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Double Beta Decay Isotope Candidates



KamLAND-Zen 400 KamLAND-Zen 800

Now, 745kg deployed380kg deployed

KamLAND2-Zen

1 ton planned (scalable)

Mirror
HQE-PMT     
new LS
full volume effective
w/ scintillation film

x5
p.e.

Further improvements going on;
better neutron tagging

machine learning (ML) for long-lived tagging
ML for beta/gamma discrimination
muon-bundle tracking, and so on

Further technologies being developed
imaging sensor (1/10 reduction of long-lived BG)
high-p xenon deployment (2 times more xenon)

For more xenon (possible source)
Extraction from nuclear spent fuel is considered.
More than 100 ton seems to be possible at 44% 
concentration of Xe-136 without centrifugal 
enrichment.

(target sensitivity)

(corresponding mass limit)PRL117, 082503 (2016) PRL130, 051801 (2023)

3σ discovery potential is not studied, but ~1x1027 yr

?
It will not be a good choice for 
the single purpose, but this is 

multi-purpose detector.

w/ more than 20 ton xenon
imaging sensor
high-p xenon 

(guesstimated sensitivity)

Then ?

44% 8.9%



Results from Kam-Zen 800 (arXiv 2203.02139) March 2022 

T1/2 > 2.3 x 1026 yr (Combined Kam-Zen 400 and 800)
<Mββ> is < 36 – 156 meV



Future of PandaX: PandaX-xT
Now operating PandaX-4T (natural xenon)

Step-wise upgrade in the same experimental 
hall based on possessed xenon towards 43-
ton (active), 47-ton (total) natural xenon

7

• Multiple physics topics (DM, 0vDBD, 
solar v, etc): no loss game

• Combines the advantage of CJPL, 
experience/team buildup of PandaX, 
and xenon resource in China

• Step-wise upgrade leverages 
technological challenges, and 
maintains continuous scientific output

• Versatile configuration with isotopic-
separated 136Xe in the next future



• NEXT uses enriched 136Xe gas at high pressure 
and provides tracks of individual electrons. 

• There is also a program of extracting Ba+

through fluorescence in organic molecules 
aiming at NEXT-BOLD. 

At CanFranc Laboratory



Barium Tagging for NEXT
• NEXT aims to capture and image Ba2+ ions produced 

in double beta decay of 136Xe.

• Single molecule fluorescence imaging (SMFI) employs 
molecular sensors undergoing photo-physical 
changes upon Ba2+ chelation.

• Signature of binding may be either: 
• off->on: Optically quiet molecule becomes bright
• Bi-color: Fluorescent molecule changes emission spectrum

• Combined with 1% FWHM energy resolution 
available in Xe gas, Ba2+ tagging could enable a 
background free experiment at multi-ton scale.
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Bi-color

References:
J.Phys.Conf.Ser. 650 (2015) 1, 012002; JINST 11 (2016) 12, P12011; Phys. Rev. A 97, 062509 (2018); 
Phys. Rev. Lett. 120 (2018) 13, 132504; Sci.Rep. 9 (2019) 1, 15097; Nature 583 (2020) 7814, 48–54; 
ACS Sens. (2021) 6, 1, 192–202; NIMA. 1039, 167000 (2022); arXiv:2303.01522



Dynamics of Ba2+ binding
• Recent work has studied 

mechanisms of ion binding in 
NEXT barium sensing 
molecules.

• Barium perchlorate evaporated 
in vacuum onto sub-monolayer 
of crown ether chemosensors.

• Molecules chemically react with 
the Ba[ClO4]2 to capture the 
Ba2+ into the receptor.

• Combination of STM, XPS and 
STS illuminates changes in 
electronic configuration, 
studying mechanism of the 
reaction at single molecule 
level.

• X-ray Photoelectron
Spectroscopy (XPS)

Au (111)

1. STM is used to 
identify chemosensors

2. XPS reveals Ba-tagging 
chemical evidence.

𝑷𝑷 < 𝟏𝟏𝟏𝟏−𝟗𝟗 mbar • Scanning
Tunneling
Microscopy (STM)

Chemical & Structural characterization

0.3n
m

3. STS addresses chelation-
related M.O changes.

3.17 eV

LUMO

3.63 eV

HOMO FBI

FBI-Ba2+

Nat.Comm.13, 

7741 2023, 



High pressure SMFI
• Novel fluorescence microscopes developed 

for operation over large surfaces in high 
pressure gases.

• Single molecule resolution achieved in 
high pressure xenon gas over 1x1 mm2, 
working at at the Abbe diffraction limit.

• Single Ba2+ + chemosensor complexes 
imaged in Xe gas  first demonstration 
of single Ba2+ imaging in a working TPC 
medium.

Paper in prep.
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Sensitivity to 0𝝂𝝂ββ 

Xenon acquisition supports staged approach with

~3m diameter

~2
m

early science phase
40t TPC, < 5yr operation, 
shallow TPC design

main science phase
(60t TPC, > 10yr operation, 
optimized 1:1 aspect ratio)

+ 80t option in tall TPC, 
depending on Xe market

TPC with large natXe target for direct dark matter search, 
offers position reconstruction, calorimetry and low background

⇒ High sensitivity to 0νββ-decay

Projection bands cover a baseline scenario (lower bounds) based on state-of-the-art DM LXe-TPC 
performance to more progressive assumptions on backgrounds (upper bounds). 



NLDBD with a Large Xe-loaded LArTPC

13

90% CL sensitivity
t1/2 ∼ 1.0×1029 y

3σ discovery sensitivity:
t1/2 ∼ 4.8×1028 y, mββ ∼ 3.6 meV

• Concept: Doping a DUNE-like underground detector with 
∼2% 136Xe for normal ordering NLDBD sensitivity
• Recent work demonstrating MeV-scale signals in large 

LArTPCs: solar/SNe ν1, BSM milli-charged particles2, 
radioactive decays3,4, DM ν5, etc.

• Discovery sensitivity t1/2 ∼ 4.8×1028 years (3σ)
• Photosensitive dopants to convert UV scintillation light into 

ionization charge, improving energy resolution
• R&D challenges include large quantities of Xe & 

underground Ar, dopant optimization
• Simulation & bench-top studies are underway to test 

dopants and quantify the achievable energy resolution for 
MeV-scale electron signals:

A. Mastbaum, F. Psihas and J. Zennamo, 
Phys. Rev. D 106 092002 (2022) 

1PRL 123, 131803 (2019); 2PRL 124, 131801 (2020); 3MICROBOONE-NOTE-1050-PUB; 4JINST 17, P11022 (2022); 5arxiv:2210.04920

Fermilab TPC test stand development
Resolution impact of 

photosensitive dopants

Figure: J. Zennamo

v
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New Technology Needed to Obtain ~ktonne of Xenon-136 

Challenge: Current xenon production worldwide is not 
sufficient, too expensive and cannot scale to ktonne

Solution: Develop new technology for Xe separation from air 
• Adsorption-based separation technology (Thermal)
• Metal-Organic-Frameworks (MOFs) materials can be 

engineered with desired characteristics
• Among these, a promising candidate SBMOF-1 has been 

identified
• Ongoing R&D focuses on:

1. Scale up synthesis of SBMOF-1
2. Optimized structured adsorbent beds  to maximize 

the mass transfer to  SBMOF-1 from the air
3. Energy efficient process cycle

• Engagement from industry partners
• Funding-limited (slow) effort to date, but made 

significant progress on the 3 objectives

200x scale up of 
SBMOF-1
synthesis

SBMOF-1 structured adsorbent bed 
prototype (LLNL)

Xenon selectivity vs adsorption coefficient for 
different materials 

A. Avasthi et al., “Kiloton-scale xenon detectors for neutrinoless double beta 
decay and other new physics searches,” Phys. Rev. D 104, 112007 (2021), 
arXiv:2110.01537

M. Heffner LLNL
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Increase to 3% planned for future



SNO+
5 years at 0.5%

Te Loading:
1300 kg 130Te

mββ < 30-130 meV
(99.7% CL)

Phase II 
3.0% 130Te

mββ < 17-80 meV

Presently running with liquid scintillator for 
other physics and evaluating backgrounds. Te 
projected for early 2025.



• Relatively abundant & inexpensive (~$80/kg)
• The high natural abundance of 130Te (~34%) means 

that enrichment (and its complications) is not 
necessary

• LS provide a simple, scalable, low background 
technology

• Current cost of LS loading is less than $2M per 
tonne of isotope

Practical, stable Te loading established

Highly effective Te purification established
Te Organic Compounds (34% 130Te)

NIM 795 (2015) 132

NIM A 1051 (2023) 168204

• Long term optical stability at higher loading levels
• Further light level improvements
• Improvements to purification and loading
• SNO+ as a technology demonstrator
• Practical designs for larger scale instruments

Ongoing Studies Include:

S. Biller et al: Sensitivity projections are 
possible based on realistic background 
models and reasonably modest 
extrapolations…



Straw-man for sensitivity estimates: modular deployment of 6kT
(MANTIS: Modular Approach for Nββ with Tellurium In Scintillator)

• Cost of Te loading per balloon: 
~$15M 

• Overall facility is JUNO-scale, 
with similar PMT coverage

• Each group of 3 balloons 
achieves a half-life sensitivity of 
~1.1E28 yrs (90% CI) after 10 
yrs running

• Staged balloon deployment over 
10yrs plus an additional 10yrs 
running would yield a half-life 
sensitivity of ~4E28 yrs  @90% 
CI (< 4meV for typical NME) or 
2.2E28 @ 3σ : mββ < 5meV for 
typical NME)

• Overall cost: ~$600M (~half for 
facility & ~half for Te loading)

• The facility would also provide a 
~30kT scintillator/Cherenkov 
detector for a wide range of other 
physics



Part of DUNE Phase II Program



Te or 
Xe



• 100 kg of 100Mo @ Yemilab for 5 years.
• Li2

100MoO4 crystals in 5 and 6 cm cylinder. (~ 400 crystals).
• Both phonons and photons are measured by MMC+SQUID 

sensors. 
• DR inside shielding of 25cm Pb + 70cm of PE and water.
• Muon veto detectors installed. 
• 90 crystal run begins in 2023 and full scale (100 kg of 100Mo) run 

will begin early of 2025.

AMoRE-II experiment

Water Tank : 70 cm 
thick, 56 ton

PE : 25 cm thickness, 6 
ton

Boric-
acid
(1 cm 

thick)

Pb (25 cm 
thick, 
58.6 ton)

PE (70 cm 
thick, 
27.5 ton) 

PSMD
(160×30×3 
cm3)

with SiPM

Dilution Refrigerator (DR)

Installed muon detectors

Energy resolution of 
2.614 MeV gamma

𝜇𝜇

𝛼𝛼Detector tested at ground.

Recent progress in detector R&D

JINST 17, p07034(2022)



‣10-ton 82Se active target with exquisite spatial resolution for signal identification.
‣Large-area hybrid CMOS imagers with ~5-mm thick layers of amorphous 82Se.
‣Leverages existing industrial capabilities for CMOS fabrication and aSe deposition for scalability.
‣Neutrinoless 𝛽𝛽𝛽𝛽 decay sensitivity of m𝛽𝛽𝛽𝛽 = 4 to 8 meV (3𝜎𝜎) in 100-ton year.
‣Currently in R&D stage with small pixelated devices.

Demonstration of ~MeV electron tracks!

Selena Snowmass White Paper: arXiv:2203.08779

A. Chavarria

https://arxiv.org/abs/2203.08779


Selena 𝛽𝛽𝛽𝛽

Single e

Background rate <6 x 10-5 /keV/ton/year!

3𝜎𝜎 discovery for T1/2 = 2 x 1028 y in 82Se

Double e

1% RMS res. Q𝛽𝛽𝛽𝛽 = 3 MeV

‣ By identification of Bragg peaks, can 
achieve 10-3 suppression of single-electron 
background, with 50% signal acceptance.

‣ Bulk backgrounds suppressed by α/β 
particle ID, spatial correlations.

Simulation:
100 ton-year simulation

Or study 0𝜈𝜈𝛽𝛽𝛽𝛽 mechanism after ton-scale 
discovery!
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SUMMARY
• Lots of potential for extensions beyond “Tonne Scale” experiments

• R&D focussed on
• Background reduction

• Efficiency for detection of light, charge, including light transmission 

• Loading of isotopes

• Cheaper, more extensive production of elements

• Sources and cost for isotope separation.

• Better understanding of Nuclear Matrix Elements and quenching

• Neutrinos must be Majorana to define mass, so detection sensitivity is the 
important quantity.

• Next Generation beyond Tonne Scale could get below Inverted Hierarchy
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