

How sustainable is accelerator-based science?

• Recovery beam power

From grid to accelerator experiment:

- RF power consumption
- Cryo-plant power consumption (Carnot) power
- Power supplies, cooling water, air conditioning

How to improve the remaining power consumption

- RF power ~ Δω² detuning and beam-loading transients
 → control microphonics
 → operate at high Q_L
- Cryogenic wall plug power $\sim (300K - T)/T$ and $\sim 1/Q_0$ by dissipated heat

→ operate at higher T and improved SRF surface resistance:

- Detuning compensation by <u>ferro-electric fast reactive tuner</u>
- Optimal cavity field control by AI/ML methods → jitter control
- Allow a test location with beam for higher T_c material coated cavity
- Potential partners: CERN, IJCLab, DESY, MESA, STFC, JLab(ext), MINERVA (MYRRHA), ESS, Lancaster

The problem and cure

Single pass ERL case, recovery variations mismatch (1.5 deg.)

Single pass Linac case, ERL 100% recovery, 99.9% recovery 100 mA

The higher the loaded Q, the lower the power consumption given an improved detuning control!

In ERLs, there is also an uncertainty by variations of the recovered beam

 \rightarrow Control tuning, beam current, arrival time, field level and loaded Q!

SRF cavities at high QL become a complex system in interplay with beam \rightarrow AI/ML assistance helpful, machine protection becomes an issue at high currents!

TA#1: Energy savings from RF power→LLRF(+SSA)

	Task 1 High loaded Q CW operation							Task 2 Mechanical tuner + piezo based detuning control						
Total	Achievement	Personnel 1.25/1.25	Invest 60/40	Mi n	Nom	Amb	Total	Achievement	Personnel 0.75/0.75	Invest 60/40	Mi n	Nom	Amb	
Year 1	Assessment of existing field controllers in CW	0.75		x	х	x	Year 1	Assessment of existing resonance controller in CW	0.5		x	Х	x	
Year 2	Review+develop new techniques to characterize microphonics	0.5		x	x	x								
Year 3	Long pulse with high E _{acc} , high Q _L , Long pulse with optimum tuning	0.75			x	x	Year 2	Develop Improved resonance controller	0.5			х	x	
							Year 3	Test improved detuning controller schemes	0.25			х	x	
Year 4	High loaded Q CW with piezo+FRT	0.5				x	Year 4	Test improved controller with beam	0.25			x	x	

Understand+Improve CW/long pulse LLRF control

Improve classic mech. tuning control

A. Neumann for TA#1

TA#1: Energy savings from RF power→LLRF(+SSA)

	Task 3 FE Fast Reactive tuner based detuning control (+beam transient)							Task 4 Integrate into ML/AI/digital twin environment						
Total	Achievement	Personnel 0.75/0.75	Invest 40/40	Mi n	Nom	Amb	Total	Achievement	Personnel 1.5/1.5	Invest 50/100	Mi n	Nom	Amb	
Year 1	FRT integration studies	0.5		X	x	x	Year 1	Assessment of ML/AI techniques for LLRF, ML based methods for diagnostics in LLRF (Quench	1		×	x	X	
Year 2	Firm+software integration, first single cell test	0.5		x	х	x								
Year 3	Improve controller scheme, firmware development	0.4			x	x	Year 2	Cavity simulator based on digital twin	1			х	х	
							Year 3	Test in HTS	0.75			x	x	
Year 4	Full horizontal multi-cell test	0.1			х	x								
							Year 4	Test with beam (e.g.	0.25				x	
	FE-FF	RT LLRF cont	rol		SEALab injector)	l methods t	o improve p	orfo	rman	20				
A NI	C				/\\/ IVI	L methods to			пап					

A. Neumann for TA#1

The sum

- TA#1 LLRF requires more personnel than actual invest as cavity physics, control theory, AI/ML expertise, firmware and software programming need to be tackled
- The laboratories can provide matching by part-time involved personnel: RF + LLRF eng./scientists, personnel to run cavity/beam tests, support programming
- The laboratories can also provide matching funds by providing existing LLRF equipment of the state of the art level
- TA#1 has a strong commitment towards the FE-FRT part of this TA, but also needs to demonstrate the
 operation with FRT and classic tuner methods at high Q_L

In total we estimate: 8.5 FTEy for this part, from which half is matching by the corresponding institutes (here we already underestimate some testing effort)

- 3.75 would be an absolute minimum program, 7.75 nominal, 8.5 ambitious
- → 425 k€ for ambitious version in personnel

For the invest from Horizon, we ask about 250 k€, where 180 k€ are matching funds. If real operation cost are assumed, the matching funds are much higher. Here, only the minimum program would ask for zero invest from Horizon.

Labs involved: DESY, HZB, CERN (FRT), IJCLab, MYRRHA, Lancaster, ESS (tbc)

Thanks to J. Branlard and H. Schlarb from DESY for ideas, input and discussions!