

Science and Technology Facilities Council

Me Comé

ISIS Neutron and Muon Source

Development work on pulsed 35kV electrostatic chopper with 10ns rise times

Maliq Martin PulPoKS 2023

Agenda

1 Super MuSR Overview

2 Chopper Feedthrough Design

3 Pulse Power Supply Testing

Super MuSR Introduction

Super MuSR is an upgrade to the existing MuSR muon beamline at ISIS. The new beamline will improve data rates, enables transverse field measurements and allow a sliced pulse mode that will improve the time resolution.

Electrostatic Chopper

The chopper will steer the full muon beam from one side to the other, allowing only a short spray of muons to pass towards the sample.

Muon pulse:

- Positive muons
- 3.81 MeV initial energy
- 131 ns bunch length

Chopper:

- 500mm length, 60mm separation
- ±35 kV
- 10 ns transition
- 32 Ω impedance
- 50 Hz repetition rate

Feedthrough Design Work

- The vacuum feedthrough, which connects the 32Ω coax line to the electrodes, proved to be a difficulty assembly to design both mechanical and electrical.
- The vacuum window must support the pressure difference, without excessive deflection, while being thin enough to cause minimal distortion to the travelling EM wave
- Modifications to the inner conductor must be kept to a minimum to prevent excessive electric stress
- An OEM is looking into the design of the necessary spacers in the coax line and bullet connector

Feedthrough Design Work

- FEA electrostatic simulations were performed to ensure electric breakdown did not occur.
- The region of greatest concern is on the air side close to the vacuum window, where tracking can occur across the dielectric.
- After consultation with industry it was suggest a safety factor of 4 should be used for breakdown in air giving a limit of 0.75MV/m
- Using this safety factor a new dielectric will be required for the coax line, ideally a vacuum. If this proves to be the case the coax line can be redesigned simplify the feedthrough design.

Next Steps

High voltage testing of the vacuum feedthrough at 35kV:

- The mock-up is currently being manufactured on site and will be tested shortly
- Based on the air-filled coax line
- Test to see if the x4 safety factor is required
- Generate Weibull distribution for electrical breakdown
 of feedthrough

RF Testing using a low voltage 10ns transition pulse and a vector network analyzer:

- The design for this mockup is currently being finalised
- Includes a Ddot sensor the measure the electric field inside the vacuum chamber

Prototype Power Supply

Two companies were selected to produce a report and prototype power supply(Company A and Company B) to increase confidence in delivering the full specification.

The prototype power supply was to include:

- Demonstration of technology and scalability
- $\pm 15 \text{ kV}$ into 36 Ω (51pF) or full current into a scaled load
- <10 ns transition
- 30 ns plateau pre- and post-transition
- Emphasis was place on the effects of scaling prototype to full rating and minimising reflections via impedance matching.
- It was noted that a lumped capacitance will be unlikely to replicate the reflections when the EM wave reaches the unterminated end of the plate

Prototype Topology

Company A – Marx Generator

- ±15 kV
- 10 ns transition
- 400 ns pre/post
- 5 Hz repetition
- Capacitive load (50pF)

Company B – Inductive Adder

- ±3.5 kV
- Peak current >1kA
- 10 ns transition
- 1 µs pre/post
- 50 Hz repetition
- PFL load of equivalent value (4.5Ω)

Company A – Marx Generator

20 Stage bipolar Marx generator

- Each stage is charged to 800V from single HVDC supply
- SiC MOSFET used for stage switching
- Each stage is connected in series and then reversed in polarity to supply the transition required
- The positive pulse switches, S_{pi}, are 6 devices in parallel, will the negative pulse switches, S_{ni}, are a single device

Company A – Direct Connection Capacitive Load Test

Company A – 50Ω Coax Test

20 Stage bipolar Marx generator

- Each stage is charged to 600V (limited by test setup)
- 50Ω coax line (0.5m of C9220 adding 50pF)
- The lack of an appropriate impedance matched connection between the power supply and cable leads to large signal distortions

Company B – Inductive Adder

10 stage power supply using and inductive adder

- Designed to provide rated current to the Super MuSR Chopper
- Each stage charge to 500V
- Load is an open circuit 4.5Ω coax line
- Reverse termination is used to match the output impedance with the load

Company B – Test Results

1:2130 Voltage Scale

10ns Transition

Company B performance is better

- Switches at rated current through scaled load within 8ns (10% 90%)
- Company A best case (lumped capacitance directly connected) switches ±15kV within 18ns

Topology Comparison

Inductive adder used by Company B is a better design choice

- Falling edge performance will not decrease as much when compared to an ever-increasing PCB
- Allows for a simpler design connecting our coax line to the power supply while preventing impedance mismatch

Next Steps

Company A are suggesting a new circuit topology for the final system due to lessons learnt during development:

- Charging Marx capacitors in parallel
- Connecting capacitors in series to charge coax line and load
- Shorting coax line to ground, with the negative pulse providing the 10ns transition

Company B is looking into making further improvements to their inductive adder design:

- Using SiC devices to reduce stages and devices per stage
- Testing circuit protection at higher voltages to ensure fault tolerance
- Using quick fit optical components for easy swapping out of stages

Acknowledgements

- Dr Iker Rodriguez Electrical design
- Akanay Avaroglu Mechanical design
- Jonner Ranner Project Lead

ISIS Neutron and Muon Source

Questions?

ISIS Neutron and Muon Source

Thankyou

isis.stfc.ac.uk

in STFC