Chemical and surface analysis at TE-VSC-SCC

Marcel Himmerlich on behalf of the TE-VSC-SCC team

28.02.2023

Chemical Analyses – Quality Control and R&D

The Chemical Analysis team provides service material analyses and contributes to CERN R&D and scientific studies.

We operate standard characterization systems for gaseous, liquid and condensed matter and develop routines for detection and quantitative analysis.

Benoit Teissandier

Colette Charvet

Daria Ternova

Analysis techniques at TE-VSC-SCC Chemistry lab I

Optical Emission Spectroscopy

e.g.: **Lead** detection in CERN buildings

Atomic Absorption Spectroscopy

e.g.: Superconducting cable composition

28.02.2023

Potentiometric titration

e.g.: Quality control of surface treatments bath

UV-Visible spectroscopy

e.g.: Water analysis from **STEP**

Quality control of water, surface treatment baths, analysis of metal ions after STEP treatments

Analysis techniques at TE-VSC-SCC Chemistry lab II

FTIR spectroscopy

e.g.: Evaluation of surface cleanliness for UHV applications, Polymer identification

Differential Scanning Calorimetry

e.g.: Polymer Tg Measurement

Thermogravimetry

e.g.: Mineral filler quantification in **polymers**

Analysis techniques at TE-VSC-SCC Chemistry lab III

X-ray fluorescence spectroscopy

e.g.: Elemental composition of metallic parts, In-situ thickness measurement of coatings

Karl Fischer Coulometry

28.02.2023

Gas Chromatography

e.g.: Quality control of the LHC experiments gas and/or cooling fluid

Analysis of organic compounds by IR spectroscopy

Lab. Spectrometer: Bruker Vertex 70

Handheld: Agilent Exoscan 4100

Wavenumbers

28.02.2023

Characterization of solids, liquids & gases

- "Silicon free" Quality control of pipes used to build gas detectors
- Cooling fluids (and gas) identification and quantification of contaminants
- Identification of Polymers

Quantification to ppm level (after calibration)

- Cleanliness assessment for gas system detector or **UHV** applications
- Cooling fluids purity

% Transmittance

e.g.: Silicone oil

Quantification and detection limit by IR spectroscopy

Detection limit of hydrocarbon contamination on stainless steel surface

Detection limit of

Dimethylsiloxane on

stainless steel surface

Detection limit ≈ 1 molecular layer

Report : EDMS 1332721 (B. Teissandier)

Hostaphan® (PET) foils with Cu/Au coatings (NA62 - Straws Tracker)

Thickness measurement of Au & Cu coatings

1. Chemical dissolution of metallic coatings with aqua regia (on defined area)

Thickness measurement of Hostaphan foil

- 1. Chemical dissolution of metallic coatings with aqua regia
- 2. Infrared spectroscopy analysis in transmission mode

Analysis report : EDMS 2747287 & 2823835 (B. Teissandier)

Search for residual cleaning solvent (Dowclene 1601) in CMS Resistive Plate Chamber (RPC) gas system

Lab-based validation

Principle of FTIR gas cell

Dowclene detection by FTIR

28.02.2023

RPC gas: CH₂FCF₃ / SF₆ / C₄H₁₀

Measurements in CMS RPC gas system

Sampling in CMS

FTIR on CMS RPC gas system

Analysis report : EDMS 2716850 (B. Teissandier)

R134a GC/MSD Analysis (CMS RPC)

Instrumentation & method

Example of gas traces identification

@17.4 min, identification of C₂HCIF₄

Impurities in CH₂FCF₃

Colors indicate signals from C₂HCIF₄

R134a = CH_2FCF_3 (tetrafluorethane) C_2HCIF_4 (Chloro-tetrafluorethane)

Surface Analyses – Quality Control and R&D

The Surface Analysis team provides service material analyses and contributes to CERN R&D and scientific studies.

We operate UHV systems for surface spectroscopy and thin film characterization on small test samples.

Main methods:

- Secondary Electron Yield (SEY) measurements
- X-ray Photoelectron Spectroscopy (XPS)

Surface Analyses – Quality Control and R&D

- We provide surface and thin film analysis expertise for the CERN community and projects.
- If a surface or thin film analysis technique does not exist at CERN
 → we advise and mediate tests at external partners and institutes

Examples: Secondary Ion Mass Spectroscopy profiling & Ion Scattering Spectroscopy for Hydrogen content in thin metal films

Laterally resolved Auger Electron Spectroscopy depth profiling for surface composition analysis of superconducting cables

The «playground» of surface analysis

→ Microscopy

Spectrally resolved analysis
→ Spectroscopy

Combination of lateral magnification and spectral selection

- → Spectromicroscopy
- → Microspectroscopy

adapted from M. Henzler and W. Göpel, Oberflächenphysik des Festkörpers

Angle-integrated Secondary Electron Yield

$$\delta(E) = \frac{I_{sec}(E)}{I_{prim}(E)} = \frac{I_{+V} - I_{-V}}{I_{+V}}$$

28.02.2023

$$\delta(E) = \frac{I_{sec}(E)}{I_{prim}(E)} = \frac{I_{col}}{I_{col} + I_{sa}}$$

Secondary Electron Yield & Conditioning

Other options:

- Electron induced surface modification (conditioning)
- Work function measurements
- Incidence angle dependent SEY analyses
- SEY measurements of insulating samples

28.02.2023

Electron transmission through GEM foils and graphene layers

28.02.2023

Adaption of UHV setup with versatile electron source for transmission (current) measurement

X-ray Photoelectron Spectroscopy

Represents the elementspecific electron distribution

Results from Photoelectron Spectroscopy

Surface chemical composition

- Surface and film stoichiometry (elemental composition)
- Adsorbates, contamination & surface functionalization
- Chemical modification of surfaces
- Degradation & passivation

Surface electronic properties (in-situ studies)

- Valence band density of states
- Work function, surface band bending, surface dipoles
- Band offsets at interfaces
- Charge transfer processes

Analysis of chemical states

Electron binding energy depends on the actual chemical bond configuration of

the material and the nature & electronegativity

28.02.2023

of the neighboring atoms

Sputter depth profiling

28.02.2023

UV or e- induced electron spectroscopy

UV source to measure work function and valence band

28.02.2023

Electron source to measure angular-resolved SE spectroscopy

Sample preparation & surface modification

 Characterization of surface property changes during treatments in vacuum and/or reactive atmosphere (p ≈ 10⁻² mbar)

Heating up to 800°C

UV-C irradiation

Plasma exposure

+ injection of gaseous species

Characterization of:

- Chemical reduction/oxidation and functionalization processes
- Physical cleaning/etching of surfaces

Surface analyses at cryogenic temperatures

- Cryogenic cooling of samples to 15 K
- SEY, SES, conditioning and XPS analyses at variable temperature
- Optional injection of gases to characterize surface reactions

Pulsed laser ablation

- Ablation of thin films on metallic substrates in UHV by 248 UV laser
- Accumulation of the trapped noble gas in the ablation chamber
- Evacuation of the ablation volume via analysis chamber with a calibrated RGA allows to determine the gas quantity (p•V → number of gas atoms)
- Film thickness x ablated area (2 mm²)
 → compute number of ablated atoms
- Gas content = # noble gas atoms# ablated atoms

Options:

- laser-fatigue tests
- pulsed laser deposition from target

Key parameters:

- Possibility to measure all noble gases trapped in thin films up to 5 μm thickness
- Gas content as low as 10 ppm detectable

Typical surface analysis tasks

- Contamination analysis after cleaning or material processing
- Thin film composition characterization
- Identification of chemical bonds and adsorbates at surfaces
- SEY qualification of materials and surface processing including electron-induced conditioning tests
- In-situ modification of surfaces & model experiments to develop surface technologies
- Development of new routines for material characterization

XPS: example I

Impurities of Ag-coated gaskets from LHCb SciFi baby demo plant

- Circuit operated with NOVEC 649 including *Dodecafluoro-2-methylpentan-3-one* (CF₃CF₂C(O)CF(CF₃)₂)
- → XPS spectra indicate absence of corrosion reactions but only stains from dryed operation liquid

28.02.2023

see EDMS <u>2780062</u>

XPS: example II

Analysis of triple-GEM detector after operation in LHCb with CF₄-based gas mixture (40% CF₄, 15% CO₂, 45% Ar)

- N, S and C signals indicate polymeric contamination film
- → Same residuals found on glued frame (see also EDMS <u>2802473</u> -SEM/EDX by A.T. Fontenla)

Thanks for your attention.

28.02.2023

Analysis techniques at TE-VSC-SCC Chemistry lab

FTIR spectroscopy

e.g.: Evaluation of surface cleanliness for UHV applications, Polymer identification

Optical Emission Spectroscopy

e.g.: **Lead** detection in CERN buildings

Atomic Absorption Spectroscopy

e.g.: Superconducting cable composition

Differential Scanning Calorimetry

e.g.: Polymer Tg Measurement

X-ray spectroscopy

e.g.: Composition of metallic parts, In-situ Thickness of coatings

Karl Fischer Coulometry

e.g.: Quality control of the LHC experiments cooling fluid

Gas Chromatography

Thermogravimetry

e.g.: Mineral filler quantification in polymers

Potentiometric titration

e.g.: Quality control of surface treatments bath

UV-Visible spectroscopy

e.g.: Water analysis from **STEP**

Pulsed SEY for Insulators

Problem: - Difficulties to measure continuous-current SEY on insulators due to surface charging

Solution: - Exposure to 30 µs long electron pulses (2×10⁻¹² C per data point) on a spot of about 10 mm² to minimize charging

- Time-resolved measurement of primary and secondary electron current

- Neutralization with low energy electrons after each pulse to compensate positive charges

Coated Ceramic chamber for LHC injection kicker magnets and witness sample (Photos courtesy M. Barnes SEY_861)

SEY spectra on witness sample with two conditioning steps

XPS: Practical and technical aspects

- Depth of information in XPS: 5-10 nm
- Detection limit 0.01 0.1 at.%
- Lateral resolution limited to 200 μm
- Depth profiling up to 2 μm
- Samples must be vacuum-compatible (low vapor pressure, no pencil marks, no fingerprints, contamination- and oil-free)
- > Flat samples preferred & maximum sample thickness ~1 cm
- ➤ Minimum sample size 4×4 mm², maximum 45×45 mm²
- Hydrogen not directly detectable
- Some organic materials are sensitive to X-ray damage
- Insulating samples: limitations in analysis of bond configuration

Vacuum Transfers for Surface Characterization

Characterization of Photocathodes with SY-STI-LP

- ✓ Vacuum transfer systems for sensitive and reactive samples are essential to avoid surface oxidation and adsorption of ambient species
- ✓ Solutions exist for analysis of photocathodes, samples from the SPS to study beam-surface interaction

Vacuum transfer solutions can be adapted to new needs and geometries.

