Neutrinos at the LHC

- Studies of the potential for observing neutrinos at the LHC date back to the 90's.
 - Large flux in forward region.
 - Very high neutrino energy ($\sigma_\nu \propto E_\nu$).
 ⇒ A small-scale LHC experiment can observe neutrinos of all three types.
 - Highest energy human-made neutrinos!
- Two neutrino detectors in operation at LHC's IP1 for Run 3: SND@LHC and FASERν

Physics potential of an experiment using LHC neutrinos

Further studies on the physics potential of an experiment using LHC neutrinos
Detector location

Strategy:
- Existing site (avoid major civil engineering).
- Enough material to shield against collision debris.
- Use LHC magnets to deflect charged particles.

TI-18 location:
- Old LEP positron transfer line tunnel.
- 480 m away from IP1.
- 100 m of rock between detector and IP1.
- Downstream of dipole magnets.

Off-axis position:
- Rapidity range: $7.2 < \eta < 8.4$
- Enhances ν_e and ν_τ flux from charm parents.
- Complementarity with FASERν, located on-axis in symmetric tunnel (TI-12).
SND@LHC Physics
Expected neutrino event rates

- Model neutrino production in pp collisions with **DPMJET**.
- Propagation to SND@LHC with **FLUKA** model of the LHC.
- **GENIE** neutrino interaction model.
- Neutrino interactions in SND@LHC / 250 fb\(^{-1}\):
 - \(\nu^+ + \bar{\nu}^\mu\) charged-current: 1270
 - \(\nu^e + \bar{\nu}^e\) charged-current: 390
 - \(\nu^\tau + \bar{\nu}^\tau\) charged-current: 30

<table>
<thead>
<tr>
<th>Flavour</th>
<th>Neutrinos in acceptance (E) [GeV]</th>
<th>Yield</th>
<th>CC neutrino interactions (E) [GeV]</th>
<th>Yield</th>
<th>NC neutrino interactions (E) [GeV]</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu^\mu)</td>
<td>130</td>
<td>3.0 \times 10^{12}</td>
<td>452</td>
<td>910</td>
<td>480</td>
<td>270</td>
</tr>
<tr>
<td>(\bar{\nu}^\mu)</td>
<td>133</td>
<td>2.6 \times 10^{12}</td>
<td>485</td>
<td>360</td>
<td>480</td>
<td>140</td>
</tr>
<tr>
<td>(\nu^e)</td>
<td>339</td>
<td>3.4 \times 10^{11}</td>
<td>760</td>
<td>250</td>
<td>720</td>
<td>80</td>
</tr>
<tr>
<td>(\bar{\nu}^e)</td>
<td>363</td>
<td>3.8 \times 10^{11}</td>
<td>680</td>
<td>140</td>
<td>720</td>
<td>50</td>
</tr>
<tr>
<td>(\nu^\tau)</td>
<td>415</td>
<td>2.4 \times 10^{10}</td>
<td>740</td>
<td>20</td>
<td>740</td>
<td>10</td>
</tr>
<tr>
<td>(\bar{\nu}^\tau)</td>
<td>380</td>
<td>2.7 \times 10^{10}</td>
<td>740</td>
<td>10</td>
<td>740</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>4.0 \times 10^{12}</td>
<td>1690</td>
<td></td>
<td></td>
<td></td>
<td>555</td>
</tr>
</tbody>
</table>
Neutrinos from charm production

- Expect 90% of $\nu_e + \bar{\nu}_e$ to originate from charm decays.
 - SND@LHC $\nu_e + \bar{\nu}_e$ are a probe of forward charm production.
 - Forward charm production measurement constrains gluon PDFs at very low x (10^{-6}).
- Impact on future higher energy hadron colliders and neutrino astrophysics.

Reconstructed $\nu_e + \bar{\nu}_e$ spectrum at SND@LHC.

Correlation between η_ν and η_c.
Neutrinos from charm production

- Expect 90% of $\nu_e + \bar{\nu}_e$ to originate from charm decays.
 - SND@LHC $\nu_e + \bar{\nu}_e$ are a probe of forward charm production.
 - Forward charm production measurement constrains gluon PDFs at very low $x (10^{-6})$.

- Impact on future higher energy hadron colliders and neutrino astrophysics.

Reconstructed $\nu_e + \bar{\nu}_e$ spectrum at SND@LHC.

Expected uncertainties

- $pp \rightarrow \nu_e X$ cross section
 - Statistical: 5%
 - Systematic: 15%

- Charm hadron yield
 - Statistical: 5%
 - Systematic: 35%

Correlation between η_ν and η_c.
Lepton Flavour Universality tests

- Charm hadron decays contribute to the flux of all three types of neutrinos at SND@LHC.
- The detector has excellent flavour identification capabilities.
- Unique opportunity to test lepton flavour universality with neutrinos.
 - Take ratios of event rates: ν_e/ν_τ and ν_e/ν_μ.

$$R_{13} = \frac{N_{\nu_e+\bar{\nu}_e}}{N_{\nu_\mu+\bar{\nu}_\mu}} = \frac{\sum_i \tilde{f}_{c_i} \tilde{B}r(c_i \rightarrow \nu_e)}{\tilde{f}_{D_s} \tilde{B}r(D_s \rightarrow \nu_\tau)},$$

$$R_{12} = \frac{N_{\nu_e+\bar{\nu}_e}}{N_{\nu_\mu+\bar{\nu}_\mu}} = \frac{1}{1 + \frac{\omega_{\pi/K}}{\pi/K}}.$$
Lepton Flavour Universality tests

- Charm hadron decays contribute to the flux of all three types of neutrinos at SND@LHC.
- The detector has excellent flavour identification capabilities.
- Unique opportunity to test lepton flavour universality with neutrinos.
 - Take ratios of event rates: ν_e/ν_τ and ν_e/ν_μ.

Expected uncertainties

- ν_e/ν_τ
 - Statistical: 30%
 - Systematic: 20%

- ν_e/ν_μ
 - Statistical: 10%
 - Systematic: 10%

$R_{13} = \frac{N_{\nu_e+\bar{\nu}_e}}{N_{\nu_\tau+\bar{\nu}_\tau}} = \frac{\sum_i \tilde{f}_{c_i} \tilde{B}\tau(c_i \rightarrow \nu_e)}{\tilde{f}_{D_s} \tilde{B}(D_s \rightarrow \nu_\tau)},$

$R_{12} = \frac{N_{\nu_e+\bar{\nu}_e}}{N_{\nu_\mu+\bar{\nu}_\mu}} = \frac{1}{1 + \frac{\omega_\pi}{k}}.$

π/K contamination
Feebly interacting particles

- SND@LHC is sensitive to new dark sector particles.

 - **Scattering** in the detector.
 - E.g., scalars interacting with nucleons via a leptophobic portal.

 - **Decaying** in the detector.
 - Dark scalars, heavy neutral leptons or dark photons decaying into a pair of charged tracks.
Feebly interacting particles

- SND@LHC is sensitive to new dark sector particles.
 - Scattering in the detector.
 - E.g., scalars interacting with nucleons via a leptophobic portal.
 - Decaying in the detector.
 - Dark scalars, heavy neutral leptons or dark photons decaying into a pair of charged tracks.
 - Elastic
 - Inelastic

Signal efficiencies and backgrounds (neutrinos!) under study.

$J. \text{High Energ. Phys.} \ 2022, \ 6 \ (2022)$
Detector design
The SND@LHC detector concept

- Hybrid detector design.
- Optimized for the identification of three neutrino flavours and feebly interacting particles.
SND@LHC in T1-18

A very tight fit!
Two veto planes on upstream face of the detector.
Veto system

- Tags entering charged particles.
- Each plane is populated with 7 scintillator bars.
 - Each bar is $1 \times 6 \times 42 \text{ cm}^3$.
 - Bars are read out on both ends by 8 SiPMs, each $6 \times 6 \text{ mm}^2$.
- Planes cover the target surface area and are vertically staggered to mitigate dead zones between bars.
Veto system performance

- Veto system inefficiency around 10^{-4} is observed in LHC Run 3 data.
 - Data is dominated by muon tracks originating from IP1.
- This inefficiency is dominated by the detector dead time of around 200 ns.
 - Can be mitigated by requiring that signal candidate events are isolated in time.

Inactive veto bars were hit in previous event

Collision axis

Side view

Collision axis

Side view
Five target walls instrumented with emulsions.
Emulsion target and vertex detector

- Emulsion cloud chamber (ECC): emulsion films interleaved with high-density passive layers.
- Each target wall is populated with four ECC bricks.
 - Each brick consists of 60 layers of emulsion (0.3 mm) and 59 layers of tungsten (1 mm).
 - Wall thickness: 78 mm ($17 \times X_0$).
 - Sensitive transverse size: $38.4 \times 38.4 \text{ cm}^2$
- Total target mass: 830 kg
- Surrounded by acrylic and borated polyethylene enclosure to shield from neutrons and control the temperature ($15 \, ^\circ\text{C}$) and relative humidity (45 %).
Emulsion detector performance

- A small portion of the target was instrumented at the start of the LHC Run 3.
- Exposed for 0.52 fb\(^{-1}\).
 - Data consists mostly of muon tracks originating from IP1.
- Analysed to measure the muon flux with relatively low occupancy.

![Colour represents depth](Image)

Tracks going through 1 x 1 mm\(^2\) in 0.52 fb\(^{-1}\)
Each target wall is followed by a scintillating fibre detector station.
Scintillating fibre detector

- Role of SciFi detector:
 - Interface emulsion detector with electronic detectors by matching the hit pattern in the electronic detector event to a vertex in the emulsion.
 - Electromagnetic calorimetry.
- Six staggered layers scintillating fibres with 0.25 mm diameter are densely packed to form a mat.
- Each station consists of two planes: one vertical, one horizontal.
- Mats are read out by SiPM arrays with 0.25 mm channel width.

~25 p.e. per MIP crossing mat
SciFi performance

- SciFi performance measured using:
 - Test-beam muons.
 - LHC Run 3 data (dominated by IP1 muons).

Muon test beam data

- $\sigma_t \sim 250$ ps
- $\sigma_{X,Y} \sim 100$ μm

Measured without any material between stations.
Hadronic calorimeter and muon system

Fe-scintillator system with eight stations downstream of target.
Hadronic calorimeter and muon system

Upstream
- Most upstream five stations used for hadron calorimetry.
 - 5 x 20 cm Fe blocks: 6λ
- Each station instrumented with 10 horizontal scintillator bars.
 - Each bar is $1 \times 6 \times 81$ cm3
 - Read out on both sides by 6 large (6×6 mm2) and 2 small (3×3 mm2) SiPMs.
 - Small SiPMs have higher pixel density and extend the dynamic range beyond the saturation of the large SiPMs.
Hadronic calorimeter and muon system

Downstream

- Most downstream three stations used for muon tagging.
 - By the last station particles have traversed an average of 11 λ (including tungsten target).
- Stations instrumented with 60 horizontal and 60 vertical bars.
 - Each bar is $1 \times 1 \text{ cm}^2$ in cross section.
 - Length: 81 cm (horizontal) or 60 cm (vertical)
 - Horizontal bars read out by 1 large SiPM on each side.
 - Vertical bars read out by single large SiPM on top.
 - Last station has one additional vertical plane.
Hadronic calorimeter performance

Very high efficiency in upstream detector measured with LHC Run 3 data

Good MIP energy deposition model
Data acquisition

● All electronic detectors are read out by TOFPET2-based front-end boards.
 ○ Low signal threshold: 0.5 p.e.
 ○ Good timing: 40 ps
 ○ 128 channels.

● DAQ boards based on Cyclone V FPGA.
 ○ Run at 160 MHz, aligned with the LHC clock.
 ○ Collect data from four front-end boards (512 channels).
 ○ Get clock from LHC time, trigger and control system (TTC) via optical fibre.
 ○ All hits above threshold sent to DAQ server over ethernet.

● DAQ server.
 ○ Receives hits from DAQ boards, 17k channels in total.
 ○ Runs timestamp-based event-building code.
 ○ Applies online noise filter conditions based on event topology.
 ○ Saves data to disk in ROOT format.
Emulsion scanning

- Five emulsion scanning stations.
- Each microscope currently scans one emulsion film per day.
- Prohibitive to store raw microscope images in disk.
 - Processing the images is the bottleneck.
- Speed up foreseen:
 - More microscopes coming online.
 - Distributed data processing.
Commissioning, installation and operation
Experiment timeline

Scattering and Neutrino Detector at the LHC

Letter of Intent
August 2020

TECHNICAL PROPOSAL

SND@LHC
January 2021

CERN approves new LHC experiment
SND@LHC, or Scattering and Neutrino Detector at the LHC, will be the facility’s ninth experiment
March 2021

September 2021

December 2021

March 2022

July 2022

Muon from 13.6 TeV pp collision
Collision axis
Side view
Detector installation in TI-18

- Target wall
- Target and SciFi
- Veto system
- Muon system
Emulsion replacement

- Emulsions need to be replace every $< 20 \text{ fb}^{-1}$ to keep occupancy at acceptable level for analysis.
- Wall replacements take place during technical stops.
- Procedure takes 4 to 5 hours to complete.
 - Possible to replace the target with only a short access when necessary.
Emulsion development

5 people x 11 days to develop a fully instrumented detector.
Emulsion development facility

- Located at CERN, buildings 162 and 169.
- Refurbished for shared use by SND@LHC, FASER\(\nu\) and DsTau.

- 16 walls assembled
- 3522 emulsion films installed (130 m\(^2\))
- 3522 emulsion films developed (130 m\(^2\))
- 3500 L disposed chemical solutions
Experiment operation

- Normal detector operation can be performed remotely.
 - Control system automatically recovers from most frequent hiccups.
- 24/7 data taking shifts during physics runs.
 - Shifter must be in CERN area.
 - Physical control room available.
- Emulsion preparation and development shifts.

Control room in Meyrin

Detector control system
Data taken in Run 3

Run 3
Delivered: 41.25 fb\(^{-1}\)
Recorded: 39.74 fb\(^{-1}\) (96%)
Data analysis progress
Software and analysis tools

- Fluxes at LHC TI-18 tunnel generated with DPMJET + Fluka model of the LHC.
 - Maintained by CERN Sources, Targets and Interactions Group SY/STI.

In FairROOT based software:
- Propagation of particles through the TI-18 tunnel and detector modeled with Geant4.
 - Digitization models.
- Neutrino event generation with GENIE.
- Muon DIS event generation with PYTHIA.
- Analysis tools:
 - Electronic detector track reconstruction.
 - Emulsion reconstruction with FEDRA.
 - Detector alignment tools.
- Online data quality monitoring.

At IP1, 480 m upstream
Tracking with electronic detectors

- Tracking muons with the electronic detectors plays two critical roles in the experiment:
 - Real-time muon flux measurements.
 - Background model validation.
 - Emulsion occupancy estimation.
 - Use SciFi and/or muon system.
 - Muon identification in neutrino interactions.
 - Tags ν_μ charged-current events.
 - Rely on muon system.

- Two complementary algorithms in place:
 - Simple tracking.
 - Cluster hits in each tracking plane.
 - Require a single cluster in most planes.
 - Runs faster.
 - Hough transform.
 - Identify straight-line hit patterns with Hough transform.
Muon tracking efficiency

SciFi + Simple tracking

Muon system + Hough transform
Event rates with collisions

Run 4705 Fill 8088 Thu Aug 4 01:26:03 2022

ATLAS Luminosity
SND@LHC Event rate
Muon system tracks
SciFi tracks
Bunch structure

- Event rates at SND@LHC follow the LHC filling scheme.
- Events associated to non-colliding bunches used to measure non-collision backgrounds.
 - Significant event rate induced by Beam 2 non-colliding bunches.
 - These events enter the detector from the downstream end.
 - Clearly observed in track direction measurements.

Event rates at SND@LHC follow the LHC filling scheme. Events associated to non-colliding bunches used to measure non-collision backgrounds. Significant event rate induced by Beam 2 non-colliding bunches. These events enter the detector from the downstream end. Clearly observed in track direction measurements.
Non-colliding bunch events

- Non-colliding bunch event rate drops with the fill time.
- Steeper drop than the beam intensity.
 - Most likely due to the evolution of vacuum conditions over the fill.
- Muon tracks in Beam 2 events have larger angles.
 - Muon origin under investigation.
Muon flux with electronic detectors

Expect better data/MC agreement using newly updated simulation with better description of magnetic field in yokes.

Measured muon track rate in SciFi (39x39 cm²):
- 1.8x10⁴ fb/cm²

Expected muon track rate in SciFi (39x39 cm²):
- 3.6x10⁴ fb/cm²

Measured muon track rate in DS (60x60 cm²):
- 2.0x10⁴ fb/cm²

Expected muon track rate in DS (60x60 cm²):
- 4.4x10⁴ fb/cm²
SciFi and Emulsion fluxes compared

SciFi

Measured rates on BRICK1 surface 1.4×10^4 fb/cm²

EMULSIONS

Measured rates in BRICK1 1.5×10^4 fb/cm²

2D angular distribution

- **PEAK1** Mean 3.4 mrad
 Sigma 1.6 mrad

- **PEAK2** Mean 7.9 mrad
 Sigma 3.1 mrad

$\delta x = 4.5$ mrad

PEAK1 Mean 5.7 mrad
Sigma 3.0 mrad

PEAK2 Mean 10.4 mrad
Sigma 4.1 mrad

$\delta x = 4.7$ mrad
Multi-track events

- We observe events with 2 and 3 tracks at a rate which is incompatible with pile-up.
- The origin of these events is under investigation.
 - Muon trident, pair-production, ...?
Muon deep inelastic scattering

- Muon DIS is a potential source of background in neutrino measurements.
 - Can mimic charged-current ν_μ events if incoming track is missed.
 - Produce neutrons and K_L in rock upstream of the detector.
- Measure muon DIS rate in the detector to validate and constrain background model.
 - Select events with a muon track and a large hadronic shower.

![Muon DIS candidate in Run 3 data](image)
Neutrino identification strategy

First stage
- Identify neutrino candidates in electronic detector data.
- Tag muons with muon system.
- Measure electromagnetic and hadronic energy in calorimeters.

Second stage
- Identify neutrino candidates in emulsion data.
- Tag electromagnetic showers.
- Match events to electronic detector data.
 - Timestamp events.
- Identify ν_τ!

Proof-of-concept
- Identify neutrino candidates in existing electronic detector data.
- Low-efficiency, high-purity criteria.
 - "Golden sample"
Neutrino golden sample

- Analyse 34 fb$^{-1}$ of data.
 - 6.5 x 10^9 events

- Reduce to about 2000 events with simple cuts:
 - No activity in veto or first SciFi station.
 - Event does not start in last SciFi station.
 - Large activity in calorimeters.
 - Tight fiducial volume in target center.
 - Event corresponds to IP1 colliding bunch.
 - Event is isolated in time from previous and following event.
 - Reduction factor of 3 x 10^6.

- Identify a few ν_μ CC-like events by eye.
 - Work in progress to automate this step.

- Background estimation in progress.
SND@LHC beyond Run 3

- Propose a near detector in a rapidity range overlapping with LHCb.
 - Reduce systematic uncertainty on far detector measurements using LHCb charm production measurements.
- Far detector in same rapidity range as current detector.
- Detector upgrades:
 - Tag muon sign with magnet.
 - Replace emulsion vertex detector with electronic technology.
 - HL-LHC emulsion replacement rate is unfeasible.
Summary

- SND@LHC has been taking data since the start of Run 3.
 - Less than two years between LoI and physics data!
 - Immense effort to build, install and commission the experiment in such a short amount of time.
- The detector is operating smoothly and collected 96% of the delivered luminosity in 2022.
- Lots of progress in the development of software and analysis tools.
- Physics analyses are now in full swing.
 - Muon DIS event candidates identified.
 - Neutrino-like events identified.
 - Multi-track events under study.
- Design and optimization of detector upgrades beyond Run 3 are underway.
Thank you for your attention!
TEST BEAM WITH MUON SYSTEM

- Installation of the whole muon system at H8 in the North Area
- Energy calibration with 140, 180, 240, 300 GeV pion beam

First glance at the signal

Extrapolated track X position vs mean time difference between left and right side

300 GeV pions

LanGau fitted QDC histogram

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>854</td>
</tr>
<tr>
<td>Mean</td>
<td>56.15</td>
</tr>
<tr>
<td>Std Dev</td>
<td>33.24</td>
</tr>
<tr>
<td>(\chi^2 / \text{ndf})</td>
<td>103.3 / 99</td>
</tr>
<tr>
<td>PVal</td>
<td>0.3637</td>
</tr>
<tr>
<td>Width (scale)</td>
<td>3.226 ± 0.263</td>
</tr>
<tr>
<td>mostProbable</td>
<td>41.24 ± 0.29</td>
</tr>
<tr>
<td>norm</td>
<td>706.2 ± 26.6</td>
</tr>
<tr>
<td>sigma</td>
<td>3.977 ± 0.578</td>
</tr>
</tbody>
</table>

Position resolution: \(\sigma_x = 3.7 \text{ cm} \)
\(\nu_e \) ENERGY ESTIMATION

- Estimation of \(\nu_e \) energy combining information from SciFi (target region) and Scintillator bars (Muon System)
- The detector acts as a non-homogeneous calorimeter

\[E_{\text{rec}} = A + B \times N_{\text{hits}_\text{SciFi}} + C \times N_{\text{hits}_\text{Bars}} \]

- Monte Carlo hits used in the current estimation
- Parameters A, B and C estimated via a gradient descent minimisation algorithm

Average resolution: 22%
In order to extract the ν_e-anti-ν_e component from charmed hadron decay, a statistical subtraction of K component has to be performed.

- The K component dominates at low energies (E<200 GeV).
- Predictions from different generators show large uncertainties (factor 2).

This operation affects the low energy portion of the spectrum where the number of observed neutrino is lower.

- The subtraction of the K component introduces an additional systematic error of $\sim 20\%$.

Courtesy of F. Kling
The uncertainty in the knowledge of π/k contamination has two contributions:

1. Production of π/k
2. Propagation along beamline

Simulation of light meson production in forward region constrained by LHCf collaboration

Agreement better than 10% with EPOS generator for $p_T > 300$ GeV

Neutrinos in SND@LHC acceptance with $E > 600$ GeV have $p_T > 250$ MeV
The uncertainty in the knowledge of π/k contamination has two contributions:

1. Production of π/k

2. Propagation along beamline

Charged meson propagation performed with FLUKA and show very good agreement with measurements performed along the beamline.

Measurements performed by FASER in TI18 in agreement with FLUKA predictions (2x10^4/cm^2/fb^-1) within errors.

SND@LHC will measure particle flux in TI18 with high accuracy, using different detectors.
COMPLEMENTARITY WITH FASERnu

- Pseudo-rapidity range: $\eta > 8.8$
- Main physics goals:
 - $\sim 2000 \nu_e$, 7000 ν_μ, 50 ν_τ CC interactions expected [Eur. Phys. J. C 80 (2020) 61]
 - NC measurements could constrain neutrino non-standard interactions [Phys. Rev. D 103, 056014 (2021)]
 - Neutrino CC interaction with charm production ($\nu_s \rightarrow l c$)
 - Study the strange quark content

![Graph showing relative charm hadron rate vs neutrino energy]