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 Lecture 1: Scintillator fundamentals 
–  Organic scintillators 
–  Inorganic scintillators 

  Scintillation mechanisms 
  Limits to the light yield and decay time 
  Energy resolution and non-proportionality 

 Lecture 2: Scintillator applications 
–  Crystal growth techniques 
–  High energy physics and dark matter searches 
–  Medical applications 
–  Space borne missions 
–  Geophysical exploration 
–  Homeland security 
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Transform dE/dx of an ionizing particle  into light 
that can be measured by a photodetector  
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  Organic crystals 
Anthracène,Trans-Stilbène, 
Naphtaline 

  Organic liquids 
Solvent:Xylène,Toluène,benzène 
 Solute:p-Terphénil, PBD, PPO, 
POPOP, 3g/l 

  Plastics   
 Solvent: polyvinyletoluène, 
polyphénilbenzène, polystyrène 

     Solute:PBD,pTerphénil ,PBO, 
second soluté POPOP,10g/l for 
wavelength shifting 

Delocalized π electron states of the Benzene molecule 

Convert PART of the energy of the incident particle  
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φ1 
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Read out 216 
tiles/module  

~8000 channels 

Calorimeter cell 

Wavelength shifter fiber 

3x3 cm2 x 0.5 cm 

Single tile 
readout with 

SiPM 
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•  To convert ALL the energy of the incident particle in to light 

•  Necessity to use dense materials 

•  Above certain minimum level most scintillators are linear with respect 
 to the energy deposited 

•  Light output is directly proportional to energy deposited 
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•  Heavy material are rich in electrons, which interact strongly with light 
•  Only ordered system can confine electrons in well separated energy bands, 

 so that the material is transparent to its scintillation light 
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Quartz Lead Tungstate 

Natural 

Synthetic 
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M. J. Weber J. Lumin. 100 (2002) 35 

Invention of the 
photomultiplier tube 

Fast UV 
response 

History of scintillator discovery 
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 Density 

 Light Yield 

 Energy Resolution 

 Decay Time 
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γ 

 The energy conversion from incoming X or γ Rays 
is a complex process resulting from a cascade of 
events. 

 Hadronic events are even more complex 
– Details of the full cascade for HEP with contributions 

from different conversion mechanisms: scintillation and 
Cerenkov, would lead to particle identification within 
the shower 
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γ
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γ
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  For charged particles: high ρ materials to increase 
dE/dx 

  For X and γ-rays  (but also high energy electrons, 
which radiate γ-rays by bremstrahlung)    
3 mechanisms: 

–  Photoelectric:  

–  Compton:  

–  Pair poduction: 
  At low energy high photoelectric cross-section is 

desired 
  At high energy good shower containment requires 

–  Small radiation length: 

–  Small Moliere radius: 

€ 

σ ph ∝
Z 5

Eγ
7 / 2

€ 

€ 

σ c ∝ Z

€ 

σ pair ∝ Z
2 ln(2Eγ )
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A
ρ

716.4gcm−2
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Different scintillation mechanisms 

hν 

B – Self- trapped  exciton 

Eg 

hν 

C – Crossluminescence 

γ light 

hν 

A – Doped ion,  
or intrinsic defect 

hν 
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Auger processes & X-ray 
fluorescence reabsorption 
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CONDUCTION BAND 

VALENCE BAND 

CORE BAND 

Inelastic electron-
electron scattering 
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holes 
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excitations 
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Thermalization of 
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holes by traps, 
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Evolution of energy distribution for 
1000 eV electrons  
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Evolution of energy distribution for 
1000 eV electrons  
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Evolution of energy distribution for 
1000 eV electrons  
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Evolution of energy distribution for 
1000 eV electrons  
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Evolution of energy distribution for 
1000 eV electrons  
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VB (G) 

E 

Configuration Coordinate Q 
Q0 

Configuration coordinate model for the local lattice with electron in 
valence and conduction band states and in localized polaron state. 

CB 

ψCB 
(delocalized) 

Eg=3.7 eV 
P 

ψP 

Configurational model 
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CB 

VB (G) 

ψCB 
(delocalized) 

E 

Configuration Coordinate Q 
Q0 

Configuration coordinate model for the local lattice with electron in 
valence and conduction band states and in localized polaron state. 

Eg=3.7 eV P 
ψP 

Configurational model 
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CB 

VB (G) 

ψCB 
(delocalized) 

E 

Configuration Coordinate Q 
Q0 

Configuration coordinate model for the local lattice with electron in 
valence and conduction band states and in localized polaron state. 

Eg=3.7 eV P 
ψP 

Configurational model 
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The 3 phases of  the scintillation mechanism 

1. Absorption : Creation of pair e-h 

€ 

ne−h =
Eγ

βEgap
2. Transfer to the luminescence centre  

Efficiency of energy transfer :       S 

3. Emission 

Efficiency of emission :                 q 

Efficiency of scintillation 

Sq
E
E

Sqnn
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γ==
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Usually β = 2 to 4  
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Why? 

€ 

N ph ≤ Neh =
Eγ

βEgap
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Valence Band 

LaF3 

LaCl3 
LaBr3 

5.9 g/cm3


3.8 g/cm3

5.1 g/cm3


LaI3 
5.6 g/cm3


53 73 Light yield (103 ph/MeV) 2 0 
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Γν 

Γq(T) 
ΔE 

Conduction band 

Ce3+ g.s. 

Absolute location of doping levels is crucial 
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Ultimate Ce3+ 

Scintillator 

Egap>2.5-3 eV 

Yph≤140000/MeV 

λem ≈ 600 nm 

Best result  
LuI3: Ce3+ 

Egap = 4.2eV 

Yph=100000/MeV 

λem ≈ 470 nm 
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Three important aspects 
 Dipole and spin allowed transitions 
  Short wavelength of emission  
 High refractive index 
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τ    λ3 

YAlO3 

Y3Al5O12 
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P. Dorenbos, Presented at SCINT09, Jeju Island, Korea, June 2009 

LSO 

LaCl3 
LuAlOl3 

LaBr3 

•  λ tends to lengthen from  F ➙ O ➙ Cl ➙ Br ➙S    300nm-600nm 
•  n tends to increase from   F ➙ O ➙ Cl ➙ Br ➙S     1.4 – 2.4 
•  shortest τ of 17ns for YAlO3, LuAlO3, LaCl3, LaBr3 
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•  Some crystals are far from the  
   theoretical limit 
• LaBr3 and SrI2 measured with 
   standart and new high QE PMT 
•  Significantly higher number of 
  detected photons 
•  No significant improvement 
  resolution 
•  Can we pass the 2% barrier? 
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  2x2x10 mm3 crystals 
–  LSO: 6000 pe/MeV 
–  LuYAP: 2000 pe/MeV 

  Each crystal in 2 positions 
–  Vertical 
–  Horizontal 

  Gain LuYAP=3xgain LSO 

     Same energy resolution 
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γ
γ
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1 to 7 keV 
Auger electrons 

50 to 60 KeV 
Fluorescent X-rays 

Different 
photo-

electron 
energies 
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  Weak interaction by collision 

R ~ 2-10 nm 
ΔE ∼ 10-4 eV 
τ ∼ 1 ns 

R < 2 nm  
ΔE ∼ 0.1 eV 
τ ∼ 10 fs 

Interaction region 

R > 10 nm  

  Interaction due to energy exchange 

  Strong interaction:  
 - new type of excitations 
 - specific paths of localization 
 - defects creation  
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Yb3++eYb2+ 

CT-lum 

CVL 

cation VB 

anion VB 

CB 

4f 

5d 
Ce3+, Pr3+, Nd3+ 
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