Electrostatic Kicker at 37 kHz and $+/-10 \mathrm{kV}$ for Muons
Christopher Gough
PULPOKS Workshop DESY, 22-23 April 2023

Introduction

Fundamental limit for energy loss

Pulse measurement of ring cores for transformer

Heat removal from TO-247 transistors

New design

Summary

Requirement

Purpose	Switching of few 30 MeV muons after measurement of arrival of a single muon in an experimental station
Voltage between	+/-10kV
capacitor plates	<50ns
Latency	<50ns
Rise Time	27us
Rep rate	<+/-5\%
Amplitude	
stability	Single muons only, no
radiation constraint	
Radiation	

LTF MORE / GPS parasitic :

Present Design - 1

Present Design- 2

Original Enclosures -
Inside are two switches for half H-bridge.
Two enclosures are mounted on the vacuum tank to drive the capacitor plates differentially.
PVC hose pipes enclose switches and carry FC77 coolant

Present Design- 2

18 years operation
Water leak into coolant destroyed the switches 10 years waiting for a repair

Present Design - 3

Fifteen IXFH6N100 in series
Single loop primary pulse turns all FETs on simultaneously

Series resistors in TO220 packages also present (not shown here)

Fundamental Limit for Energy Loss / Dissipation - 1

A fundamental aspect of charging and discharging capacitance is that the energy dissipated is constant, independent of switch transition time and series resistance

Fundamental Limit for Energy Loss / Dissipation - 2

Fundamental Limit for Energy Loss / Dissipation - 3

A fundamental aspect of charging and discharging capacitance is that the energy dissipated is constant, independent of switch transition time and series resistance

Consequence is:
no reduction of total dissipation by increasing speed of switching
to spread dissipation over more packages, preferred to use higher resistance FETs as well as additional series resistors

Expect ca. 1100W dissipation from the four switches, with ca. 12W per TO-247 package

Fundamental Limit for Energy Loss / Dissipation - 4

Selection of FET is not critical, but if switching speed is increased, the FET dissipation is decreased. The additional series resistance must then take the extra impulse energy.

	Year	V	Idc	Rds	Qg	Ciss	Tdr	Tr	Tdf	Tf	Spice	Avail.
IXYS Littel												
IXYS Power												
IXFH 6N100	2000	1000	6	2.0	88	2600	35	40	100	60	y	
IXFH 6N100 Q	1999	1000	6	1.9	48	2200	10	15	22	12		
IXFH 6N120 P	2005	1200	6	2.6	92	2830	24	11	60	14		
IXFH 12N90	2015	900	12	1.0	56	3080	32	34	50	68		
IXFH18N100 Q3	2020	1000	18	0.66	90	4890	37	32	40	13	y	
IXYS RF												
IXZR 08N120	2009	1200	8		39	1960	4	5	4	6		
DE475-102N21	2009	1000	24		155	5500	5	5	5	8		
ST												
SCT 30N120*	2016	1200	45		105	1700	19	28	45	20		
SCT20N120 K5*	2019	1200	20	0.19	45	650	10	17	27	16	Y	
STW 6N120K3	2012	1200	6		39	1050	30	12	58	32		
STW 12N120K5	2015	1200	12	0.69	44	1370	23	11	29	18	y	
STL 57N65M5\#	2015	650	22		96	4200	84	11	11	17		
STL 21N65M6\#	2015	650	17		44	1960	37	10	12	24		
Infineon												

Table 1(a) FET types. Brown line is the original type.

Pulse Measurement of Ring Cores for Gate Transformer - 1

Pulse Measurement of Ring Cores for Gate Transformer - 2

Pulse Measurement of Ring Cores for Gate Transformer - 3

1,2,3 and 4 Turns, with $14 / 9 / 4 \mathrm{MnZn}$, with $\mathrm{R}=10$ and MOSFET (Vds=0) as load

Pulse Measurement of Ring Cores for Gate Transformer - 4

1,2,3 and 4 Turns, with 9/6/3 MnZn, with $\mathrm{R}=10$ and MOSFET (Vds=0) as load

Pulse Measurement of Ring Cores for Gate Transformer - 5

Basic circuit is transformer with primary and secondary resistance - the capacitance of the FET gate on the transformer secondary slows the rise time, predictably, but is not the main interest.

For this study, subjective choice to put 10 Ohm resistor on secondary, as low as possible to limit unwanted dV/dt turn-on of the FET via the Miller capacitance

With the condition that the secondary resistance is $<100 \Omega$, the secondary voltage is largely independent of the core turns ratio !

Only two ring core materials easily available:
MnNi
low mu (typ.60) and AI (typ.70nH)
MnZn
very high mu (2000-10000) and AI (typ. 2.5uH)
With 1:1 transformer, MnNi cores give typically 50% voltage loss, so unacceptably large leakage inductance

To conclude, use:
MnZn material
14/9/6
1:1 turns ratio
20V / stage
Minimise stray L for rise time
Natural decay of gate voltage, no tight constraint on turn-off pulse

Heat removal from TO-247 transistors - 1

PCB fitted with 12 resistors in TO-247 packages
Temperature sensors epoxied onto resistors
Whole assembly sprayed with conformal coating
Demineralised water in a commercial chiller
After some hours all the metal surfaces were corroded, but not enough to invalidate measurements

Heat removal from TO-247 transistors - 2

In ca. ten minute steps, the total power dissipated was increased 100W, 200W, 300W

Artifacts - dips in temperature due to normal hysteresis in chiller cooling cycle

Heat removal from TO-247 transistors - 3

To conclude:

- modest "shadowing" of coolant flow may occur
(e.g. the first transistor may be cooled more than the rest)
- choose $4 \mathrm{~L} / \mathrm{min}$ to give ca. 60 deg. C transistor temperature

New mechanical design- 1

New mechanical design - 2

$$
\text { - } 5
$$

New mechanical design - 3

Pspice circuit simulation - 1

Pspice circuit simulation - 2

Summary

Original switch design from 1995 was inspired! Too bad it was destroyed by cooling water leaking into the FC-77 Fluorinert.

The requirement for <50 ns latency is a problem with simple transformer-coupled switch. But given the long trigger cables to this kicker, the " 50 ns " requirement is a bit arbitrary.

The main technical difficulty is the cooling. Measurements with a dummy PCB indicate that the system is sufficient.
After extensive efforts to find alternatives, cooling by forced convection of FC-77 Fluorinert was the only choice.
It is:

- non flammable
- non hygroscopic
- has environmental concern as a very volatile greenhouse gas, but large quantities remain in use for the

PSI HIPA under strict control - the present kickers would use only about 4 Liters.

- complete immersion guarantees there is no HV breakdown between closely spaced PCB components, even over decades of use
- has low viscosity and forced flow guarantees cooling

Present upgrade can not "improve" much, Small changes are:

- Gate transformer with 1 turn secondary
- Flat PCB
- Mechanical design with O-ring sealing for the FC77 coolant
- Commercial self-contained solid state chiller (22kEur) to avoid expensive effort from in-house cooling group.

Reserve Material

Alternative Hardware - 2

A $25-\mathrm{kV} 75-\mathrm{kHz}$ Kicker for Measurement of Muon Lifetime
Michael J. Barnes, Member, IEEE, and Gary D. Wait

Abstract-An international collaboration plans to measure the
lifetime of the muon to a precision of 1 part per million [1]. The lifetime of the muon to a precision of 1 part per million (11. The
"MuLan" experiment will take place at the Paul Scherrer Institut (PSI) in Northern Swizzerland. The MuLLan experiment requires a fast beam line kicker, which can turn the beam on and off, to
inove an artifical time structure on the continuous beam which has a 50.6 .MHt time microstructure. The e eoinker neees toan rum with
a standard "on-off time cycte" or in a "Muon on Request" mode. a standard "on-off time ccicle" or in a "Muon on Request" mode.
The MuLan kicker consists of twop pairs of defectect p plates mechanically in series, driven by four modulators. Each modulator consist
of two stacks of MOSFETs operating in push-pull mode. The spee of two stacks of MOSFETs operating in push-pull mode The spec
ifications for the kicker demand that the rise and fall times of the deflector plate voltage do not exceed 45 s. There is a requiremen for an adjustable output voluage from 0 V to $\pm 12.5 \mathrm{kV}$ per deflector
plate, a minimum pulse duration of 2000 ns , and adj ustale repeti tion rate up to a maximum of 50 kHz continuous. Short turne-o
 the measured propagation delay is 200 ns. The specifications als
require that the polarity of the pulses on the plates be selectable require that the polarity or the pesses on the ppates be selectable,
although not on a pulse-by-pulse basis. This novel design of the kicker and presents both predictions and mea-
surements. Index Terms-Circuit simulation, electric fields, electrostatic
devices, kicker, mesons, MOSFET power amplifiers, particle devices, kicker, mestons, MOSFET power amplifiers, particle
beam choppers, particle beam steering, power FET amplifiers
 power MOSFETs, pulse generation.
pown
$f+12.5 \mathrm{kV}$ and the other plate of each pair is diven to max mum of -12.5 kV . Therefore, the potential difference between pair of deflector plates is variable up to 25 kV . Each pair of lates is 0.75 m long, 200 mm wide, and 5 mm thick, with -mm radius on the edges, separated by 150 mm and housel irtual ground halfway between each pair of plates. which is virtual ground halfway between each pair of plates, which is
consequence of these plates being at equal voltage but opposite polarity. The two pairs of plates are separated longitudinally by 50 mm between the end of one pair and the start of the second
The angle of deflection $\left(\theta_{e}\right)$, in radians, due to an electric ficl btween the deflector plates, is given by

$$
\theta_{e}=\arctan \left(\frac{V * \ell * c}{d * p * \beta * c}\right)\left[\frac{\mathrm{V}}{\mathrm{eV} / \mathrm{c}}\right]
$$

(1)
where V is the potential difference between the deflector plates (adjustable up to 25 kV), l is the overall length of the deflector plates $(1.5 \mathrm{~m}), d$ is the plate separation $(0.15 \mathrm{~m}), \beta * c$ is particle velocity, c is the velocity of light in free space $\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right.$) and p is the beam momentum. From (1), a $30-\mathrm{MeV} / \mathrm{c}(\beta=0.28)$ nuon beam is deflected by 29 mrads, by a potential difference of 25 kV .

Fig. 2. Electrical schematic of a $1-\mathrm{kV}$ module

History

1. Introduction

The present situation was described in [1]. Project folders [2] contain all technical details photos etc from the development. The circuits from Goepf Irminger were dated 1994, and the pulser test (with a fan cooled system) by Roland Erne was dated 1995. In 1998 there was an order for a 310CHF soldered heat exchanger and a revised cooling system drawing. There was work to fix the FuG HCN1400-6500 supplies for in-rush current failures in 2002-2003. In 2013, the coax feedthrough cable failed and this was replaced with an "connector free" system. In 2013, the heat exchanger leaked water into the FC77 cooling fluid, which caused switch failure.

Cooling System

Cooling System

Figure 1: ThermoRack 1000 Cooling Curves at $20^{\circ} \mathrm{C}$ Ambient

SPICE simulation with Turns Ratio $1: 1$ to $1: 4$

Secondary resistance subjective, fixed to 10 Ohms to give "reasonable" dV/dt immunity on FET

Primary resistance gives a limit to the primary current (in any case, MnZn core is completely saturated $>5 \mathrm{~A}$)

Rise time is minimized by minimising stray inductance in transformer, primary and secondary.

With this condition of low secondary resistance ($\ll 100$ Ohms), the secondary voltage is almost independent of turns ratio!

Effect of Core Bias, 1 Turn secondary

~24V / 12A limit on primary, Bias in 1A increments

No bias gives ca. 200 ns pulse, small bias extends this to ca. 400 ns

1 Turn and 2 Turn Secondary, Effect of Core Bias
~24V / 12A limit on primary,
Bias in 1A increments

1 turn secondary

2 turn secondary

