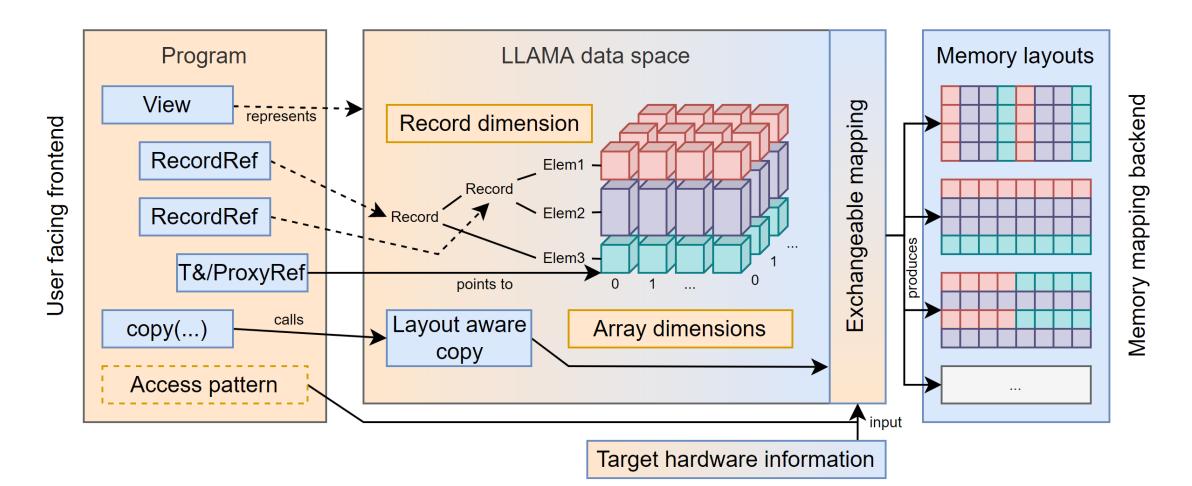
Systematic optimization of the LHCB B2HHH analysis using LLAMA

Bernhard Manfred Gruber

Motivation

• TODO


- I need content for a new CS journal paper
- I would like to test and showcase a few new features in LLAMA, notably reduced precision mappings
- Jakob suggested to try the LHCB B2HHH analysis example

LLAMA

- Low-Level Abstraction of Memory Access
- Separates algorithmic view of data and mapping to memory
 - Different memory layouts may be chosen without touching the algorithm
- Header-only, portable, C++17/C++20 library, LGPL3+
- Designed to integrate with CUDA/HIP, SYCL, alpaka, ...
 - ... but orthogonal
- GitHub: https://github.com/alpaka-group/llama

Concept

LHCB B2HHH analysis

- Is one of the test/benchmark examples for comparing RNTuple/TTree
 - See https://github.com/jblomer/iotools/blob/master/lhcb.cxx
- Characteristics
 - Small and simple analysis
 - No jagged arrays, which are not supported (yet) in LLAMA
 - Several filters leading to sparse reads of columns/events
 - Simple computation and one observable (histogram)
 - Thus, probably memory bound

Dataset and data types

root [0] <mark>auto df = RC</mark>	DOT::RDF::Experimental::FromRNTuple("DecayTree",	Col
"//iotools/B2HHH~r		
Warning in <[ROOT.NTup	ole] Warning	B_F
/home/bgruber/dev/root	<pre>c/tree/ntuple/v7/src/RNTupleSerialize.cxx:1208 in static</pre>	B_\
ROOT::Experimental::RF	<pre>lt<void></void></pre>	H1_
ROOT::Experimental::Ir	<pre>nternal::RNTupleSerializer::DeserializeHeaderV1(const</pre>	H1_
<pre>void*, uint32_t, ROOT:</pre>	::Experimental::RNTupleDescriptorBuilder&)>: Pre-release	H1_
format version: RC 1		H1_
root [2] <mark>*df.Count()</mark>		H1
(unsigned long long) 8	3556118	H1_
<pre>root [e] df.Describe()</pre>		H1_
(ROOT::RDF::RDFDescrip	otion) Dataframe from datasource RNTupleDS	H1_
		H2_
Property	Value	H2_
		H2_
Columns in total	26	H2_
Columns from defines	0	H2_
Event loops run	1	H2_
Processing slots	1	H2_
		H2_
		H3_

Column	Туре	Origin
B_FlightDistance	double	Dataset
B_VertexChi2	double	Dataset
H1_Charge	<pre>std::int32_t</pre>	Dataset
H1_IpChi2	double	Dataset
H1_PX	double	Dataset
H1_PY	double	Dataset
H1_PZ	double	Dataset
H1_ProbK	double	Dataset
H1_ProbPi	double	Dataset
H1_isMuon	<pre>std::int32_t</pre>	Dataset
H2_Charge	<pre>std::int32_t</pre>	Dataset
H2_IpChi2	double	Dataset
H2_PX	double	Dataset
H2_PY	double	Dataset
H2_PZ	double	Dataset
H2_ProbK	double	Dataset
H2_ProbPi	double	Dataset
H2_isMuon	<pre>std::int32_t</pre>	Dataset
H3_Charge	<pre>std::int32_t</pre>	Dataset
H3_IpChi2	double	Dataset
НЗ_РХ	double	Dataset
H3_PY	double	Dataset
H3_PZ	double	Dataset
H3_ProbK	double	Dataset
H3_ProbPi	double	Dataset
H3_isMuon	<pre>std::int32_t</pre>	Dataset

Benchmark setup

- For this exploration we only look at in-memory data layouts
 - Typical analyses include reading data from disk
 - The RNTuple is loaded from disk and converted to a LLAMA view *before* the benchmark
- Analysis parallelized using OpenMP
- Reported times are average of 100 analysis runs
 - Just loading, filtering, computing one observable and histogram fill
 - Excluding histogram creation and reduction
- All code on GitHub: <u>https://github.com/alpaka-group/llama/blob/develop/examples/root/lhcb_analysis/lhcb.cpp</u>

Benchmark machine

- All benchmarks were run on my workstation
- AMD Ryzen 9 5950X 16 cores / 32 threads
- One thread per core
 - OMP_NUM_THREADS=16
 - OMP_PLACES=cores
 - OMP_PROC_BIND=true
- Fun side fact: with SMT disabled in BIOS, 8 threads was faster than 16 threads
 - I blamed it on the non-shared L3 caches ...

Machine (63GB	Machine (63GB total)						
Package L#0							
NUMANode L#0 P#0 (63GB)							
L3 (32MB)				L3 (32MB)			
L2 (512KB)	L2 (512KB)	8x total	L2 (512KB)	L2 (512KB)	L2 (512KB)	8x total	L2 (512KB)
L1d (32KB)	L1d (32KB)]	L1d (32KB)	L1d (32KB)	L1d (32KB)]	L1d (32KB)
L1i (32KB)	L1i (32KB)]	L1i (32KB)	L1i (32KB)	L1i (32KB)]	L1i (32KB)
Core L#0 PU L#0 P#0 PU L#1 P#16	Core L#1 PU L#2 P#1 PU L#3 P#17		Core L#7 PU L#14 P#7 PU L#15 P#23	Core L#8 PU L#16 P#8 PU L#17 P#24	Core L#9 PU L#18 P#9 PU L#19 P#25		Core L#15 PU L#30 P#15 PU L#31 P#31

LHCB B2HHH analysis RNTuple code (adapted)

```
constexpr double prob_k_cut = 0.5;
constexpr double prob_pi_cut = 0.5;
for (auto i : ntuple->GetEntryRange()) {
    if (viewH1IsMuon(i) || viewH2IsMuon(i) || viewH3IsMuon(i))
                  continue:
               (viewH1ProbK(i) < prob_k_cut) continue;
(viewH2ProbK(i) < prob_k_cut) continue;
(viewH3ProbK(i) < prob_k_cut) continue;</pre>
         if
if
         if
        if (viewH1ProbPi(i) > prob_pi_cut) continue;
if (viewH2ProbPi(i) > prob_pi_cut) continue;
if (viewH3ProbPi(i) > prob_pi_cut) continue;
       double b_px = viewH1PX(i) + viewH2PX(i) + viewH3PX(i);
double b_py = viewH1PY(i) + viewH2PY(i) + viewH3PY(i);
double b_pz = viewH1PZ(i) + viewH2PZ(i) + viewH3PZ(i);
double b_p2 = GetP2(b_px, b_py, b_pz);
double k1 E = GetKE(viewH1PX(i), viewH1PY(i), viewH1PZ(i));
double k2 E = GetKE(viewH2PX(i), viewH2PY(i), viewH2PZ(i));
double k3 E = GetKE(viewH3PX(i), viewH3PY(i), viewH3PZ(i));
double b_E = k1_E + k2_E + k3_E;
double b_mass = sqrt(b_E*b_E - b_p2);
         hMass->Fill(b_mass);
                                                      https://github.com/jblomer/iotools/blob/master/lhcb.cxx#L287-L348
```

LLAMA version

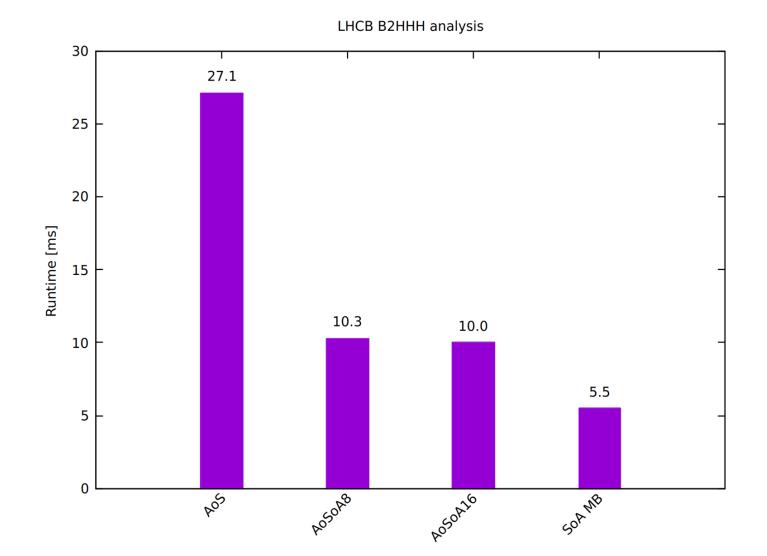
```
#pragma omp parallel for
                                                            const double h1px = event(H1PX{});
for(RE::NTupleSize_t i = 0; i < n; i++) {</pre>
                                                                                                  Avoid repeated
                                                            const double h1py = event(H1PY{});
    auto&& event = view[i];
                                                            const double h1pz = event(H1PZ{});
                                                                                                  access to the
                                                            const double h2px = event(H2PX{});
                                                                                                  same data for
    if(event(H1isMuon{})) continue;
                                                            const double h2py = event(H2PY{});
    if(event(H2isMuon{})) continue;
                                                            const double h2pz = event(H2PZ{});
                                                                                                  more accurate
    if(event(H3isMuon{})) continue;
                                                            const double h3px = event(H3PX{});
                                                                                                  instrumentation
                                                            const double h3py = event(H3PY{});
    if(event(H1ProbK{}) < probKCut) continue;</pre>
                                                            const double h3pz = event(H3PZ{});
    if(event(H2ProbK{}) < probKCut) continue;</pre>
    if(event(H3ProbK{}) < probKCut) continue;</pre>
                                                            const double bpx = h1px + h2px + h3px;
                                                            const double bpy = h1py + h2py + h3py;
                                                            const double bpz = h1pz + h2pz + h3pz;
    if(event(H1ProbPi{}) > probPiCut) continue;
                                                            const double bp2 = getP2(bpx, bpy, bpz);
    if(event(H2ProbPi{}) > probPiCut) continue;
                                                            const double k1e = getKE(h1px, h1py, h1pz);
    if(event(H3ProbPi{}) > probPiCut) continue;
                                                            const double k2e = getKE(h2px, h2py, h2pz);
                                                            const double k3e = getKE(h3px, h3py, h3pz);
                                                            const double be = k1e + k2e + k3e;
                                                            const double bmass = std::sqrt(be * be - bp2);
                                                            hists[omp get thread num()].Fill(bmass);
                                                        }
```

https://github.com/alpaka-group/llama/blob/develop/examples/root/lhcb_analysis/lhcb.cpp

Available mappings and their customization

- AoS: Aligned/Packed, ND-array linearizers, struct member reordering
- SoA: Single/Multi blob, Aligned/Packed sub arrays, ND-array linearizers, struct member reordering
- AoSoA: Inner array size, ND-array linearizers, struct member reordering
- One: Aligned/Packed, struct member reordering, Map all array indices to the same record instance
- BitPackFloatSoA, BitPackIntSoA: Bit count for value/mantissa/exponent, ND-array linearizers, storage type
- Null: Read returns default constructed value, writes are discarded
- ChangeType: Replace record dim types for storage, forward to inner mapping
- **Projection**: Run function on record dim types on load/store, forward to inner mapping
- **Bytesplit**: Split all types in static byte arrays, then forward to inner mapping
- Byteswap: Swap bytes of data types on load/store, forward to inner mapping
- Trace: Trace record dim access/read/write counts, then forward to inner mapping
- Heatmap: Count accesses per blob byte (or coarser), then forward to inner mapping
- **Split**: Split record dimension in two, forward each part to inner mappings, leave or merge blobs of inner mappings
- **PermuteArrayIndex**: Permutate array indices, forward to inner mapping

Primary mappings

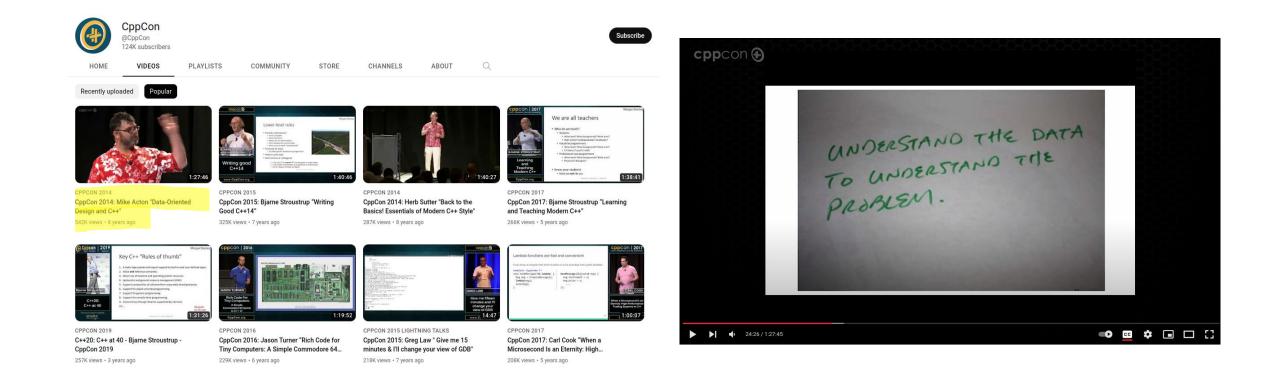

Physical

<u>Computed</u>

rtially)

(Pal

Benchmark: Trying a couple of layouts


Trying a couple of layouts

- Memory mappings can be switched without touching the algorithm
- LLAMA provides many ready-to-use memory mappings
- LLAMA is an ideal platform for rapid exploration by iterating through a list of common mappings
- However, the explorable space is huge:
 - LLAMA's mappings have many tuning parameters
 - LLAMA mappings can be combined in many ways via meta mappings
 - You could add your own mappings huge possibilities
- Finding the best layout requires insight, tools and some benchmarking. It's unlikely, LLAMA already has it ☺

Data-oriented design

- ... a program optimization approach motivated by efficient usage of the CPU cache, used in video game development. The approach is to focus on the **data layout**, **separating** and **sorting** fields according to when they are needed [...]. Proponents include Mike Acton, Scott Meyers, and Jonathan Blow.
- ... became especially popular in the mid to late 2000s
- From Wikipedia, emphasis mine

"Know your data"

Quiz: how old is this quote?

"Surely there must be a less primitive way of making big changes in the store than by pushing vast numbers of words back and forth through the von Neumann bottleneck [bus between CPU and memory]. Not only is this tube a literal bottleneck for the data traffic of a problem, but, more importantly, it is an intellectual bottleneck that has kept us tied to word-at-a-time thinking instead of encouraging us to think in terms of the larger conceptual units of the task at hand. Thus programming is basically planning and detailing the enormous traffic of words through the von Neumann bottleneck, and much of that traffic concerns not significant data itself, but where to find it."

Quiz: how old is this quote?

"Surely there must be a less primitive way of making big changes in the store than by pushing vast numbers of words back and forth through the von Neumann bottleneck [bus between CPU and memory]. Not only is this tube a literal bottleneck for the data traffic of a problem, but, more importantly, it is an intellectual bottleneck that has kept us tied to word-at-a-time thinking instead of encouraging us to think in terms of the larger conceptual units of the task at hand. Thus programming is basically planning and detailing the enormous traffic of words through the von Neumann bottleneck, and much of that traffic concerns not significant data itself, but where to find it."

John Backus in his 1977 ACM Turing Award lecture

(replace "word" by "cacheline" and we are in 2023)

Gathering insight

- How often is which data touched?
- Depends a lot on the filters ...
- We could insert an increment of an (atomic) counter after each filter to see how often the filter triggers
- We can use LLAMA's software instrumentation to visualize the access pattern

Gathering insight – filters

```
#pragma omp parallel for
for(RE::NTupleSize_t i = 0; i < n; i++) {</pre>
    auto&& event = view[i];
    if(event(H1isMuon{})) continue;
    if(event(H2isMuon{})) continue;
    if(event(H3isMuon{})) continue;
    if(event(H1ProbK{}) < probKCut) continue;</pre>
    if(event(H2ProbK{}) < probKCut) continue;</pre>
    if(event(H3ProbK{}) < probKCut) continue;</pre>
    if(event(H1ProbPi{}) > probPiCut) continue;
    if(event(H2ProbPi{}) > probPiCut) continue;
    if(event(H3ProbPi{}) > probPiCut) continue;
    // compute ...
```

```
hists[omp_get_thread_num()].Fill(bmass);
```

Step	Remainir	ng events
before filtering	8556118	100.00%
H1isMuon filter	7368489	86.12%
H2isMuon filter	6951588	81.25%
H3isMuon filter	6311517	73.77%
H1PropK filter	623038	7.28%
H2PropK filter	95742	1.12%
H3PropK filter	26959	0.32%
J1ProbPi filter	26012	0.30%
J2ProbPi filter	25359	0.30%
J3ProbPi filter	23895	0.28%

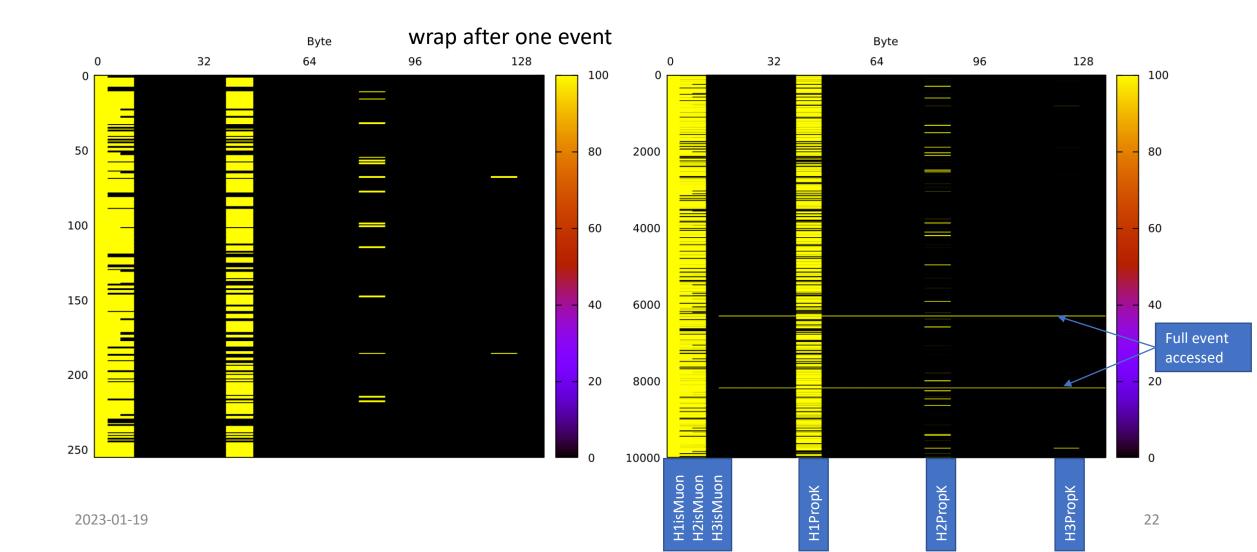
}

Gathering insight – memory layout – AoS

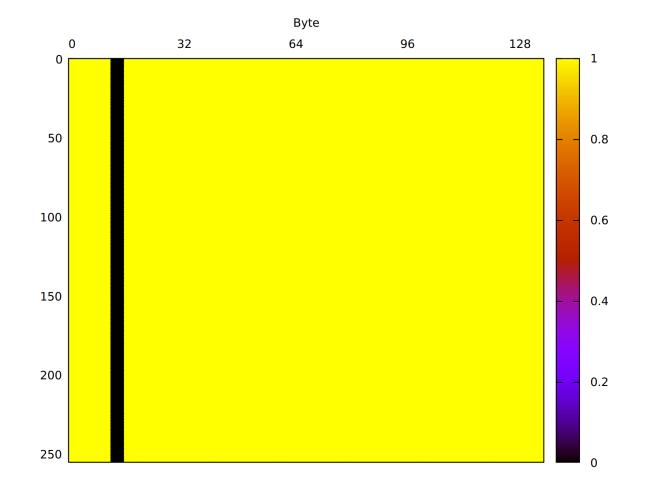
wrap after 64 Bytes

		0.1101.111														
		0 H2isMuon	0 H3isMuon			I1PX		1PY	0 H		0 H1F			ProbPi		2PX
	01	H2PY	0 H	2PZ	0 H2	ProbK	0 H2	ProbPi	0 H3	IPX	0 H:	3PY	, , ,0Н	I3PZ	0 H3F	ProbK
	0 НЗ	ProbPi	1 H1isMuon	1 H2isMuon	1 H3isMuon		1H	1 H1PX		PY	1 H1PZ		1 H1ProbK		1, H1F	robPi
	11	H2PX	1 H	12PY	, 1H		1 H2	ProbK	1 H2ProbPi		1 H3PX		1 H3PY		1 H	3PZ
	1 H3	3ProbK	1 H3F	ProbPi	2 H1isMuon	2 H2isMuon	2 H3isMuon		2 H	PX	2 H	1PY	2 H	I1PZ	2 H1F	ProbK
	2 H1	ProbPi	2 H	I2PX	2 H	2PY	2 H	2PZ	2 H2F	robK	2 H2F	robPi	2 H	ІЗРХ	2 H	3PY
	21	H3PZ	2 H3F	ProbK	2 H3I	ProbPi	3 H1isMuon	3 H2isMuon	3 H3isMuon		3 H	1PX	3 Н	I1PY	3 Н	1PZ
	3 H1	1ProbK	3 H1F	ProbPi	3 Н	2PX	3 H	2PY	3 H2	PZ	3 H2F	ProbK	3 H2I	ProbPi	3 H	3PX
	31	H3PY	3 Н	I3PZ	3 H3	ProbK	3 H3I	ProbPi	4 H1isMuon	4 H2isMuon	4 H3isMuon		4 H	I1PX	4 H	1PY
	4	H1PZ	4 H1F	ProbK	4 H1	ProbPi	4 H	4 H2PX		4 H2PY		4 H2PZ		4 H2ProbK		robPi
Blob: 0	4	НЗРХ	4 H	I3PY	4 H	I3PZ	4 H3	4 H3ProbK		robPi	5 H1isMuon	5 H2isMuon	5 ₁ H3işMuqn		5 H	1PX
	51	H1PY	5 H	I1PZ	5 H1	ProbK	5 H1	ProbPi	5 H2PX		5 H:	2PY	5 H2PZ		5 H2F	ProbK
	5 H2	ProbPi	5 H	ІЗРХ	5 H	I3PY	5 H	3PZ	5 H3ProbK		5 H3ProbPi		6 H1isMuon	6 H2isMuon	6 H3isMuon	
	61	H1PX	6 H	I1PY	6 H	1PZ	6 H1	ProbK	6 H1ProbPi		6 H2PX		6 H2PY		6 H	2PZ
	6 H2	2ProbK	6 H2F	ProbPi	6 H	I3PX	6 H	3PY	6 H3PZ		6 H3ProbK		6 H3ProbPi		7 H1isMuon	7 H2isMuon
	7 H3isMuon		7 H	I1PX	, 7 н	1PY	7 H	7 H1PZ		7 H1ProbK		7 H1ProbPi		7 H2PX		2PY
	71	H2PZ	7 H2F	ProbK	7 H2	7 H2ProbPi		3PX	7 H3	IPY	7 H3PZ		7 H3ProbK		7 H3F	robPi
	8 H1isMuon	8 H2isMuon	8 H3isMuon		8 H	1PX	8 H	1PY	8 H1PZ		8 H1ProbK		8 H1ProbPi		8 H:	2PX
	81	H2PY	8 H	I2PZ	8 H2	ProbK	8 H2ProbPi		8 H3	IPX	8 H	3PY	8 H	I3PZ	8 H3F	ProbK
	8 H3	ProbPi	9 H1isMuon	9 H2isMuon	9 H3isMuon		9 H1PX		9 H1PY		9 H1PZ		9 H1ProbK		9 H1ProbPi	
	91	H2PX	9 H	I2PY	9 H	2PZ	9 H2ProbK		9 H2ProbPi		9 H3PX		9 H3PY		9 H3PZ	
	9 H3	3ProbK	9 H3F	ProbPi												

1 event = 136 byte


Gathering insight – Heatmaps – AoS

wrap after one cacheline only ever read once! Byte Byte


100 analyses, max

100 reads -> data is

Gathering insight – Heatmaps – AoS

For completeness: conversion heatmap

Insights so far

- Columns H1isMuon/H2isMuon/H3isMuon are hot and accessed densely (100% - 81.25%)
- H1PropK is also warm (73.77%), H2PropK still a bit (7.28%)
- H3PropK/J1PropPi/J2PropPi/J3PropPi are cold, similarly cold as the remaining event data used for computation (1.12% 0.28%)
- Let's design a custom memory layout fitting this access pattern!

Designing a memory layout 1/7

- Custom layout 1:
 - Separate out H1isMuon/H2isMuon/H3isMuon/H1PropK, but keep the 4 values close (AoS)
 - Keep the remaining values close (AoS)
 - But: Requires padding and wastes 1/6th of bandwidth on hot data

	0 H1isMuon 0 H2isMuon	0 H3isMuon	0 H1ProbK	1 H1isMuon 1 H2isMuon	1 H3isMuon	1 H1ProbK	2 H1isMuon 2 H2isMuon	2 H3isMuon
Blob: 0	2 H1ProbK	3 H1isMuon 3 H2isMuon	3 H3isMuon	3 H1ProbK	4 H1isMuon 4 H2isMuon	4 H3isMuon	4 H1ProbK	5 H1isMuon 5 H2isMuon
	5 H3isMuon	5 H1ProbK	6 H1isMuon 6 H2isMuon	6 H3isMuon	6 H1ProbK	7 H1isMuon 7 H2isMuon	7 H3isMuon	7 H1ProbK
	8 H1isMuon 8 H2isMuon	8 H3isMuon	8 H1ProbK	9 H1isMuon 9 H2isMuon	9 H3işMuqn	9 H1ProbK		
		0.11151/	0.007	A 14 P 1 P	0.110774	0.10534	0.0007	0.1107 .1.17
	0 H1PX		0 H1PZ	0 H1ProbPi	0 H2PX	0 H2PY	0 H2PZ	0 H2ProbK
	0 H2ProbPi	0 H3PX	0 H3PY	0 H3PZ	0 H3ProbK	0 H3ProbPi	1 H1PX	1 H1PY
	1 H1PZ	1 H1ProbPi	1 H2PX	1 H2PY	1 H2PZ	1 H2ProbK	1 H2ProbPi	1 H3PX
	1 H3PY	1 H3PZ	1 H3ProbK	1 H3ProbPi	2 H1PX	2 H1PY	2 H1PZ	2 H1ProbPi
	2 H2PX	2 H2PY	2 H2PZ	2 H2ProbK	2 H2ProbPi	2 H3PX	2 H3PY	2 H3PZ
	2 H3ProbK	2 H3ProbPi	3 H1PX	3 H1PY	3 H1PZ	3 H1ProbPi	3 H2PX	3 H2PY
	3 H2PZ	3 H2ProbK	3 H2ProbPi	3 H3PX	3 H3PY	3 H3PZ	3 H3ProbK	3 H3ProbPi
	4 H1PX	4 H1PY	4 H1PZ	4 H1ProbPi	4 H2PX	4 H2PY	4 H2PZ	4 H2ProbK
Blob: 1	4 H2ProbPi	4 H3PX	4 H3PY	4 H3PZ	4 H3ProbK	4 H3ProbPi	5 H1PX	5 H1PY
	5 H1PZ	5 H1ProbPi	5 H2PX	5 H2PY	5 H2PZ	5 H2ProbK	5 H2ProbPi	5 H3PX
	5 H3PY	5 H3PZ	5 H3ProbK	5 H3ProbPi	6 H1PX	6 H1PY	6 H1PZ	6 H1ProbPi
	6 H2PX	6 H2PY	6 H2PZ	6 H2ProbK	6 H2ProbPi	6 H3PX	6 H3PY	6 H3PZ
	6 H3ProbK	6 H3ProbPi	7 H1PX	7 H1PY	7 H1PZ	7 H1ProbPi	7 H2PX	7 H2PY
	7 H2PZ	7 H2ProbK	7 H2ProbPi	7 H3PX	7 H3PY	7 H3PZ	7 H3ProbK	7 H3ProbPi
	8 H1PX	8 H1PY	8 H1PZ	8 H1ProbPi	8 H2PX	8 H2PY	8 H2PZ	8 H2ProbK
	8 H2ProbPi	8 H3PX	8 H3PY	8 H3PZ	8 H3ProbK	8 H3ProbPi	9 H1PX	9 H1PY
	9 H1PZ	9 H1ProbPi	9 H2PX	9 H2PY	9 H2PZ	9 H2ProbK	9 H2ProbPi	9 H3PX
	9 H3PY		9 H3ProbK	9. H3ProbPi				

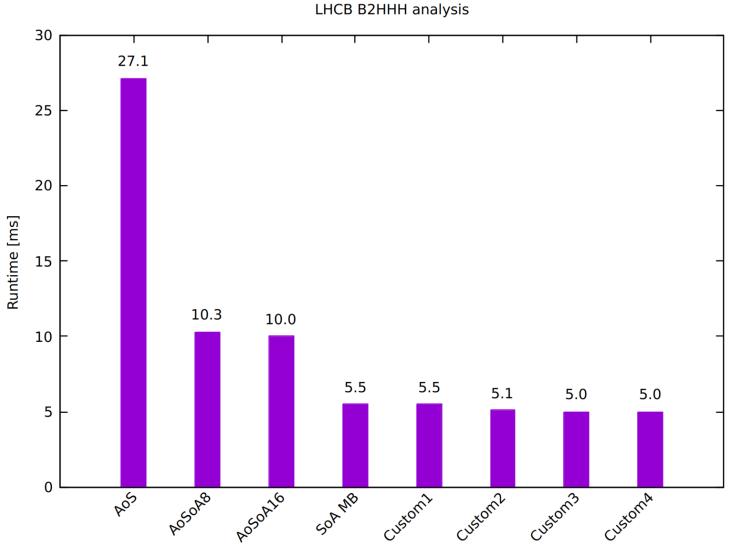
Designing a memory layout 2/7

- Custom layout 2:
 - Separate H1isMuon/H2isMuon/H3isMuon, keeping the 3 values close (AoS)
 - Separate H1PropK
 - Keep the remaining values close (AoS)

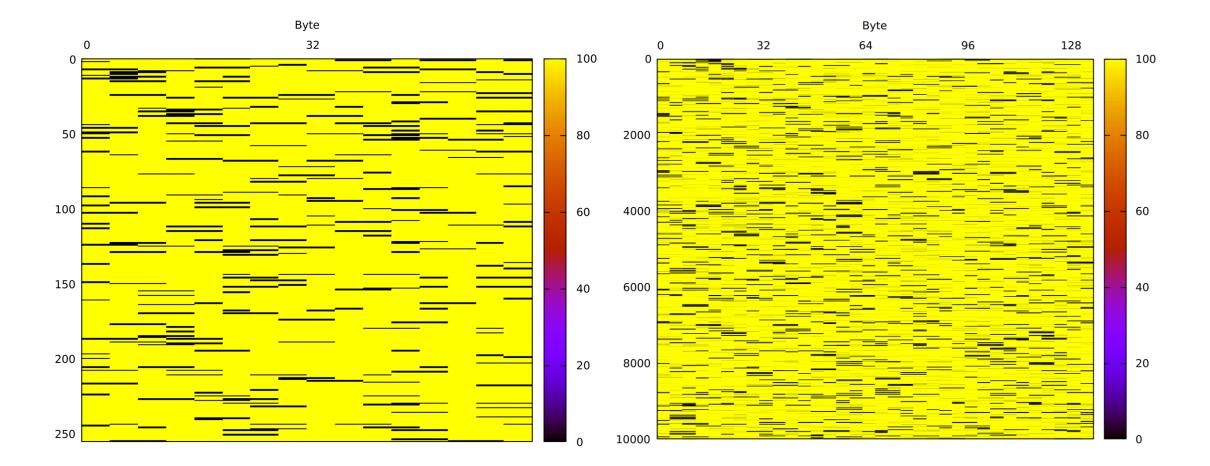
Blob: 0	0 H1isMuon	0 H2isMuon	0 H3isMuon	1 H1isMuon	1 H2isMuon	1 H3isMuon	2 H1isMuon	2 H2isMuon	2 H3isMuon	3 H1isMuon	3 H2isMuon	3 H3isMuon	4 H1isMuon	4 H2isMuon	4 H3isMuon	5 H1isMuor						
	5 H2isMuon	5 H3isMuon	6 H1isMuon	6 H2isMuon	6 H3isMuon	7 H1isMuon	7 H2isMuon	7 H3isMuon	8 H1isMuon	8 H2isMuon	8 H3isMuon	9 H1isMuon	9 H2isMuon	9 H3isMuon								
Blob: 1	ι η O H1F					2 H1ProbK 3 H1ProbK		4 H1	4 H1ProbK		5 H1ProbK		ProbK	7 H1ProbK								
	8 H1F	ProbK	9 H1I	ProbK																		
	0 H1PX		0 H1PY		, , ,0Н	1PZ	0 H1F	ProbPi	, , ,0 н	2PX	0 Н	2PY	, , он	2PZ	0 H2	ProbK						
	0 H2ProbPi		0 H	3PX	0 H	3PY	, , он	3PZ	0 H3I	ProbK	0, H3F	robPi	, , ₁ 1H	1PX	1H	I1PY						
	1 H	1PZ	1, H1F	ProbPi	1H	2PX	1H	2PY	1H	2PZ	1 H2	ProbK	, , 1,H2I	ProbPi	1H	ІЗРХ						
	1 H	BPY	1 H	3PZ	1 H3I	ProbK	1, H3F	ProbPi	2 H	2 H1PX		2 H1PY		1PZ	2 H1Pro							
	2 H	2 H2PY 2 H2PZ 2 H2PZ		2PZ	2 H2	ProbK	2 H2F	2 H2ProbPi		2 H3PX		2 H3PY		I3PZ								
	2 H3F	ProbK	2 H3F	ProbPi	3 H	3 H1PX		1PY	, , 3 н	3 H1PZ 3 H3PY		robPi	, 3 н	2PX	3 H	I2PY						
	3 H:	2PZ	3 H2I	ProbK	3 H2F	ProbPi	3 H3PX		3 Н			3PZ	3 НЗ	ProbK	3 H3I	ProbPi						
	4 H	IPX	4 H	1PY	4 H1PZ		4 H1PZ		4 H1PZ		4 H1PZ		4 H1P	ProbPi	4 H	2PX	4 H2PY		4 H	2PZ	4 H2	ProbK
Blob: 2	4 H2F	robPi	4 H	3PX	4 H	3PY	4 H	3PZ	4 H3ProbK		4 H3ProbPi		5 H1PX		5 H	I1PY						
	5 H	IPZ	5 H1F	ProbPi	5 H	2PX	5 H	2PY	5 H	2PZ	5 H2ProbK		5 H2ProbPi		5 H	ІЗРХ						
	5 H:	3PY	5 H	3PZ	5 H3I	ProbK	5 H3F	robPi	6 H	1PX	6 H	1PY	6 H	1PZ	6 H1I	ProbPi						
	6 H:	2PX	6 H	2PY	6 H	2PZ	6 H2	ProbK	6 H2F	ProbPi	6 H	3PX	6 H	3PY	6 Н	I3PZ						
	6 H3F	ProbK	6 H3F	ProbPi	7 H	1PX	7 H	1PY	, 7Н	1PZ	7 H1F	robPi	7 H	2PX	7 H	I2PY						
	7 H:	2PZ	7 H2	ProbK	7 H2F	ProbPi	7 H3PX		7 H3PX		7 H	3PY	, 7 Н	3PZ	7 H3	ProbK	7 H3I	ProbPi				
	8 H	IPX	8 H	1PY	8 H	1PZ	8 H1ProbPi		8 H	2PX	8 H	2PY	8 H2PZ		8 H2	ProbK						
	8 H2F	robPi	8 H	3PX	8 H	3PY	8 H3PZ		8 H3	ProbK	8 H3ProbPi		9 H	1PX	. 9 Н	I1PY						
	9 H	1PZ	9 H1F	ProbPi	9 H	2PX	9 H2PY		9 Н	2PZ	9 H2	ProbK	9 H2I	ProbPi	9 H	I3PX						
	9 H:	3PY	, , ,9 н	3PZ, , ,	9 H3I	ProbK	9 H3F	ProbPi														

Designing a memory layout 3/7

- Custom layout 3:
 - Separate H1isMuon/H2isMuon/H3isMuon, keeping the 3 values close (AoS)
 - Separate H1PropK and H2PropK into their own arrays
 - Keep the remaining values close (AoS)


Blob: 0	0 H1isMuon	0 H2isMuon	0 H3isMuon	1 H1isMuon	1 H2isMuon	1 H3isMuon	2 H1isMuon	2 H2isMuon	2 H3isMuon	3 H1isMuon	3 H2isMuon	3 H3isMuon	4 H1isMuon	4 H2isMuon	4 H3isMuon	5 H1isMuor
	5 H2isMuon	5 H3isMuon	6 H1isMuon	6 H2isMuon	6 H3isMuon	7 H1isMuon	7 H2isMuon	7 H3isMuon	8 H1isMuon	8 H2isMuon	8 H3isMuon	9 H1isMuon	9 H2isMuon	9 H3isMuon		
Blob: 1	0 H1F	ProbK	1 H1F	ProbK	2 H1	ProbK	3 H1	ProbK	4 H1	ProbK	5 H1	ProbK	6 H1	ProbK	7 H1	ProbK
	8 H1F	ProbK	9 H1F	ProbK												
Blob: 2	2 0 H2ProbK 1 H2ProbK		ProbK	2 H2ProbK 3 H2ProbK			4 H2	ProbK	5 H2	ProbK	6 H2	ProbK	7 H2	ProbK		
100.2	8 H2F	ProbK	9 H2F	ProbK												
	0 H	IPX	он	1PY	0 H	1PZ	0 H1F	ProbPi	0 H	2PX	0 H	2PY	ОН	2PZ	0 H2F	ProbPi
	0 H	3PX	0 H	3PY	0 H	3PZ	0 H3I	ProbK	0 H3F	robPi	, ₁ 1H	1PX	, 1H	1PY	1 H	1PZ
	1 H1F	robPi	1 H	2PX	1H	2PY	1H	2PZ	1 H2F	robPi	1 H	3PX	1 H	3PY	1 H	I3PZ
	1 H3F	ProbK	1 H3F	ProbPi	2 H1PX 2 H3PX		2 H	1PY	2 H	1PZ	2 H1	ProbPi	2 H	2PX	2 H	2PY
	2 H	2PZ	2 H2F	ProbPi			2 H3PX		2 H	3PY	2 H	3PZ	2 H3	ProbK	2 H3F	ProbPi
	3 Н	IPY	, , ,3 н	1PZ	3 H1F	ProbPi	, зн	2PX	3 Н	2PY	, 3 Н	2PZ	3 H2F	robPi	3 H	I3PX
	3 Н	3PY	зн	3PZ	3 H3	ProbK	3 НЗГ	ProbPi	4 H	1PX	4 H	1PY	4 H	1PZ	4 H1	ProbPi
	4 H	2PX	4 H	2PY	4 H	2PZ	4 H2F	ProbPi	4 H	3PX	4 H	3PY	4 H	3PZ	4 H3	ProbK
Blob: 3	4 H3F	robPi	5 H	1PX	5 H	1PY	5 H	1PZ	5 H1F	robPi	5 H	2PX	5 H	2PY	5 H	2PZ
	5 H2F	robPi	5 H	3PX	5 H	3PY	5 H	3PZ	5 H3I	ProbK	5 H3I	ProbPi	6 H	1PX	6 H	1PY
	6 H	IPZ	6 H1F	ProbPi	6 H	2PX	6 H	2PY	6 H	2PZ	6 H2	ProbPi	6 H	3PX	6 H	I3PY
	6 H	3PZ	6 H3F	ProbK	6 H3F	ProbPi	7 H	1PX	7 H	1PY	7 H	1PZ	7 H1F	ProbPi	7 H	2PX
	7 H	2PY	7 H	2PZ	7 H2F	ProbPi	7 H	3PX	7 H	3PY	, 7 Н	3PZ	7 H3F	ProbK	7 H3I	ProbPi
	8 H	IPX	8 H	1PY	8 H	1PZ	8 H1F	ProbPi	8 H	2PX	8 H	2PY	8 H	2PZ	8 H2F	ProbPi
	8 H	BPX	8 H	3PY	8 H	3PZ	8 H3I	ProbK	8 H3F	robPi	9 H	1PX	9 H	1PY	9 Н	1PZ
	9 H1F	robPi	9 H:	2PX	9 H	2PY	9 H	2PZ	9 H2F	ProbPi	9 H3PX		9 H3PY		9 H	I3PZ
	9 H3F	ProbK	9 H3F	ProbPi												

Designing a memory layout 4/7

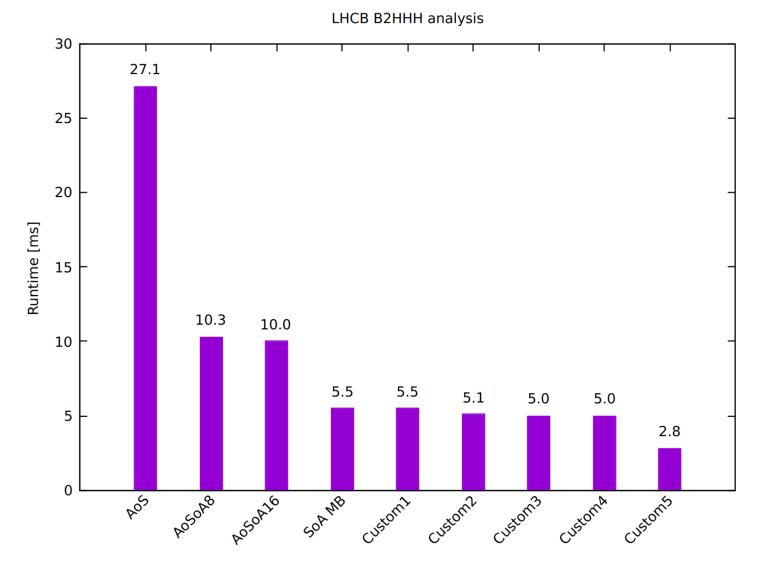

- Custom layout 4:
 - Separate H1isMuon/H2isMuon/H3isMuon, keeping the 3 values close (AoS)
 - Separate H1PropK and H2PropK into a common array (AoS)
 - Keep the remaining values close (AoS)

Blob: 0	0 H1isMuon	0 H2isMuon	0 H3isMuon	1 H1isMuon	1 H2isMuon	1 H3isMuon	2 H1isMuon	2 H2isMuon	2 H3isMuon	3 H1isMuon	3 H2isMuon	3 H3isMuon	4 H1isMuon	4 H2isMuon	4 H3isMuon	5 H1isMuon																																																																		
	5 H2isMuon	5 H3isMuon	6 H1isMuon	6 H2isMuon	6 H3işMuon	7 H1isMuon	7 H2isMuon	7 H3isMuon	8 H1isMuon	8 H2isMuon	8 H3isMuon	9 H1isMuon	9 H2isMuon	9 H3isMuon																																																																				
	0.11	ProbK	0.42	ProbK	1 111	ProbK	1 112	ProbK	2 11	ProbK	2 112	ProbK	3 11	ProbK	3 112	2ProbK																																																																		
lob: 1	1 1 1 1 1 1	ProbK		ProbK	1 1 1000	ProbK		ProbK	6 H1ProbK 6 H2Pro					ProbK	7 H2ProbK																																																																			
		ProbK		ProbK		ProbK		ProbK		10Ditt	9112	lobit																																																																						
									I																																																																									
	, , ,0 H	1PX	0 H	I1PY	, , O H	1PZ	0 H1	ProbPi	0 H	2PX	, , , ОН	2PY	0 H	2PZ	0 H2	ProbPi																																																																		
	0 H	3PX	0 Н	13PY	0 H	3PZ	0 H3	ProbK	0 H3I	ProbPi	1 H	1PX	1H	1PY	1⊦	H1PZ																																																																		
	1,H1	ProbPi	, ₁ 1H	I2PX	1H	2PY	. ,1⊦	2PZ	1 H2	ProbPi	1 H	3PX	1 H	3PY	, ,1⊦	H3PZ																																																																		
	1 H3	ProbK	1, H3F	ProbPi	2 H	1PX	2⊦	1PY	2 H	1PZ	2 H1F	ProbPi	2 H	2PX	2⊦	H2PY																																																																		
	2 H	2PZ	2 H2F	ProbPi	2 H	3PX	2 ⊢	3PY	2 H	3PZ	2 H3I	ProbK	2 H3I	ProbPi	3⊦	H1PX																																																																		
	3 H	1PY	, , 3 Н	I1PZ	3 H1F	ProbPi	3 H2PX		3 H	2PY	, , ,3Н	2PZ	3 H2I	ProbPi	3⊦	НЗРХ																																																																		
	3 H	3PY	, зн	I3PZ	3 H3I	3 H3ProbK		3 H3ProbK		3 H3ProbK		3 H3ProbK		3 H3ProbK		3 H3ProbK		3 H3ProbK		3 H3ProbPi		1PX	4 H	1PY	4 H	1PZ	4 H1	ProbPi																																																						
	4 H	2PX	4 H	12PY	4 H	4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2PZ		4 H2ProbPi		3PX	4 H	3PY	4 H	3PZ	4 H3	3ProbK
lob: 2	4 H3	ProbPi	5 H	I1PX	5 H	1PY	5⊢	1PZ	5 H1I	ProbPi	5 H2PX		5 H2PY		5⊦	H2PZ																																																																		
	5 H2	ProbPi	5 H	I3PX	5 H	3PY	5⊢	3PZ	5 H3	ProbK	5 H3F	ProbPi	6 H	1PX	61	H1PY																																																																		
	6 H	1PZ	6 H1	ProbPi	6 H	2PX	6⊢	2PY	6 H	2PZ	6 H2F	ProbPi	6 H	3PX	6⊦	H3PY																																																																		
	6H	3PZ	6 H3	ProbK	6 H3F	ProbPi	7⊢	1PX	7 H	1PY	, 7Н	1PZ	7 H1	ProbPi	7⊦	H2PX																																																																		
	7 H	2PY	7 H	I2PZ	7 H2F	ProbPi	7⊢	3PX	7 H	3PY	, 7Н	3PZ	7 H3	ProbK	7 H3	ProbPi																																																																		
	8 H	1PX	8 H	IPY	8 H	1PZ	8 H1	8 H1ProbPi		8 H2PX		2PY	8 H2PZ		8 H2	ProbPi																																																																		
	8 H	3PX	8 H	I3PY	8H	3PZ	8 H3	8 H3ProbK		8 H3ProbPi		9 H1PX		9 H1PY		9 H1PY		H1PZ																																																																
	9 H1	ProbPi	9 H	I2PX	9 H	2PY	9 -	2PZ	9 H2I	ProbPi	9 H	3PX	9 H	3PY	91	H3PZ																																																																		
	9 H3	ProbK	9. H3F	ProbPi																																																																														

Benchmark

Btw: heatmaps for custom layout 4

Designing a memory layout 5/7


- Know your data, again! H1isMuon/H2isMuon/H3isMuon are int32, but only store 0 or 1, we could pack those into bits!
- Custom layout 5:

D1-1-0

• Like custom layout 4, but pack the int32s to bits

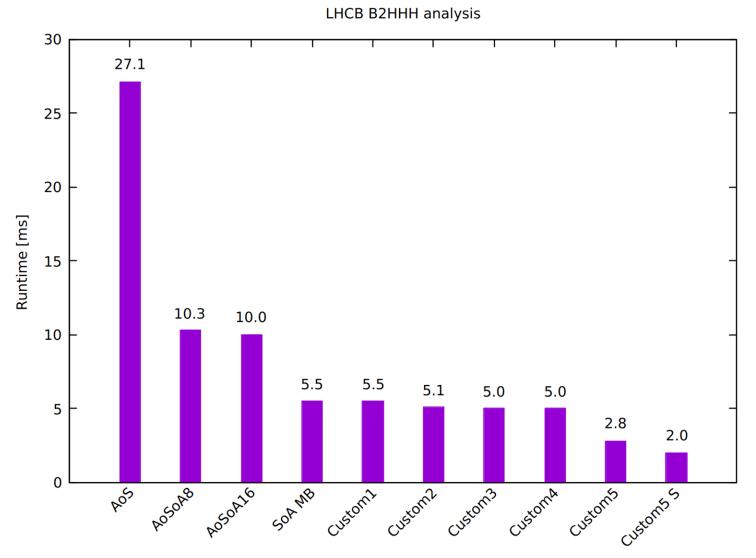
B100: 0 2i	sM ^a isM ^a isM ^a isM							
	0 H1ProbK	0 H2ProbK	1 H1ProbK	1 H2ProbK	2 H1ProbK	2 H2ProbK	3 H1ProbK	3 H2ProbK
Blob: 1	4 H1ProbK	4 H2ProbK	5 H1ProbK	5 H2ProbK	6 H1ProbK	6 H2ProbK	7 H1ProbK	7 H2ProbK
	8 H1ProbK	8 H2ProbK	9 H1ProbK	9 H2ProbK				
	0 H1PX	0 H1PY	0 H1PZ	0 H1ProbPi	0 H2PX	0 H2PY	0 H2PZ	0 H2ProbPi
	0 H3PX	0 H3PY	0 H3PZ	0 H3ProbK	0 H3ProbPi	1 H1PX	1 H1PY	1 H1PZ
	1 H1ProbPi	1 H2PX	1 H2PY	1 H2PZ	1 H2ProbPi	1 H3PX	1 H3PY	1 H3PZ
	1 H3ProbK	1 H3ProbPi	2 H1PX	2 H1PY	2 H1PZ	2 H1ProbPi	2 H2PX	2 H2PY
	2 H2PZ	2 H2ProbPi	2 H3PX	2 H3PY	2 H3PZ	2 H3ProbK	2 H3ProbPi	3 H1PX
	3 H1PY	3 H1PZ	3 H1ProbPi	3 H2PX	3 H2PY	3 H2PZ	3 H2ProbPi	3 H3PX
	3 H3PY	3 H3PZ	3 H3ProbK	3 H3ProbPi	4 H1PX	4 H1PY	4 H1PZ	4 H1ProbPi
	4 H2PX	4 H2PY	4 H2PZ	4 H2ProbPi	4 H3PX	4 H3PY	4 H3PZ	4 H3ProbK
Blob: 2	4 H3ProbPi	5 H1PX	5 H1PY	5 H1PZ	5 H1ProbPi	5 H2PX	5 H2PY	5 H2PZ
	5 H2ProbPi	5 H3PX	5 H3PY	5 H3PZ	5 H3ProbK	5 H3ProbPi	6 H1PX	6 H1PY
	6 H1PZ	6 H1ProbPi	6 H2PX	6 H2PY	6 H2PZ	6 H2ProbPi	6 H3PX	6 H3PY
	6 H3PZ	6 H3ProbK	6 H3ProbPi	7 H1PX	7 H1PY	7 H1PZ	7 H1ProbPi	7 H2PX
	7 H2PY	7 H2PZ	7 H2ProbPi	7 H3PX	7 H3PY	7 H3PZ	7 H3ProbK	7 H3ProbPi
	8 H1PX	8 H1PY	8 H1PZ	8 H1ProbPi	8 H2PX	8 H2PY	8 H2PZ	8 H2ProbPi
	8 H3PX	8 H3PY	8 H3PZ	8 H3ProbK	8 H3ProbPi	9 H1PX	9 H1PY	9 H1PZ
	9 H1ProbPi	9 H2PX	9 H2PY	9 H2PZ	9 H2ProbPi	9 H3PX	9 H3PY	9 H3PZ
	0 LIOD-shi	0.1100						

Benchmark

What does perf say?

- Loads and bit-ops are hot (expected)
- There are 9 jumps
 - Just like our 9 filters
- Jump instructions are hot (what?)

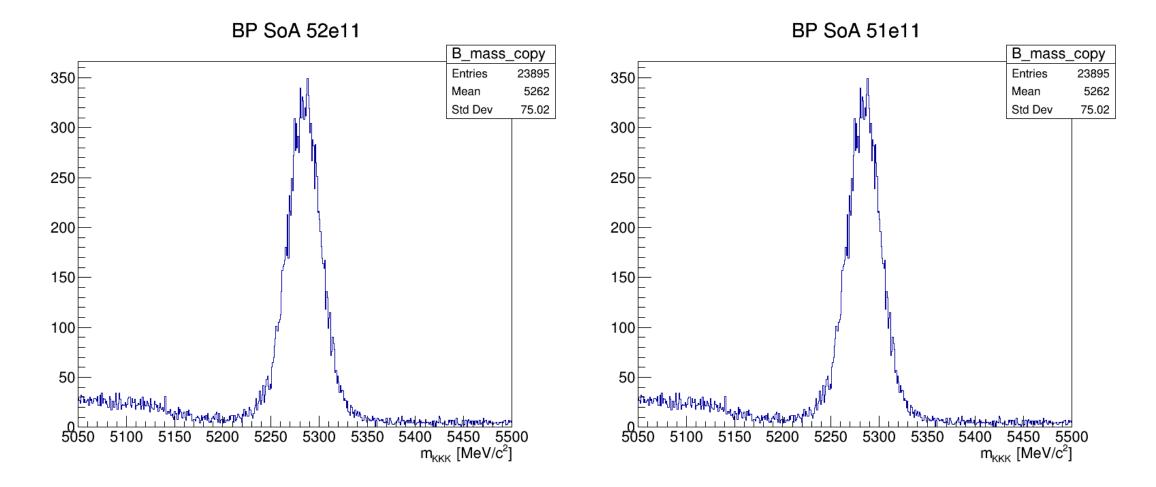
0.00	80: mov	0x0(%r13),%rsi
6.20	lea	(%rbx,%rbx,2),%eax
0.17	MOV	%eax,%edx
	MOV	0x18(%rsi),%rcx
7.52	shr	\$0x5.%edx
0.07	MOV	(%rcx,%rdx,4),%edx
7.95	bt	%eax,%edx
1.78	↓ jb	290
1.92	mov	%ebp,%eax
0.40	shr	\$0x5,%eax
0.15	mov	(%rcx,%rax,4),%eax
0.22	bt	%ebp,%eax
1.29	↓ jb	290
1.10	lea	0x1(%rbp),%edx
0.11	mov	%edx,%eax
0.18	shr	\$0x5,%eax
0.85	mov	(%rcx,%rax,4),%eax
0.16	bt	%edx,%eax
0.11	↓ jb	290
1.21	mov	0x30(%rsi),%rdx
1.25	MOV	%rbx,%rax
0.17	shl	\$0x4,%rax
0.05		(%rdx,%rax,1),%xmm1
3.42	↓ja	290
0.90	comisd	0x8(%rdx,%rax,1),%xmm1
7.20	↓ ja	290
0.24	mov	0x48(%rsi),%rax
0.96	comisd	-0x8(%rax,%r15,1),%xmm1
24.14	↓ja	290
0.08	movsd	-0x48(%rax,%r15,1),%xmm0
5.40	comisd	%XMM1,%XMM0
0.02	↓ja	290
0.05	movsd	
	comisd	-
0 01	↓ ja	290
0.01	movsd	(%rax,%r15,1),%xmm0
0.22	comisd	%xmm1,%xmm0 290
0 01	↓ja movsd	
0.01 0.48	movsd	-0x60(%rax,%r15,1),%xmm6 -0x58(%rax,%r15,1),%xmm4
0.48	movsd	-0x38(%13x,%115,1),%xmm2
	movsd	-0x40(%13x,%115,1),%xmm12 -0x38(%rax,%r15,1),%xmm11
	PIOVSU	-0,30(%) 37,%) 13,1),%


Branch prediction

- Most CPUs are pipelined
- CPU starts executing future instructions while current one is still in-flight
- When executing a branch, the CPU needs to guess where to continue (speculative execution)
- When the guess was wrong, CPU throws away a lot of work (pipeline flush)
 - Mispredicting a branch is expensive!
 - This is probably what we see here in our perf results
- Worst case: branch condition is random (like in our example)
- Best case: branch condition is always the same, or the same for a long time
- We can help the CPU by making branches more predictable
 - Easy solution: sort the data set based on branch conditions

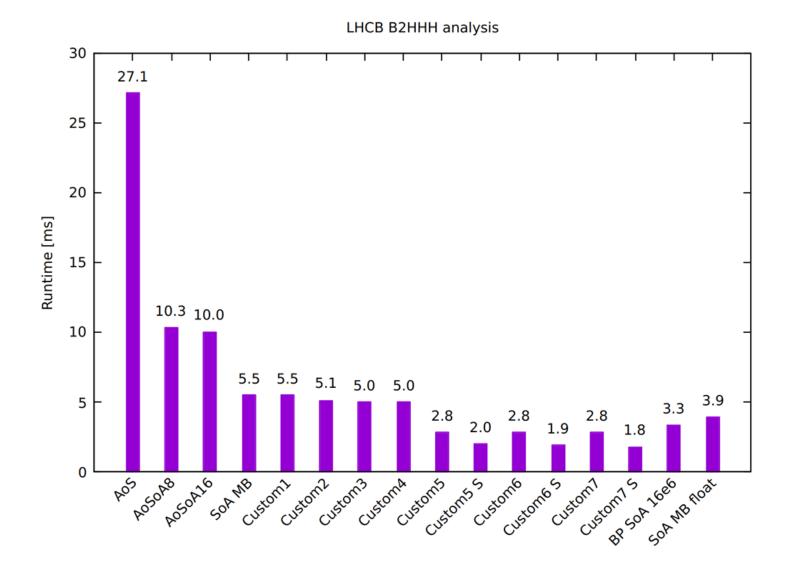
Sorting dataset based on filter outcomes

```
template<typename View>
void sortView(View& v) {
  auto filterResults = [](const auto& e) {
    return std::tuple{
      e(H1isMuon{}), e(H2isMuon{}), e(H3isMuon{}),
      e(H1ProbK{}) < probKCut, ...,
      e(H1ProbPi{}) > probPiCut, ...};
  };
  std::sort(v.begin(), v.end(),
    [&](const auto& ea, const auto& eb) {
      return filterResults(ea) < filterResults(eb);</pre>
    });
```

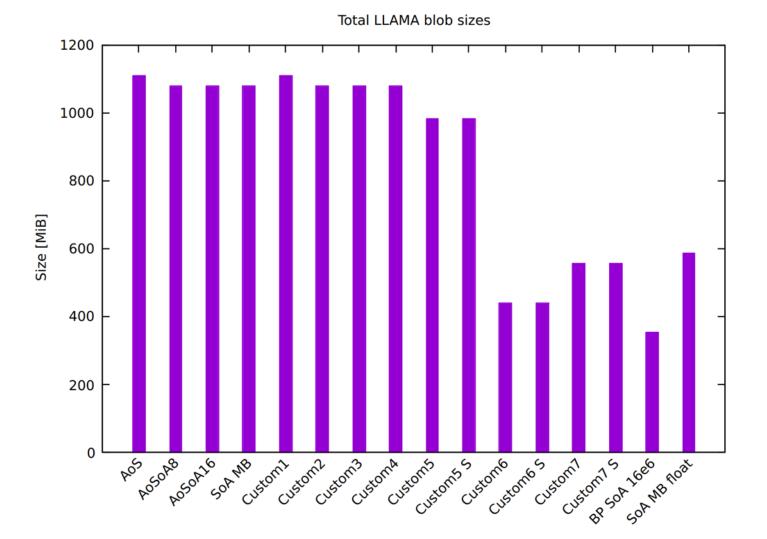

Benchmark

Reducing precision

- Execution speed of an analysis is not the only concern
- Vast amounts of experimental data is generated
- Data size matters as well, especially for storage
- How much can we reduce the value's precision, before the result collapses?
- LLAMA can help here as well with corresponding mappings
 - Let's run the analysis and plot some histograms


Reducing precision analysis results

Designing a memory layout 6/6 and 7/6


- Know your data, again!
 - Floating point data may not need all bits for exponent and mantissa
 - Results start to get shaky at exponent < 6, and mantissa < 16
- Custom layout 6:
 - Separate H1isMuon/H2isMuon/H3isMuon, pack the int32s to bits, keeping the 3 values close (bitpacked AoS)
 - Separate H1PropK and H2PropK into a common arrays (AoS)
 - Keep the remaining values close per event, but reduce their precision
 - Either via bitpacking (bitpacked AoS)
 - Custom layout 7: Or by changing their data type (double -> float AoS)
- N.B.: bitpacking the H1PropK/H2PropK was too costly

Final benchmark

2023-01-19

Memory consumption per layout

Summary and conclusions

- LLAMA allows for rapid layout exploration (after initial integration)
 - Common memory layouts readily available
- Know your data, and access pattern
 - LLAMA can help with layout visualization and access heatmaps
- Build custom memory layouts by combining existing ones
 - or even implement a memory mapping yourself
- Consider the range of values of your data to reduce precision/bits
- Changing data type is usually faster than arbitrary bit compression

Future work

- Data loaded for the analysis is only needed once. Caching is not needed. Can we benefit from non-temporal load instructions?
- The sorted data set puts all selected elements to the bottom of the view. The OpenMP static scheduling is probably not suited anymore.
- Calculate how much meaningful data must be loaded by the analysis
 - Based on filter branches and data element counts/sizes
- Measure how much data was actually pulled into CPU by the analysis
 - Might be an interesting metric in addition to runtime. Also independent of thread scheduling.
- Food for thought on RNTuple:
 - Is columnar (SoA) really the true layout for RNTuple? Data that is logically needed together should be kept together (e.g. a position's X, Y, Z)
 - Compressing Boolean values (also ints acting as such) to bits?
 - Arbitrary bit reductions for floating points?

Thank you!

Questions?