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Motivation

• TODO

• I need content for a new CS journal paper

• I would like to test and showcase a few new features in LLAMA, 
notably reduced precision mappings

• Jakob suggested to try the LHCB B2HHH analysis example
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LLAMA

• Low-Level Abstraction of Memory Access

• Separates algorithmic view of data and mapping to memory
• Different memory layouts may be chosen without touching the algorithm

• Header-only, portable, C++17/C++20 library, LGPL3+

• Designed to integrate with CUDA/HIP, SYCL, alpaka, …

• … but orthogonal

• GitHub: https://github.com/alpaka-group/llama
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Concept
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LHCB B2HHH analysis

• Is one of the test/benchmark examples for comparing RNTuple/TTree
• See https://github.com/jblomer/iotools/blob/master/lhcb.cxx

• Characteristics
• Small and simple analysis

• No jagged arrays, which are not supported (yet) in LLAMA

• Several filters leading to sparse reads of columns/events

• Simple computation and one observable (histogram)
• Thus, probably memory bound

2023-01-19 5

https://github.com/jblomer/iotools/blob/master/lhcb.cxx


Dataset and data types

root [0]  auto df = ROOT::RDF::Experimental::FromRNTuple("DecayTree", 

"../../iotools/B2HHH~none.ntuple");

Warning in <[ROOT.NTuple] Warning 

/home/bgruber/dev/root/tree/ntuple/v7/src/RNTupleSerialize.cxx:1208 in static 

ROOT::Experimental::RResult<void> 

ROOT::Experimental::Internal::RNTupleSerializer::DeserializeHeaderV1(const

void*, uint32_t, ROOT::Experimental::RNTupleDescriptorBuilder&)>: Pre-release 

format version: RC 1

root [2] *df.Count()

(unsigned long long) 8556118

root [e] df.Describe()

(ROOT::RDF::RDFDescription) Dataframe from datasource RNTupleDS

Property                Value

-------- -----

Columns in total           26

Columns from defines        0

Event loops run             1

Processing slots            1

Column                  Type            Origin

------ ---- ------

B_FlightDistance double          Dataset

B_VertexChi2            double          Dataset

H1_Charge               std::int32_t    Dataset

H1_IpChi2               double          Dataset

H1_PX                   double          Dataset

H1_PY                   double          Dataset

H1_PZ                   double          Dataset

H1_ProbK                double          Dataset

H1_ProbPi               double          Dataset

H1_isMuon               std::int32_t    Dataset

H2_Charge               std::int32_t    Dataset

H2_IpChi2               double          Dataset

H2_PX                   double          Dataset

H2_PY                   double          Dataset

H2_PZ                   double          Dataset

H2_ProbK                double          Dataset

H2_ProbPi               double          Dataset

H2_isMuon               std::int32_t    Dataset

H3_Charge               std::int32_t    Dataset

H3_IpChi2               double          Dataset

H3_PX                   double          Dataset

H3_PY                   double          Dataset

H3_PZ                   double          Dataset

H3_ProbK                double          Dataset

H3_ProbPi               double          Dataset

H3_isMuon               std::int32_t    Dataset
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Benchmark setup

• For this exploration we only look at in-memory data layouts
• Typical analyses include reading data from disk

• The RNTuple is loaded from disk and converted to a LLAMA view *before* the 
benchmark

• Analysis parallelized using OpenMP

• Reported times are average of 100 analysis runs
• Just loading, filtering, computing one observable and histogram fill

• Excluding histogram creation and reduction

• All code on GitHub: https://github.com/alpaka-
group/llama/blob/develop/examples/root/lhcb_analysis/lhcb.cpp
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Benchmark machine 

• All benchmarks were run on my workstation

• AMD Ryzen 9 5950X 16 cores / 32 threads

• One thread per core
• OMP_NUM_THREADS=16
• OMP_PLACES=cores
• OMP_PROC_BIND=true

• Fun side fact: with SMT disabled
in BIOS, 8 threads was faster
than 16 threads

• I blamed it on the non-shared L3 caches …
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https://github.com/jblomer/iotools/blob/master/lhcb.cxx#L287-L348

LHCB B2HHH analysis RNTuple code (adapted)

constexpr double prob_k_cut = 0.5;
constexpr double prob_pi_cut = 0.5;

for (auto i : ntuple->GetEntryRange()) {
if (viewH1IsMuon(i) || viewH2IsMuon(i) || viewH3IsMuon(i))

continue;

if (viewH1ProbK(i) < prob_k_cut) continue;
if (viewH2ProbK(i) < prob_k_cut) continue;
if (viewH3ProbK(i) < prob_k_cut) continue;

if (viewH1ProbPi(i) > prob_pi_cut) continue;
if (viewH2ProbPi(i) > prob_pi_cut) continue;
if (viewH3ProbPi(i) > prob_pi_cut) continue;

double b_px = viewH1PX(i) + viewH2PX(i) + viewH3PX(i);
double b_py = viewH1PY(i) + viewH2PY(i) + viewH3PY(i);
double b_pz = viewH1PZ(i) + viewH2PZ(i) + viewH3PZ(i);
double b_p2 = GetP2(b_px, b_py, b_pz);
double k1_E = GetKE(viewH1PX(i), viewH1PY(i), viewH1PZ(i));
double k2_E = GetKE(viewH2PX(i), viewH2PY(i), viewH2PZ(i));
double k3_E = GetKE(viewH3PX(i), viewH3PY(i), viewH3PZ(i));
double b_E = k1_E + k2_E + k3_E;
double b_mass = sqrt(b_E*b_E - b_p2);
hMass->Fill(b_mass);

}
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LLAMA version

#pragma omp parallel for
for(RE::NTupleSize_t i = 0; i < n; i++) {

auto&& event = view[i];

if(event(H1isMuon{})) continue;
if(event(H2isMuon{})) continue;
if(event(H3isMuon{})) continue;

if(event(H1ProbK{}) < probKCut) continue;
if(event(H2ProbK{}) < probKCut) continue;
if(event(H3ProbK{}) < probKCut) continue;

if(event(H1ProbPi{}) > probPiCut) continue;
if(event(H2ProbPi{}) > probPiCut) continue;
if(event(H3ProbPi{}) > probPiCut) continue;

const double h1px = event(H1PX{});
const double h1py = event(H1PY{});
const double h1pz = event(H1PZ{});
const double h2px = event(H2PX{});
const double h2py = event(H2PY{});
const double h2pz = event(H2PZ{});
const double h3px = event(H3PX{});
const double h3py = event(H3PY{});
const double h3pz = event(H3PZ{});

const double bpx = h1px + h2px + h3px;
const double bpy = h1py + h2py + h3py;
const double bpz = h1pz + h2pz + h3pz;
const double bp2 = getP2(bpx, bpy, bpz);
const double k1e = getKE(h1px, h1py, h1pz);
const double k2e = getKE(h2px, h2py, h2pz);
const double k3e = getKE(h3px, h3py, h3pz);
const double be = k1e + k2e + k3e;
const double bmass = std::sqrt(be * be - bp2);

hists[omp_get_thread_num()].Fill(bmass);
}
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Avoid repeated 
access to the 
same data for 
more accurate 
instrumentation
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Available mappings and their customization

• AoS: Aligned/Packed, ND-array linearizers, struct member reordering

• SoA: Single/Multi blob, Aligned/Packed sub arrays, ND-array linearizers, struct member reordering

• AoSoA: Inner array size, ND-array linearizers, struct member reordering

• One: Aligned/Packed, struct member reordering, Map all array indices to the same record instance

• BitPackFloatSoA, BitPackIntSoA: Bit count for value/mantissa/exponent, ND-array linearizers, storage type

• Null: Read returns default constructed value, writes are discarded

• ChangeType: Replace record dim types for storage, forward to inner mapping

• Projection: Run function on record dim types on load/store, forward to inner mapping

• Bytesplit: Split all types in static byte arrays, then forward to inner mapping

• Byteswap: Swap bytes of data types on load/store, forward to inner mapping

• Trace: Trace record dim access/read/write counts, then forward to inner mapping

• Heatmap: Count accesses per blob byte (or coarser), then forward to inner mapping

• Split: Split record dimension in two, forward each part to inner mappings, leave or merge blobs of inner 
mappings

• PermuteArrayIndex: Permutate array indices, forward to inner mapping
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Benchmark: Trying a couple of layouts
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Trying a couple of layouts

• Memory mappings can be switched without touching the algorithm
• LLAMA provides many ready-to-use memory mappings
• LLAMA is an ideal platform for rapid exploration by iterating through a list 

of common mappings

• However, the explorable space is huge:
• LLAMA’s mappings have many tuning parameters
• LLAMA mappings can be combined in many ways via meta mappings
• You could add your own mappings – huge possibilities

• Finding the best layout requires insight, tools and some benchmarking. It’s 
unlikely, LLAMA already has it ☺
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Data-oriented design

• … a program optimization approach motivated by efficient usage of 
the CPU cache, used in video game development. The approach is to 
focus on the data layout, separating and sorting fields according to 
when they are needed […]. Proponents include Mike Acton, Scott 
Meyers, and Jonathan Blow.

• … became especially popular in the mid to late 2000s

• From Wikipedia, emphasis mine
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https://en.wikipedia.org/wiki/Data-oriented_design


“Know your data”
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Quiz: how old is this quote?

“Surely there must be a less primitive way of making big changes in the store 
than by pushing vast numbers of words back and forth through the von 
Neumann bottleneck [bus between CPU and memory]. Not only is this tube a 
literal bottleneck for the data traffic of a problem, but, more importantly, it is 
an intellectual bottleneck that has kept us tied to word-at-a-time thinking 
instead of encouraging us to think in terms of the larger conceptual units of 
the task at hand. Thus programming is basically planning and detailing the 
enormous traffic of words through the von Neumann bottleneck, and much 
of that traffic concerns not significant data itself, but where to find it.”

John Backus in his 1977 ACM Turing Award lecture

(replace “word” by “cacheline” and we are in 2023)
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Gathering insight

• How often is which data touched?

• Depends a lot on the filters …

• We could insert an increment of an (atomic) counter after each filter 
to see how often the filter triggers

• We can use LLAMA’s software instrumentation to visualize the access 
pattern
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Gathering insight – filters

#pragma omp parallel for
for(RE::NTupleSize_t i = 0; i < n; i++) {

auto&& event = view[i];

if(event(H1isMuon{})) continue;
if(event(H2isMuon{})) continue;
if(event(H3isMuon{})) continue;

if(event(H1ProbK{}) < probKCut) continue;
if(event(H2ProbK{}) < probKCut) continue;
if(event(H3ProbK{}) < probKCut) continue;

if(event(H1ProbPi{}) > probPiCut) continue;
if(event(H2ProbPi{}) > probPiCut) continue;
if(event(H3ProbPi{}) > probPiCut) continue;

// compute ...

hists[omp_get_thread_num()].Fill(bmass);
}

Step Remaining events

before filtering 8556118 100.00%

H1isMuon filter 7368489 86.12%

H2isMuon filter 6951588 81.25%

H3isMuon filter 6311517 73.77%

H1PropK filter 623038 7.28%

H2PropK filter 95742 1.12%

H3PropK filter 26959 0.32%

J1ProbPi filter 26012 0.30%

J2ProbPi filter 25359 0.30%

J3ProbPi filter 23895 0.28%
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Gathering insight – memory layout – AoS
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1 event = 136 byte

wrap after 64 Bytes



Gathering insight – Heatmaps – AoS
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wrap after one cacheline

100 analyses, max 
100 reads -> data is 
only ever read once!



Gathering insight – Heatmaps – AoS
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For completeness: conversion heatmap
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Insights so far

• Columns H1isMuon/H2isMuon/H3isMuon are hot and accessed 
densely (100% - 81.25%)

• H1PropK is also warm (73.77%), H2PropK still a bit (7.28%)

• H3PropK/J1PropPi/J2PropPi/J3PropPi are cold, similarly cold as the 
remaining event data used for computation (1.12% – 0.28%)

• Let’s design a custom memory layout fitting this access pattern!
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Designing a memory layout 1/7

• Custom layout 1:
• Separate out H1isMuon/H2isMuon/H3isMuon/H1PropK, but keep the 4 

values close (AoS)

• Keep the remaining values close (AoS)

• But: Requires padding and wastes 1/6th of bandwidth on hot data
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Designing a memory layout 2/7

• Custom layout 2:
• Separate H1isMuon/H2isMuon/H3isMuon, keeping the 3 values close (AoS)

• Separate H1PropK

• Keep the remaining values close (AoS)
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Designing a memory layout 3/7

• Custom layout 3:
• Separate H1isMuon/H2isMuon/H3isMuon, keeping the 3 values close (AoS)

• Separate H1PropK and H2PropK into their own arrays

• Keep the remaining values close (AoS)

2023-01-19 27



Designing a memory layout 4/7

• Custom layout 4:
• Separate H1isMuon/H2isMuon/H3isMuon, keeping the 3 values close (AoS)

• Separate H1PropK and H2PropK into a common array (AoS)

• Keep the remaining values close (AoS)
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Benchmark
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Btw: heatmaps for custom layout 4
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Designing a memory layout 5/7

• Know your data, again! H1isMuon/H2isMuon/H3isMuon are int32, 
but only store 0 or 1, we could pack those into bits!

• Custom layout 5:
• Like custom layout 4, but pack the int32s to bits
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Benchmark
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What does perf say?

• Loads and bit-ops are hot 
(expected)

• There are 9 jumps
• Just like our 9 filters

• Jump instructions are hot 
(what?)
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Branch prediction

• Most CPUs are pipelined
• CPU starts executing future instructions while current one is still in-flight
• When executing a branch, the CPU needs to guess where to continue 

(speculative execution)
• When the guess was wrong, CPU throws away a lot of work (pipeline flush)

• Mispredicting a branch is expensive!
• This is probably what we see here in our perf results

• Worst case: branch condition is random (like in our example)
• Best case: branch condition is always the same, or the same for a long time
• We can help the CPU by making branches more predictable

• Easy solution: sort the data set based on branch conditions
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Sorting dataset based on filter outcomes

template<typename View>
void sortView(View& v) {
auto filterResults = [](const auto& e) {

return std::tuple{
e(H1isMuon{}), e(H2isMuon{}), e(H3isMuon{}),
e(H1ProbK{}) < probKCut, ...,
e(H1ProbPi{}) > probPiCut, ...};

};
std::sort(v.begin(), v.end(),

[&](const auto& ea, const auto& eb) {
return filterResults(ea) < filterResults(eb);

});
}
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Benchmark
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Reducing precision

• Execution speed of an analysis is not the only concern

• Vast amounts of experimental data is generated

• Data size matters as well, especially for storage

• How much can we reduce the value’s precision, before the result 
collapses?

• LLAMA can help here as well with corresponding mappings
• Let’s run the analysis and plot some histograms
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Reducing precision analysis results
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Designing a memory layout 6/6 and 7/6

• Know your data, again!
• Floating point data may not need all bits for exponent and mantissa
• Results start to get shaky at exponent < 6, and mantissa < 16

• Custom layout 6:
• Separate H1isMuon/H2isMuon/H3isMuon, pack the int32s to bits, keeping the 3 

values close (bitpacked AoS)
• Separate H1PropK and H2PropK into a common arrays (AoS)
• Keep the remaining values close per event, but reduce their precision

• Either via bitpacking (bitpacked AoS)
• Custom layout 7: Or by changing their data type (double -> float AoS)

• N.B.: bitpacking the H1PropK/H2PropK was too costly
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Final benchmark
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Memory consumption per layout
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Summary and conclusions

• LLAMA allows for rapid layout exploration (after initial integration)
• Common memory layouts readily available

• Know your data, and access pattern
• LLAMA can help with layout visualization and access heatmaps

• Build custom memory layouts by combining existing ones
• or even implement a memory mapping yourself

• Consider the range of values of your data to reduce precision/bits

• Changing data type is usually faster than arbitrary bit compression
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Future work

• Data loaded for the analysis is only needed once. Caching is not needed. Can we 
benefit from non-temporal load instructions?

• The sorted data set puts all selected elements to the bottom of the view. The 
OpenMP static scheduling is probably not suited anymore.

• Calculate how much meaningful data must be loaded by the analysis
• Based on filter branches and data element counts/sizes

• Measure how much data was actually pulled into CPU by the analysis
• Might be an interesting metric in addition to runtime. Also independent of thread scheduling.

• Food for thought on RNTuple:
• Is columnar (SoA) really the true layout for RNTuple? Data that is logically needed together 

should be kept together (e.g. a position’s X, Y, Z)
• Compressing Boolean values (also ints acting as such) to bits?
• Arbitrary bit reductions for floating points?
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Thank you!

Questions?
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