Analysis Grand Challenge

Alexander Held (University of Wisconsin–Madison)
Oksana Shadura (University Nebraska–Lincoln)

Jan 24, 2023

IRIS-HEP / Ops Program Analysis Grand Challenge Planning https://indico.cern.ch/event/1243052/

Analysis pipeline

Pipeline setup

- ServiceX delivers columns following declarative func_adl request
- coffea orchestrates distributed event processing & histogram production
 - Using uproot, awkward-array, hist
- Visualization with hist & mplhep
- Statistical model construction with cabinetry & inference with pyhf
- Everything is openly developed (<u>IRIS-HEP AGC repository</u>)
 - Including categorization of datasets in terms of role in AGC demonstrator
- Will be executed on various partner facilities: *University Nebraska-Lincoln, UChicago, FNAL, BNL, others*

From workspace and suppose to likelihoods Selection & Systematic uncertainties Prom workspace to likelihoods From workspace to likelihoods Prom workspace to likelihoods

Other (partial) AGC implementations:

 ROOT RDF (Andrii Falko, Enrico Guiraud):

andriiknu/RDF/

Julia (Jerry Ling): Moelf/LHC AGC.il

An AGC implementation: software stack

Involves large number of packages from IRIS-HEP and partners

AGC Plans 2023

AS work items in 2023

- Testing new coffea release with awkward-dask
 - Figuring out new possibilities / workflow / best practices / UX

- Performance tuning of AS components
- Extended analysis task & input size (more systematics, more histograms, ...)
 - including processing implementation improvements (systematics handling, use of correctionlib)

ML work items in 2023 (new AGC AS activity)

- Adding new AGC pipeline with ML component
 - This was frequently requested when presenting AGC in the past
 - Including exploring GPU integration at Analysis Facilities into pipeline
- Exploring UX for both ML training and inference
 - MLflow, Triton

SSL work items in 2023

- Need to find & resolve performance bottlenecks
 - Requires close collaboration (e.g. if Dask-related)
- Large scale testing with O(5k+) cores
- Understand pure I/O throughput and relate to hardware specs

DOMA work items in 2023

- Performance tuning of DOMA related components
 - Understand performance impact of caching
 - Benchmark different data delivery pipelines
- Ensure good integration with different sites

AGC @CHEP 2023

- Preparing three AGC related talks (+RDF talk by the ROOT team)
- Extended, more realistic AGC analysis
 - ML inference
 - More systematic uncertainties
 - Larger dataset to process (achieved via duplication of inputs)
- ML training / ML UX (MLflow, Triton etc.)
- New developments in coffea-casa AF
 - Better ServiceX, Triton, MLflow integration

IRIS-HEP Demo Day

AGC Demo Day

Dec 16, 2022

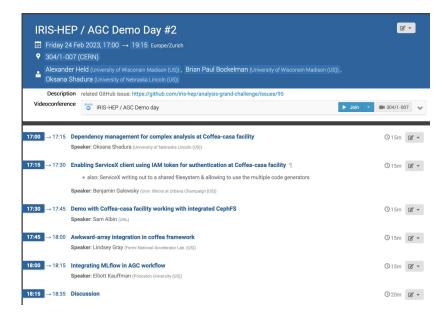
- New "Demo Day" format
 - Short, technical talks
 - Target date for project convergence
 - Recording on YouTube

Speaker: Elliott Kauffman (Princeton University (US)) emk agcdemoday ... Triton Client Exampl... 5:15 PM → 5:30 PM ServiceX: ROOT files from uproot transformer Speaker: Tal van Daalen (University of Washington (US)) AGC HZZ OpenData... Data management of HEP data (Apache Iceberg) → 5:45 PM Speaker: Jayjeet Chakraborty iceberg-spark-demo... **5:45 PM** → 6:00 PM Integrating AGC pipeline at BNL facility Speaker: Matthew Feickert (University of Wisconsin Madison (US)) Using JWT tokens for XCache at coffea-casa facility → 6:15 PM Speaker: Andrew Wightman (University of Nebraska Lincoln (US)) Discussion

→ 5:15 PM First steps using inference server at coffea-casa facility

- Variety of topics covered
 - Opportunity to showcase latest developments -> open to contributions!
- Will repeat "Demo Day" format every 2 months

AGC events during IRIS-HEP year 5


Next IRIS-HEP Demo Day

24 Feb 2023, 17:00 CET / 10:00 Central

New IRIS-HEP demo day is scheduled!

See <u>agenda</u> & <u>GitHub issue</u>

- Open meeting, you are welcome to join!
 - 304/1-007 booked at CERN

AGC in-person workshop

Timing: around CHEP (early May?)

Planning a 2/3-day in-person workshop at UW-Madison

. Format

- Extended "demo day" with longer contributions / discussions
 - Survey AGC deployments
- Make detailed work plan towards AGC execution event
 - Identify remaining bottlenecks & plan to address them
- Possibly tutorial-like contributions / community outreach

AGC execution event

- AGC Execution Workshop in September
- Inviting everyone who is interested to share their setup and to present the results
 - o Interesting combinations of hardware, network site configurations
 - Any type of "combinatorics" of AGC analysis implementation / components setup
 - Performance measurements
 - The chance to publicize your computing resources to physics analysis community:-)

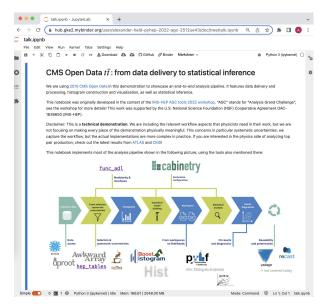
Not planned as the end of the AGC project

Strategic plan for a 2nd phase of IRIS-HEP

- Strategic plan v0.95 sent out earlier today to SB/EB -> arXiv soon!
- Includes section with AGC plans
 - Expand to two flagship analyses (high volume, high complexity)
 - Further increase scale & complexity (+ ML)
 - Continue annual workshops
 - Demonstrate AOD column joining, differentiable analysis pipeline
 - Many connections to IRIS-HEP focus areas
- Experiment-specific (ATLAS/CMS) implementations

Summary

- Outlined work items for 2023 and events on the way towards "AGC execution"
 - IRIS-HEP / AGC Demo Days
 - CHEP 2023 & AGC workshop @ UW-Madison
 - AGC execution event


• Stay in touch: analysis-grand-challenge@iris-hep.org (sign up: google group link), and please also feel free to contact us if you'd like to get involved or have any questions!

Backup

AGC: give it a try!

We are making it easy for you to try out our setup

- One click to get PyHEP notebook in Binder environment
 - Try it out today!
- You can also use the <u>UNL Open Data coffea-casa</u>
 - Or <u>SSL</u> (ATLAS members), or your favorite facility
 - This allows you to scale up (limited on Binder)
 - Everything is available in the <u>AGC repository</u>

AGC: two components

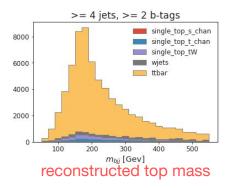
The IRIS-HEP Analysis Grand Challenge (AGC) has two components:

Defining a physics analysis task of realistic HL-LHC scope & scale

- Developing an analysis pipeline that implements this task
 - Finding & addressing performance bottlenecks & usability concerns

You can (for example) take take an analysis task and develop a different implementation, take a pipeline and try it with a new analysis task, or adopt task & implementation and run it on your favorite facility.

AGC: how we envisioned it initially


An "integration exercise" for IRIS-HEP

- Demonstrate method for handling HL-LHC data pipeline requirements
 - Large data volumes + bookkeeping
 - Handling of different types of systematic uncertainties
 - Use of reduced data formats (PHYSLITE / NanoAOD), aligned with LHC experiments
- Aiming for "interactive analysis": turnaround time of ~minutes or less
 - Made possible by highly parallel execution in short bursts, low latency & heavy use of caching
- Specify all analysis details to allow for re-implementations and re-use for benchmarking
- Execution on **Analysis Facilities**

AGC: analysis task

Community benchmark

- Analysis task: ttbar cross-section measurement in single lepton channel
 - Includes simple top reconstruction
 - Captures relevant workflow aspects and can easily be extended
 - E.g. conversion into a BSM search
 - Analysis task prominently features handling of systematic uncertainties
- Analysis is based on Run-2 CMS Open Data (~400 TB of MiniAOD available)
 - o Open Data is crucial: everyone can participate
 - Currently using 4 TB of ntuple inputs (pre-converted, ~1B events before cuts)
- Goal of setup is showing functionality, not discovering new physics
 - Want to capture workflow; use made-up tools for calibrations & systematic uncertainties

AGC: what we mean by "analysis"

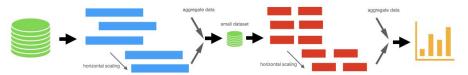
Typical steps in an analysis workflow

- Start from centrally produced common data samples
- Perform all subsequent steps (in a reproducible way)
 - Extract relevant data
 - (Re-) calibrate objects & calculate systematic variations
 - Filter events & calculate observables
 - Histogramming (for binned analyses)
 - Construct statistical model & perform statistical inference
 - Visualize results & provide all relevant information to study analysis details

Adding ServiceX to the mix

Benefits of caching

- . Investigating different data pipelines
- Data delivered by ServiceX can be filtered and is cached locally
 - Subsequent runs can hit (filtered) cache for significant speedup


Appregate data Appregate data

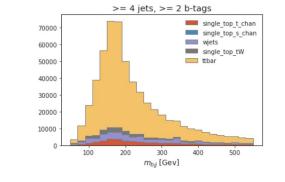
pattern 1: pure coffea

coffea processors process data and aggregate histograms

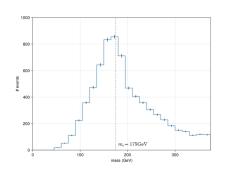
pattern 2: coffea with ServiceX processors shorter jobs: pre-processed data aggregate data Appropriate data aggregate data specification aggregate data specifi

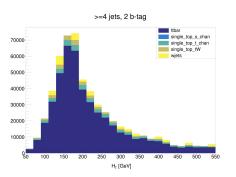
pattern 3: ServiceX followed by coffea

standalone ServiceX, data transfer, followed by standalone coffea processing


What currently runs where?

(please help us update the gaps)


	BNL	FNAL	SLAC	UNL	UChicago
basic coffea (e.g. IterativeExecutor) -> notebook with USE_DASK = False	✓	✓	✓	V	V
coffea scaling (e.g. with Dask) -> notebook with default settings*		✓	✓	(using HTCondor @ Tier2, planning to switch to k8s)	✓
standalone ServiceX -> notebook (no configuration)	✓	√		✓	√
ServiceX+coffea+scaling -> notebook with PIPELINE = "servicex_processor"				✓	√
XCache support	✓	(some performance caveats, to be understood)	✓	✓	✓


AGC implementations

Community effort

- coffea: <u>iris-hep/analysis-grand-challenge/</u>
- ROOT RDF (Andrii Falko, Enrico Guiraud): andriiknu/RDF/
- Julia (Jerry Ling): Moelf/LHC AGC.jl

