

A Double Dipole Kicker for ALBA II

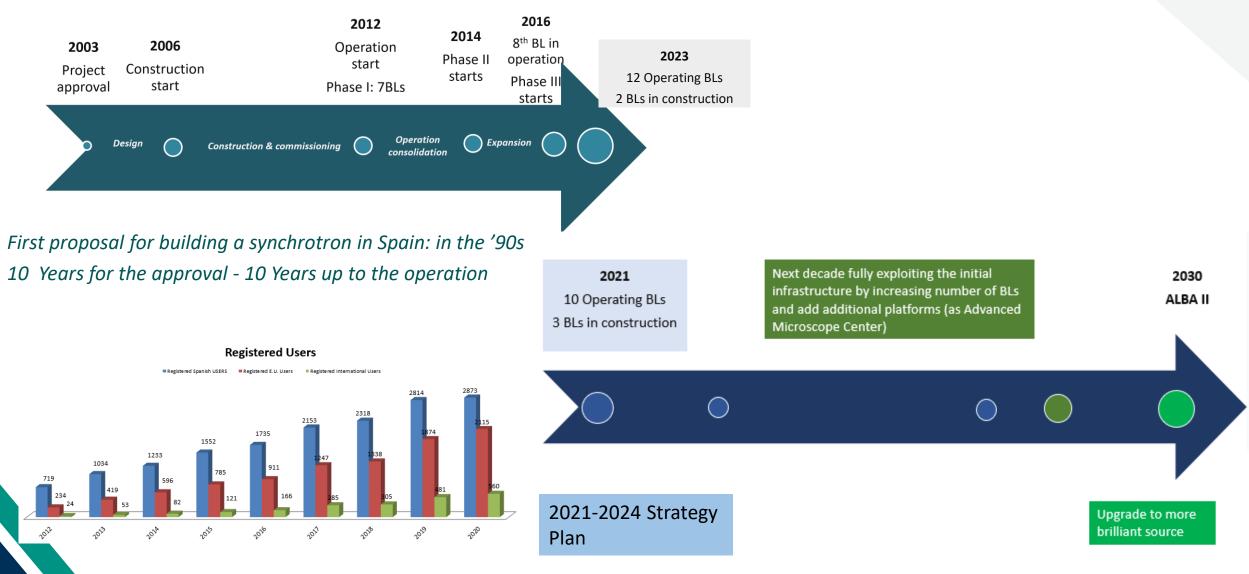
Raquel Muñoz – ALBA Synchrotron

24th April 2023

Ayuda ICTS-MRR-2021-02-CELLS financiada por:

Plan de Recuperación, Transformación y Resiliencia

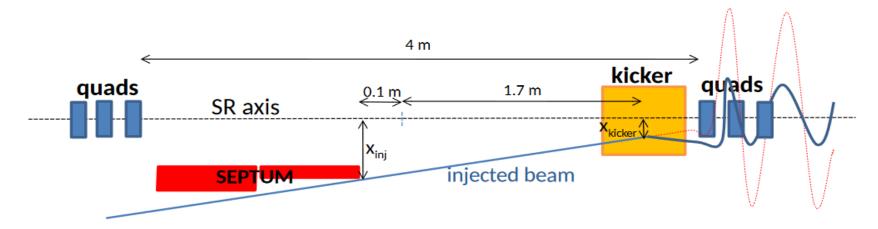
Financiado por la Unión Europea NextGenerationEU



Outline

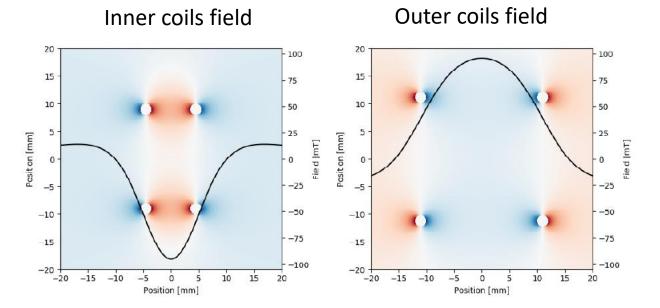
- ALBA-II injection scheme
- . The Double Dipole Kicker
 - Topology
 - Advantages and motivation
- DDK ALBA prototype
 - Tolerances for transparent injection
 - Field error due to finite pulse propagation speed
 - Coating effects
 - Magnet specifications
 - Status and schedule
- . Summary

ALBA Synchrotron: History and Future



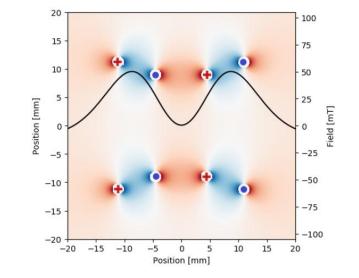
. ALBA II

- New low emittance storage ring: 180 pm·rad (factor 25 reduction)
 - Use the same Booster Injector: $\varepsilon=10~{\rm nm}{\cdot}{\rm rad}$
- Smaller physical aperture ring
 - Horizontal dynamic aperture reduction: ±20 mm to ±6 mm
- Very compact arrangement of the magnets
 - Injection straight section reduced from 8 m to 4 m.
- Injection with a single fast pulsed multipole kicker needed
 - Transparency of injection
 - Reduced number of elements



- ALBA-II injection scheme:
 - Strong & thick septum: to bring the injected beam to a few cm from the stored one.
 - Weak & thin septum: to bring the injected beam in the acceptance region of the kicker.
 - Multipole kicker for off-axis injection.
 - 1.75 μ s semi-sinus pulse.
 - . Transparent injection for the users condition: $\Delta x < 10\% \sigma_x$ and $\Delta x' < 10\% \sigma_{x'}$

4 inner and 4 outer conductor rods create two opposite dipole fields


Only 4 outer rods powered

- Dipole field for on-axis injection
- Useful during commissioning

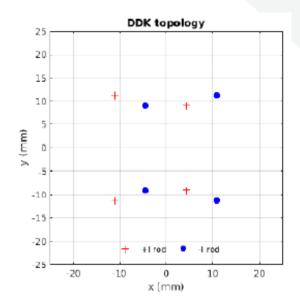
8 rods powered

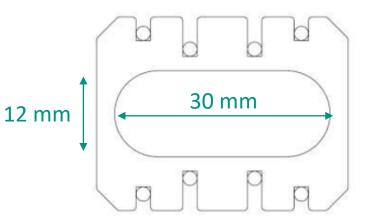
- · Zero field at the stored beam
- Field peak at the injected beam

Superposition of the inner and outer coils fields

PULPOKS Workshop 2023

G. Benedetti et al 2023 J. Phys. Conf. Ser. 2420 012017




DDK ALBA prototype

- . The DDK prototype for ALBA
 - Positioning of the rods calculated in order to:
 - Maximize the kick efficiency in mrad/kA
 - Minimize the disturbance to the stored beam (orbit and emittance)
 - Ceramic chamber with inner Ti-coating layer optimization:
 - Minimize heat losses of the beam image currents
 - Minimize eddy currents induced by the pulsed field.
 - Small vertical aperture
 - Get the field peak at the position of the injected beam.

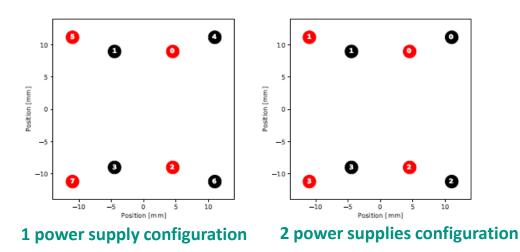
• For ALBA case:

- Field peak at $x = 8.7 \text{ mm} (B_y = 50 \text{ mT})$
- Ceramic vacuum chamber dimensions:
 - H x V = 30 mm x 12 mm
 - Ceramic length: 300 mm
- Ø2 mm copper conductor rods

DDK ALBA prototype – Tolerances

. DDK tolerances for transparent injection

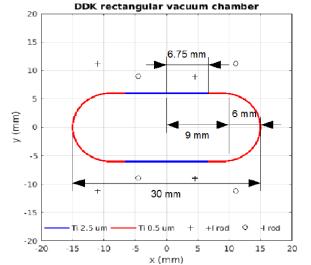
- Maximum residual field at stored beam position (according to transparent injection condition):
 - $\Delta B_x < 13 \,\mu T$ $\Delta B_y < 70 \,\mu T$ $\frac{\partial B_y}{\partial x} < 0.36 \,T/m$
- Mechanical tolerance of rod positions (to don't exceed residual field):
 - $\pm\,\mathbf{1}\,\mu\mathbf{m}$ in both directions \rightarrow unfeasible

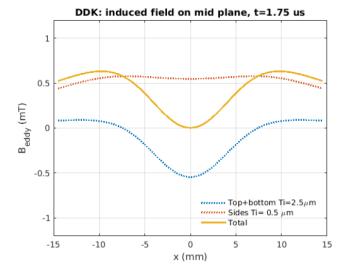

Realistic is +/- 20 μ m $\rightarrow \Delta x \sim \Delta y \sim \pm 200 \mu$ m displacement of the pulse at the stored beam

• Solution to have zero field at the stored beam:

- Make pass the stored beam to the minimum of the pulse.
 - Still a residual field on the stored beam expected of the order of $\Delta B_{x,y} \sim \pm 200 \ \mu T$
- Power the inner and outer coils with two independent power supplies.
 - 2 identical pulses. Freedom 2 pulses: delay, amplitude
 - The integral of the difference between the current of the two pulses < 0.12% pulse current value

DDK ALBA prototype – Field error


- Field error estimation due to finite propagation speed of the two pulses
 - Assuming the current pulse propagates at constant speed through conductors.
 - Propagation speed between alumina and vacuum
 - The overall field distortion is affected by the rods connection order.
 - This error can be partially compensated by the use of two independent power supplies.
 - Overall effect on the stored beam estimation from the mean field error for single and double power supply configurations



		wer supply Alumina	_	ower supply Alumina
$\frac{\Delta B_x}{\Delta B_y}$	160 μT 210 μT	475 μT 630 μT	$\begin{array}{c} 50 \ \mu T \\ 0 \end{array}$	$\begin{array}{c} 155 \ \mu \mathrm{T} \\ 0 \end{array}$

- Coating thickness optimization:
 - To minimize power dissipation: at least 1 μm coating thickness needed
- The pulsed field induces eddy currents on the metal coating.
 - Produces a perturbation on the magnetic field profile.
 - Top/bottom walls and side walls produce opposite contributions to the induced field at center.
- Induced field at the center (x,y)=(0,0) can be made zero:
 - By applying coating 5:1 ratio between top/bottom and side walls
 - This minimizes the perturbation on the stored beam due to eddy currents.

DDK ALBA prototype – Specs

magnetic specifications:

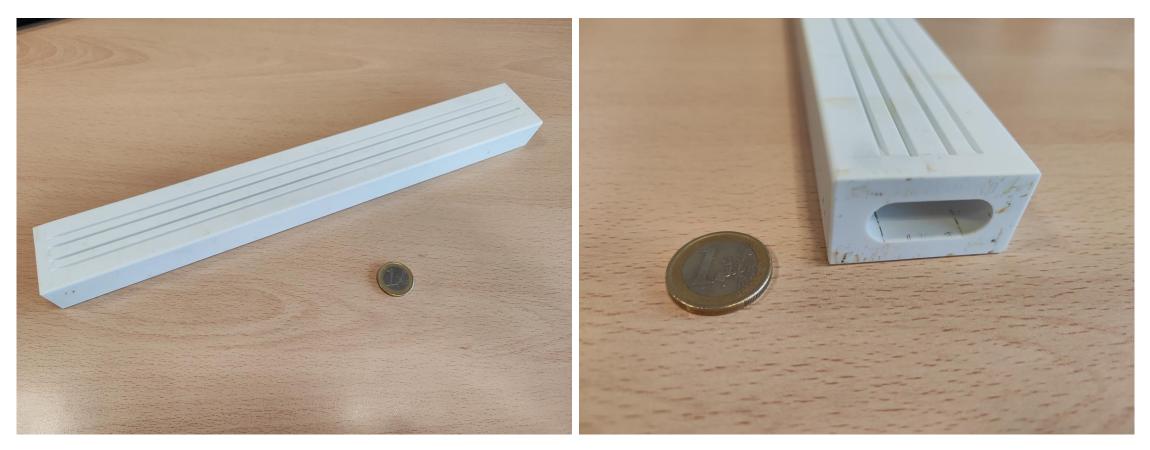
Inner rod position	x_i, y_i	4.50, 9.00	mm
Outer rod position	x_e, y_e	11.00, 11.20	$\mathbf{m}\mathbf{m}$
Diameter of the rods		2	$\mathbf{m}\mathbf{m}$
Field at $x = 8.7 \text{ mm}$	B_y	50	mT
Magnetic length	Ĺ	300	$\mathbf{m}\mathbf{m}$
Total coils inductance	L_{tot}	0.90	μH
Inner coils inductance	L_{in}	0.83	μH
Outer coils inductance	L_{out}	0.55	μH
Mutual inductance	M_{inout}	-0.24	μH

• Half sinus current pulse parameters:

Pulse duration	t_p	1.75	μs
Peak current	I_0	2675	Α
Nominal repetition rate	f_{rep}	3.125	Hz

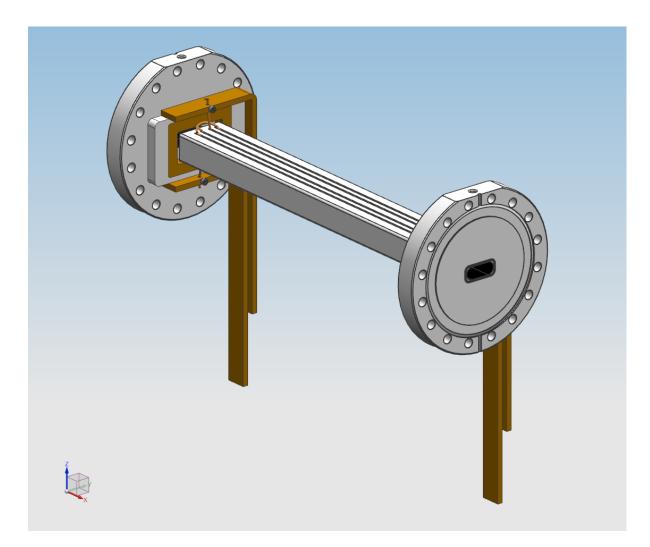
Status and Schedule

• Tender ongoing: for the ceramic vacuum chamber and 2 power supplies


- Delivery: end of 2024
- DDK installation at ALBA: end 2025 for proof-of-principle

• ALBA-SIRIUS collaboration for several NLK related issues:

- Ceramic manufacturing at Sirius lab according to their know-how experience
- Metallic coating studies:
 - Eddy current minimization simulations
 - Heat losses reduction simulations
- Metallic coating technique development at Sirius lab
 - Material deposition simulations


Status and Schedule

First ceramics production

Status and Schedule

Summary

- DDK allows off-axis and on-axis injection
- Transparent injection is challenging
- 2 independent power supplies
- A prototype for ALBA is ongoing

Thank you for your attention !!

