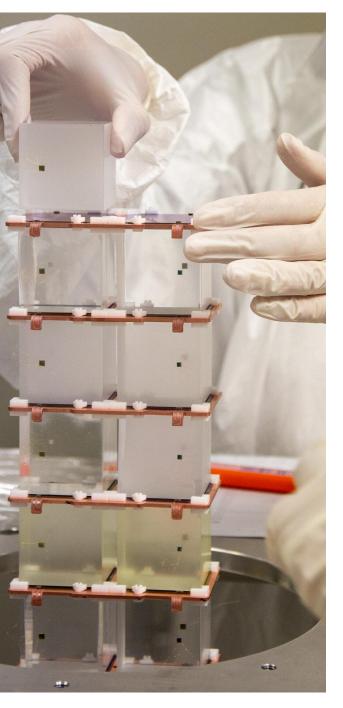
SST, SuperCDMS, x-ray

Detector Components - LDs

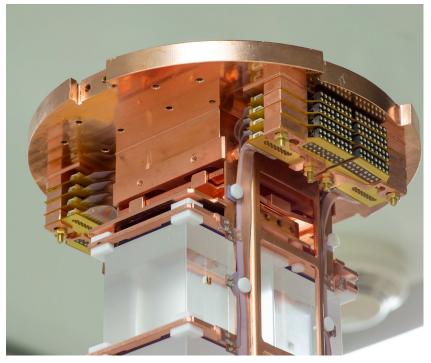
- New baseline selection through formal baseline change procedure
- Comparative large-scale test:
 - 10 detectors for each technology \bigcirc
 - operated in a mechanical and thermal environment similar to CUPID design \bigcirc
 - same calibration and performance assessment procedures Ο

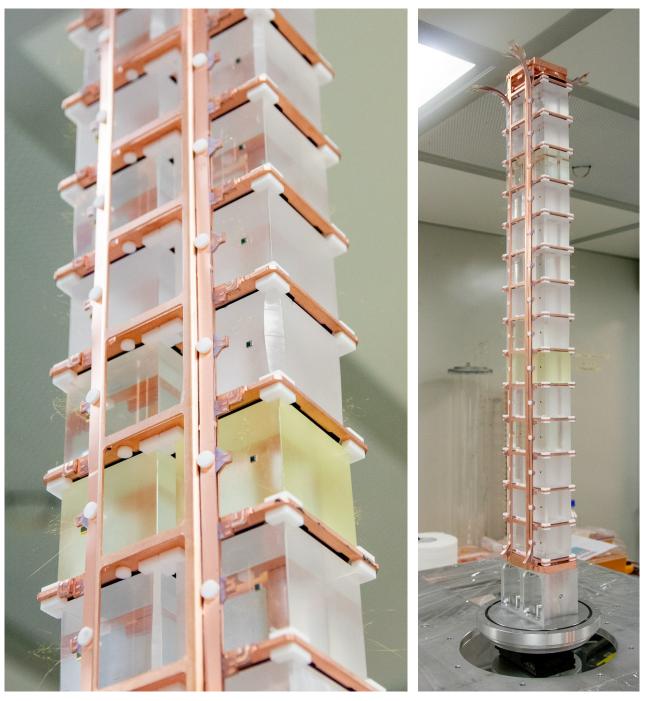


TES test tower in the US


Detector Structure - from CUORE to CUPID

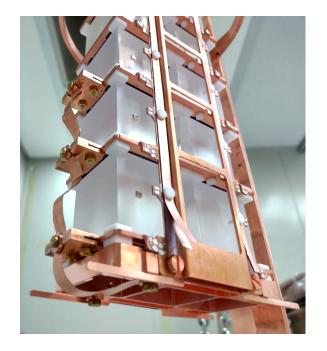
- "gravity assisted" no vertical constraint, stack of crystals and light detectors sitting one on top of the other (vs. rigid, fixed height structure in CUORE)
- tunable spring at the top for vibration damping and extra rigidity during transport
- easy and safe assembly no screws, self-aligning structure
- loose tolerances cost effective, easy cleaning


Detector Structure - BDPT


Validation of the detector design: **BDPT (Baseline Design Prototype Tower)**

- preliminary proof-of-principle on small scale
 (2 floors) successfully deployed
- validation of assembly procedures completed on full scale (14 floors)

10.1140/epjc/s10052-022-10720-3



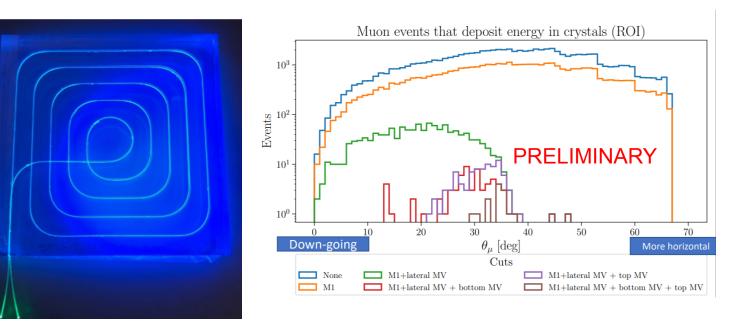
Detector Structure - BDPT

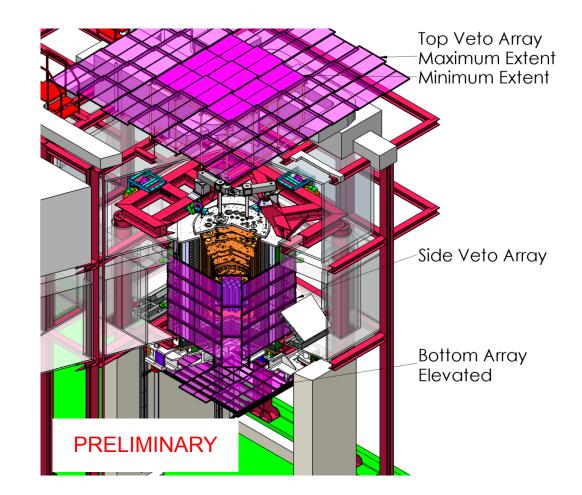
Validation of the detector design: **BDPT (Baseline Design Prototype Tower)**

- program of validation of thermal and vibrational characteristics ongoing
- fast iterative process (build → run → analyze → modify) for design optimization ongoing

Run 1 (spring loaded) July - Aug 22 \rightarrow assess thermalization, assess LMO performance, study LD performance and excess noise w.r.t previous setups **Run 2 (spring unloaded) Sep - Oct 22** \rightarrow test effect of the spring, study floor-to-floor noise correlation **Run 3 (loose omegas, bottom floors thermalization) ongoing** \rightarrow test

hypothesis on LD excess noise origin

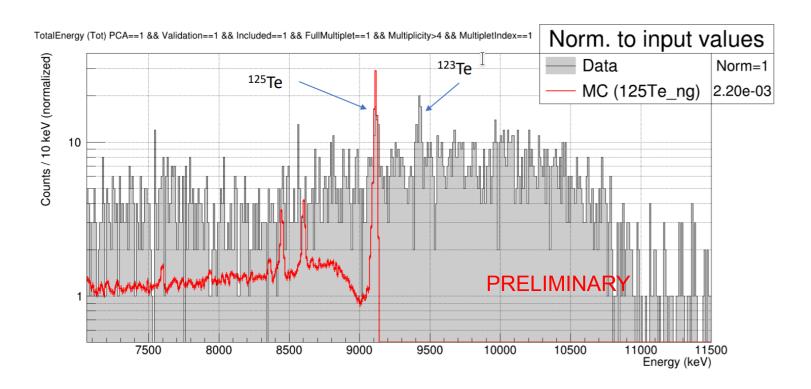




Detector Components - Muon Veto & Neutron Shield

- Muons and neutrons induced background is negligible in CUORE but expected to be relevant in CUPID → increase in shielding and tagging required
- Both contributions are measured in CUORE:
 - high multiplicity events from muon tracks and showers to constraint contribution in M1
 - high energy gamma cascades from neutron capture

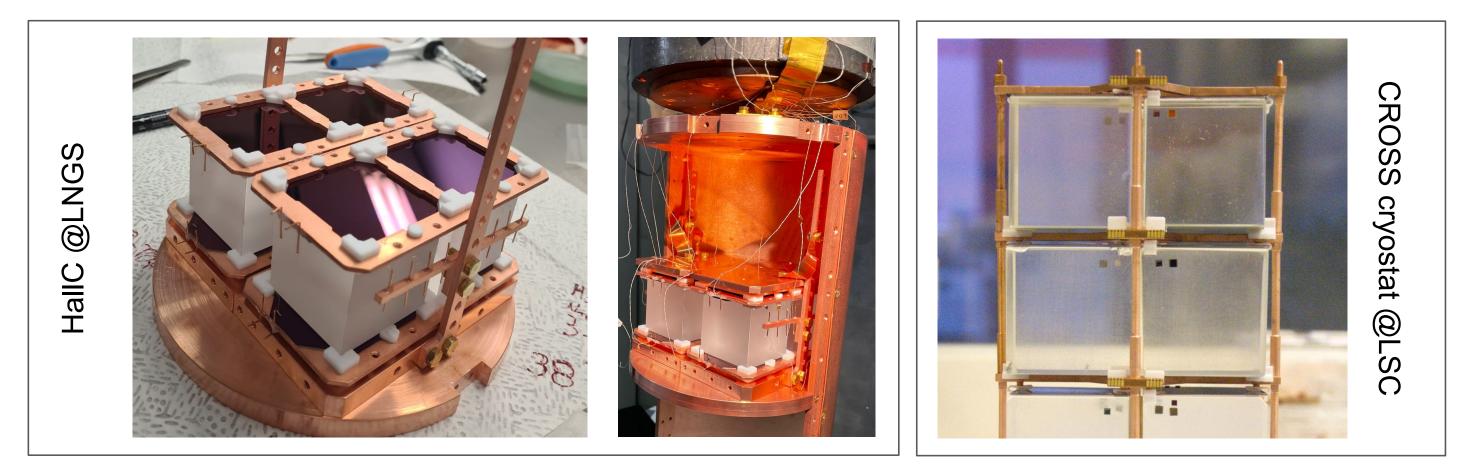
Muon veto scintillating tiles to intercept >90% muons \rightarrow >x10 reduction of ROI background when combined with detector granularity



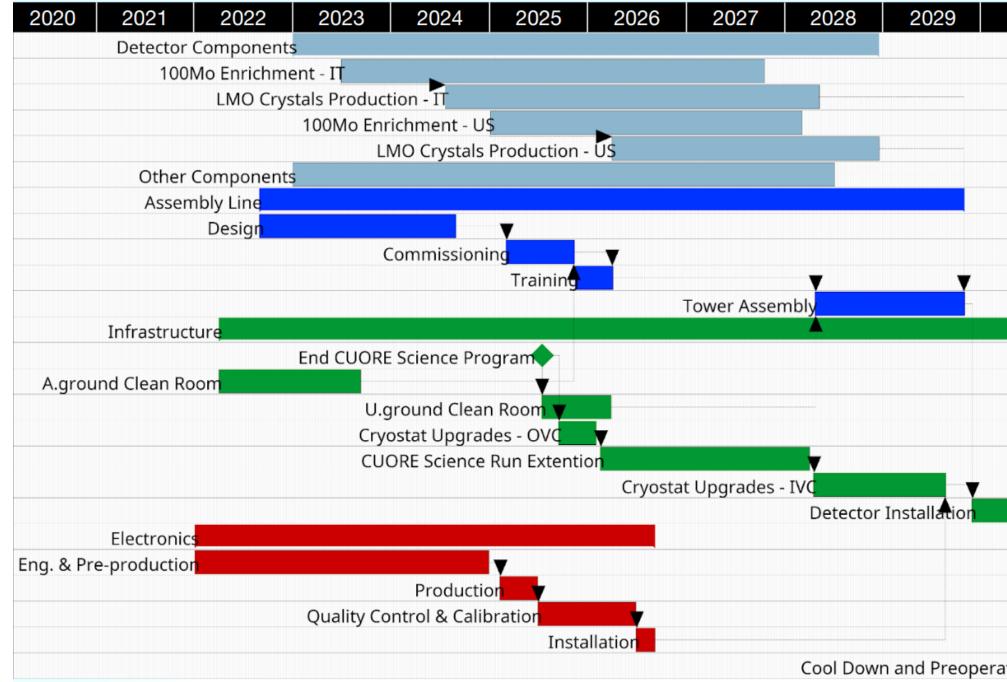
Detector Components - Muon Veto & Neutron Shield

- **Muons** and **neutrons** induced background is negligible in CUORE but expected to be relevant in CUPID → increase in shielding and tagging required
- Both contributions are measured in CUORE: ullet
 - high multiplicity events from muon tracks and showers to constrain $0\nu\beta\beta$ backgrounds
 - high energy gamma cascades from neutron capture

Improve tightness and thickness of existing neutron shield with water tanks surrounding the muon veto layer


Background Control - Screening Labs

- High sensitivity radio-purity screening infrastructures available in Italy, US and ۲ France:
 - HPGe
 - **ICP-MS**
 - NAA
 - Surface barrier Si alpha counters
 - Cryogenic infrastructures for bolometric measurements (CCVR, large surface cryogenic Si detectors)
- Main screening activities: \bullet
 - MoO₃, Li₂CO₃ crystal growth precursors: certify vendors
 - materials used by CUORE: improve limits and/or re-certify vendors (e.g. CuPEN for cryogenic wiring, — Roman lead)


Background Control - CCVR

- Bolometric test of crystals operated as detectors in two cryogenic facilities
- Most sensitive tool to certify vendors ٠
- Certify compliance of precursors radio-purity and crystal growth process with our specs ٠
- Typically 4 crystals of each type/producer assembled in a 2x2 array with 8 light detectors for light readout and particle discrimination
- Run-time ~ 4 weeks to reach required sensitivity on U, Th and ⁴⁰K bulk and surface contamination

Timeline

2030	
	_
	-
-	
V	
ation	

Conclusions

- CUPID will explore inverted ordering (T_{1/2} > 10²⁷ years at 3 σ , m_{BB} ~ 12-20 meV) •
- Builds on existing and well-functioning international collaborations and \bullet partnerships
- Collaboration has operational experience at LNGS for ton-scale, bolometric experiment and utilizes existing infrastructure (CUORE cryostat, experimental site).
- CUPID is timely, highly leveraged, and cost-effective; an exceptional opportunity \bullet
- Crystallization and enrichment at large scale are possible
- Limited technology verification remaining for CUPID baseline. \bullet
- **Data-driven background mode**l reaches baseline goal of B.I. ~ 10⁻⁴ counts/(keV kg y) \bullet

CUPID is proceeding towards construction phase. **Complements international suite of ton-scale experiments in a** world-wide program

Thank you !

2nd International Summit on the Future of Double Beta Decay, SNOLab, 27-28 Apr 2023

