Quantum Chromodynamics

HASCO Summer School, Göttingen,
17 July - 25 July 2023

Daniel Reichelt

some observations from first lecture ...

Some of you are already familiar with QCD ...

some observations from first lecture ...

Something during the time of this school that you're excited about

I am very curious about SUSY lectures and the exams at the end. I am too curious about
international lectures, its my first experience
History tour of the city

Long Lived Particles

Even more physics

	Long Lived Particles	

quantum chromodynamics - overview

- strong interaction part of the standard mode
- jet production
- internal structure of hadrons
- ingredients:
- 3 families of quarks/anti-quarks, come in 3 colours
- gluon, 8 colour states
- coupling constant $\alpha_{s} \sim 0.1$, relatively large \rightarrow "strong" coupling

quantum chromodynamics - overview

- strong interaction part of the standard mode
- jet production
- internal structure of hadrons
- ingredients:
- 3 families of quarks/anti-quarks, come in 3 colours
- gluon, 8 colour states
- coupling constant $\alpha_{s} \sim 0.1$, relatively large \rightarrow "strong"
 coupling

quantum chromodynamics - overview

- strong interaction part of the standard mode
- jet production
- internal structure of hadrons
- ingredients:
- 3 families of quarks/anti-quarks, come in 3 colours
- gluon, 8 colour states
- coupling constant $\alpha_{s} \sim 0.1$, relatively large \rightarrow "strong" coupling

reading material

- much of these lectures based on previous HASCO lectures (Steffen Schumann 2012, Enrico Bothmann 2022)
- standard reference: Ellis, Stirling, Webber "QCD and Collider Physics"
- introductory material in general particle physics references, for example Griffiths "Introduction to Elementary Particles"

hadron colliders in the real world

hadron colliders for theorists

- Events factorised into
- Hard Process
- QCD radiation
- PDFs/Beams/Underlying event
- Hadrons

hadron colliders for theorists

- Events factorised into
- Hard Process
- QCD radiation

Main goal of this lecture: understand and analyse this picture

hadrons

- Hadrons = states observed in experiments
- basic examples: proton, neutron
- historic situation:
- there are many more hadrons than we encounter "every day"
\rightarrow "zoo of hadrons"
- order, understanding from first principles?

hadrons in the quark model

- observation: hadrons follow specific pattern - $S U(3)$ flavour symmetry
- structure of light hadrons can be explained by a model where hadrons are made up of three constituents, almost massless
"partons" - "up" (u), "down" (d) and "strange" (s) quarks
- + further experiments show there are three more quarks - "charm"

Δ^{-}	Δ^{0}	Δ^{+}	Δ^{++}
	Σ^{-}	Σ^{0}	Σ^{+}
	Ξ^{-}	Ξ^{0}	
		Ω^{-}	
	quar	k content	
ddd	ddu	duu	uuu
	dds	dus	uus
	dss	uss	
		sss	

properties of quarks

- to match the observed hadron spectrum: quarks should be spin-1/2 fermions
- up-type quarks with charge $Q_{u, c, t}=2 / 3$, down-type quarks $Q_{d, s, b}=-1 / 3$ (+ anti-quarks with opposite charges)
- $(u, d),(c, s),(t, b)$ form electroweak multiplets
- for example proton $|u u d\rangle$ or neutron $|u d d\rangle \rightarrow$ Baryons

Proton

colour

- Historic puzzle: we observe hadrons in states like $\left|\Delta^{++}\right\rangle=\left|u_{\uparrow} u_{\uparrow} u_{\uparrow}\right\rangle \rightarrow$ three identical fermions, apparently in a completely symmetric wave functions \rightarrow violation of Fermi-Dirac statistics?
- Solution: if we had an additional quantum number, lets call it colour, with three possible states, we could anti-symmetrise as

$$
\left|\Delta^{++}\right\rangle=\epsilon_{a b c}\left|u_{a, \uparrow} u_{b, \uparrow} u_{c, \uparrow}\right\rangle
$$

- We don't observe this quantum number (apart from theses statistics), so postulate: all physical, experimental observed states are colour-neutral \rightarrow confinement

parton model evidence - the R-ratio

- consider ratio of total cross sections $R=\sum_{q} \sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right) / \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$
- you saw the diagram for $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$in the standard model lecture
- only differences for quarks: come in 3 colours and with fractional charges
- different mass thresholds, at low energies only d, u, s quarks

$$
R=N_{c}\left[\left(\frac{2}{3}\right)^{2}+2\left(-\frac{1}{3}\right)^{2}\right]=N_{c} \frac{2}{3}
$$

- above charm, threshold, one more up-type quark

$$
R=N_{c}\left[2\left(\frac{2}{3}\right)^{2}+2\left(-\frac{1}{3}\right)^{2}\right]=N_{c} \frac{10}{9}
$$

parton model evidence - the R-ratio

QCD - gauge theory

- look back on Standard-Model lecture: QED gauge invariance $\psi \rightarrow e^{-i q \alpha(x)} \psi$

QCD - gauge theory

- look back on Standard-Model lecture: QED gauge invariance $\psi \rightarrow e^{-i q \alpha(x)} \psi$
- for QCD, we want to use colour as "charge" $\rightarrow \psi$ becomes vector in 3-d colour space, acted on by matrices $\psi \rightarrow e^{i t^{A} \alpha(x)} \psi$
- $t^{A} \ldots$ matrices representing gauge group

QCD - gauge theory

- look back on Standard-Model lecture: QED gauge invariance $\psi \rightarrow e^{-i q \alpha(x)} \psi$
- for QCD, we want to use colour as "charge" $\rightarrow \psi$ becomes vector in 3-d colour space, acted on by matrices $\psi \rightarrow e^{i t^{A} \alpha(x)} \psi$
- $t^{A} \ldots$ matrices representing gauge group

Note: this is distinct from the $S U(3)$ flavour symmetry we saw earlier!

- relevant group for QCD: $S U\left(N_{c}\right)$ with $N_{c}=3 \ldots$ number of colours
- group of Special (determinant 1) Unitary $N_{c} \times N_{c}$ matrices
- relevant for physics: generators t^{A} with $e^{i t^{A} \alpha} \in S U\left(N_{c}\right)$

SU(3) colour group - Gell-Mann matrices

- special (\rightarrow generators traceless), unitary (\rightarrow generators hermitian) 3×3 matrices, explicit basis:

$$
\begin{aligned}
& \lambda^{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& \lambda^{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \lambda^{6}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \lambda^{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \lambda^{8}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & 0 & 0 \\
0 & \frac{1}{\sqrt{3}} & 0 \\
0 & 0 & \frac{-2}{\sqrt{3}}
\end{array}\right)
\end{aligned}
$$

Note: Gell-Man matrices analogous to Pauli matrices for $\operatorname{SU}(2)$

- conventionally, we actually work with $t_{a b}^{A}=\frac{1}{2} \lambda_{a b}^{A}$
- matrices acting on vectors $\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$

SU(3) group - colour algebra

- defining property $\left[t^{A}, t^{B}\right]=i f^{A B C} t^{C}$, and chosen normalisation $\operatorname{Tr}\left[t^{A} t^{B}\right]=T_{R} \delta_{A B}, T_{R}=1 / 2$
- $f^{A B C}$ are structure constants of the group, generate adjoint representation
- Casimir invariants

$$
t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}} \quad \text { and } \quad f^{A C D} f^{B C D}=C_{A} \delta_{A B}, \quad C_{A}=N_{c}
$$

- Fierz identity

$$
t_{a b}^{A} t_{c d}^{A}=\frac{1}{2} \delta_{b c} \delta_{a d}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{c d}
$$

SU(3) group - colour algebra

- defining property $\left[t^{A}, t^{B}\right]=$ if ${ }^{A B C} t^{C}$,

Example use of Fierz identity and chosen normalisation $\operatorname{Tr}\left[t^{A} t^{B}\right]=T_{R} \delta$ re-calculate first Casimir:

- $f^{A B C}$ are structure constants of the group, $t_{a b}^{A} t_{b c}^{A}$
- Casimir operators

$$
t_{a b}^{A} b_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}} \quad \text { and }
$$

- Fierz identity

$$
t_{a b}^{A} t_{c d}^{A}=\frac{1}{2} \delta_{b c} \delta_{a d}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{c d}
$$

SU(3) group - colour algebra

- defining property $\left[t^{A}, t^{B}\right]=$ if ${ }^{A B C} t^{C}$,

Example use of Fierz identity and chosen normalisation $\operatorname{Tr}\left[t^{A} t^{B}\right]=T_{R} \delta$ re-calculate first Casimir:

- $f^{A B C}$ are structure constants of the group, $t_{a b}^{A} t_{b c}^{A}=\frac{1}{2} \delta_{b b} \delta_{a c}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{b c}$
- Casimir operators

$$
t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}} \quad \text { and }
$$

- Fierz identity

$$
t_{a b}^{A} t_{c d}^{A}=\frac{1}{2} \delta_{b c} \delta_{a d}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{c d}
$$

SU(3) group - colour algebra

- definin $\quad[A \quad B] \quad . \quad A B C, C$
- $f^{A B C} a \delta_{i i}=\sum_{i=0}^{N_{c}} \delta_{i i}=\sum_{i=0}^{N_{c}} 1=N_{c}$
- Casimir operators

$$
t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}} \quad \text { and }
$$

- Fierz identity

$$
t_{a b}^{A} t_{c d}^{A}=\frac{1}{2} \delta_{b c} \delta_{a d}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{c d}
$$

Example use of Fierz identity -
re-calculate first Casimir:

$$
\begin{aligned}
t_{a b}^{A} t_{b c}^{A} & =\frac{1}{2} \delta_{b b} \delta_{a c}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{b c} \\
& =\frac{N_{c}}{2} \delta_{a c}-\frac{1}{2 N_{c}} \delta_{a c}
\end{aligned}
$$

SU(3) group - colour algebra

- defining property $\left[t^{A}, t^{B}\right]=$ if ${ }^{A B C} t^{C}$,

Example use of Fierz identity and chosen normalisation $\operatorname{Tr}\left[t^{A} t^{B}\right]=T_{R} \delta$ re-calculate first Casimir:

- $f^{A B C}$ are structure constants of the group, $t_{a b}^{A} t_{b c}^{A}=\frac{1}{2} \delta_{b b} \delta_{a c}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{b c}$
- Casimir operators

$$
t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}} \quad \text { and }
$$

- Fierz identity

$$
t_{a b}^{A} t_{c d}^{A}=\frac{1}{2} \delta_{b c} \delta_{a d}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{c d}
$$

$$
\begin{aligned}
& =\frac{N_{c}}{2} \delta_{a c}-\frac{1}{2 N_{c}} \delta_{a c} \\
& =\frac{N_{c}^{2}-1}{2 N_{c}} \delta_{a c}
\end{aligned}
$$

SU(3) group - colour algebra

- defining property $\left[t^{A}, t^{B}\right]=i f^{A B C} t^{C}$, and chosen normalisation $\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta_{A B}, T_{R}=1 / 2$
- $f^{A B C}$ a side note:
- Casimi
we can eliminate $f^{A B C}$ by using

$$
\left[t^{A}, t^{B}\right] t^{C}=i f^{A B D} t^{D} t^{C}
$$

and taking the trace

- Fierz io

$$
\begin{aligned}
& \operatorname{Tr}\left(\left[t^{A}, t^{B}\right] t^{C}\right)=i f^{A B D} \operatorname{Tr}\left(t^{D} t^{C}\right)=i f^{A B D} T_{R} \delta_{C D} \\
\Rightarrow & f^{A B C}=-\frac{i}{T_{R}} \operatorname{Tr}\left(\left[t^{A}, t^{B}\right] t^{C}\right)
\end{aligned}
$$

SU(3) group - colour algebra

Together with Fierz:

- defining property $\left[t^{A}, t^{B}\right]=i f^{A B C} t^{C}$, and chosen normalisation $\operatorname{Tr}\left[t^{A} t^{B}\right]=T_{R} \delta_{A B}, T_{R}=1 / 2$
- $f^{A B C}$ a side note:
- Casimi we can eliminate $f^{A B C}$ by using
all colour factors become counting of in $\delta_{a b}(=0$ or 1)
\Rightarrow trivial (though maybe cumbersome) calculation

$$
\left[t^{A}, t^{B}\right] t^{C}=i f^{A B D} t^{D} t^{C}
$$

and taking the trace

- Fierz ic

$$
\begin{aligned}
& \operatorname{Tr}\left(\left[t^{A}, t^{B}\right] t^{C}\right)=i f^{A B D} \operatorname{Tr}\left(t^{D} t^{C}\right)=i f^{A B D} T_{R} \delta_{C D} \\
\Rightarrow & f^{A B C}=-\frac{i}{T_{R}} \operatorname{Tr}\left(\left[t^{A}, t^{B}\right] t^{C}\right)
\end{aligned}
$$

QCD as a gauge theory

- Fundamental particles: fermionic quark fields ψ_{q}^{a}, with flavour $q=u, d, s, c, b, t$ and colour charge $a \Rightarrow$ free quark lagrangian $\mathscr{L}_{\text {quark }}=\bar{\psi}_{q}^{a} i \gamma^{\mu} \partial_{\mu} \psi_{q}^{a}-m_{q} \bar{\psi}_{q}^{a} \psi_{q}^{a}$
$(\rightarrow$ generic Dirac for each colour and flavour)

QCD as a gauge theory

- Fundamental particles: fermionic quark fields ψ_{q}^{a}, with flavour
$q=u, d, s, c, b, t$ and colour charge $a \Rightarrow$ free quark lagrangian
$\mathscr{L}_{\text {quark }}=\bar{\psi}_{q}^{a} i \gamma^{\mu} \partial_{\mu} \psi_{q}^{a}-m_{q} \bar{\psi}_{q}^{a} \psi_{q}^{a}$
$(\rightarrow$ generic Dirac for each colour and flavour)
- analogous to QED: forces between (electrically) charged particles mediated by photons \rightarrow forces between colour charged particles mediated by gluons \rightarrow spin- 1 fields in adjoint representation A_{μ}^{A} with $A=1 \ldots 8$

$$
\mathscr{L}_{\text {gluon }}=-\frac{1}{4} F_{\mu \nu}^{A} F^{A \mu \nu} \quad \text { where } \quad F_{\mu \nu}^{A}=\partial_{\mu} A_{\nu}^{A}-\partial_{\nu} A_{\mu}^{A}-g_{s} f_{A B C} A_{\mu}^{A} A_{\nu}^{B}
$$

QCD as a gauge theory

- Fundamental particles: fermionic quark fields ψ_{q}^{a}, with flavour $q=u, d, s, c, b, t$ and colour charge $a \Rightarrow$ free quark lagrangian $\mathscr{L}_{\text {quark }}=\bar{\psi}_{q}^{a} i \gamma^{\mu} \partial_{\mu} \psi_{q}^{a}-m_{q} \bar{\psi}_{q}^{a} \psi_{q}^{a}$
$(\rightarrow$ generic Dirac for each colour and flavour)
- analogous to QED: forces between (electrically) charged particles mediated by photons \rightarrow forces between colour charged particles mediated by gluons

$$
\mathscr{L}_{\text {gluon }}=-\frac{1}{4} F_{\mu \nu}^{A} F^{A \mu \nu} \text { where } F_{\mu \nu}^{A}=\underbrace{\text { you know this part }} \begin{aligned}
& \partial_{\mu} A_{\nu}^{A}-\partial_{\nu} A_{\mu}^{A}-g_{s} f_{A B C} A_{\mu}^{A} A_{\nu}^{B} \\
& \text { from QED/ED }
\end{aligned}
$$

QCD as a gauge theory

- Fundamental particles: fermionic quark fields ψ_{q}^{a}, with flavour $q=u, d, s, c, b, t$ and colour charge $a \Rightarrow$ free quark lagrangian $\mathscr{L}_{\text {quark }}=\bar{\psi}_{q}^{a} i \gamma^{\mu} \partial_{\mu} \psi_{q}^{a}-m_{q} \bar{\psi}_{q}^{a} \psi_{q}^{a}$
$(\rightarrow$ generic Dirac for each colour and flavour)
- analogous to QED: forces between (electrically) charged particles mediated by photons \rightarrow forces between colour charged particles mediated by gluons

$$
\begin{aligned}
\mathscr{L}_{\text {gluon }}=-\frac{1}{4} F_{\mu \nu}^{A} F^{A \mu \nu} \quad \text { where } \quad & F_{\mu \nu}^{A}=\underbrace{\partial_{\mu} A_{\nu}^{A}-\partial_{\nu} A_{\mu}^{A}}_{\mu}-\underbrace{g_{s} f_{A B C} A_{\mu}^{A} A_{\nu}^{B}} \\
& \begin{array}{l}
\text { you know this part } \\
\\
\text { from QED/ED is new due to } \\
\text { non-abelian gauge } \\
\text { nomp }
\end{array}
\end{aligned}
$$

QCD as a gauge theory

- interactions between quarks and gluons \rightarrow minimal coupling, i.e. restoring local gauge symmetry $\partial_{\mu} \rightarrow\left(D_{\mu}\right)_{a b}=\delta_{a b} \partial_{\mu}-i g_{s} t_{a b}^{A} A_{\mu}^{A}$
- final lagrangian $\mathscr{L}_{Q C D}=\bar{\psi}_{q}^{a}\left(i \gamma^{\mu}\left(D_{\mu}\right)_{a b}-\delta_{a b} m_{q}\right) \psi_{q}^{b}-\frac{1}{4} F_{\mu \nu}^{A} F^{A \mu \nu}$
- generic form of "Yang-Mills" Lagrangian \rightarrow general gauge theories, distinguished by group generated by $t^{A} s \rightarrow$ here $S U(3)$ and $t^{A} s$ as discussed before
- side note: consistent quantisation requires gauge-fixing terms (also present in QED) and ghost fields (decouple in abelian theory) \rightarrow not necessary for our purposes now

lattice QCD

- numerical solution to find most likely field configurations
- on discrete 4D-grid (lattice), then take limit of small lattice spacing \rightarrow solution of QCD
- no approximation made (in principle)

- important result: mass spectrum of
[Durr et. al. '08]
hadrons \rightarrow supports QCD as theory of hadrons/at low energies

QCD at colliders

- Events factorised into
- Hard Process
- QCD radiation
- PDFs/Beams/Underlying event
- Hadrons

QCD at colliders

- Events factorised into
- Hard Process
- QCD radiation
- PDFs/Beams/Underlying event
- Hadrons

QCD at colliders

- Events factorised into
- Hard Process
- QCD radiation
- PDFs/Beams/Underlying event
- Hadrons

QCD - perturbation theory

- reminder: we want to calculate matrix elements as input for cross sections

```
see Standard Model
lecture, Slides 51-54
```

$$
\frac{d \sigma}{d \Omega}=\left(\frac{1}{8 \pi}\right)^{2} \frac{S|\mathcal{M}|^{2}}{\left(E_{1}+E_{2}\right)^{2}} \cdot \frac{\left|\vec{p}_{f}\right|}{\left|\overrightarrow{p_{i}}\right|}
$$

- perturbation theory: expand \mathscr{M} in powers of coupling constant $\mathscr{M}=\mathscr{M}_{0}+g \mathscr{M}_{1}+g^{2} \mathscr{M}_{2}+\ldots$
- e.g. in QED relevant coupling is $\alpha_{Q E D} \sim 1 / 137 \rightarrow$ first order naively accurate within $\sim 1 \%$
- how about QCD?

QCD coupling constant

- Lagrangian includes coupling constant $g_{s} \sim$ analogous to electric charge, determines the coupling strength \rightarrow needed as input for calculations
- we will use $\alpha_{s}=\frac{g_{s}^{2}}{4 \pi}$, compare to (in suitable units) $\alpha_{Q E D}=\frac{e^{2}}{4 \pi} \sim \frac{1}{137}$
- Typical behaviour in QFTs: higher order terms can be absorbed into coupling constant, introducing dependence on energy scale \rightarrow differential equation $\frac{d \alpha_{s}\left(\mu^{2}\right)}{d \ln \mu^{2}}=\beta\left(\alpha_{s}\right)$, with $\beta\left(\alpha_{s}\right)$ computable in perturbation theory

the running coupling

- $\frac{d \alpha_{s}\left(\mu^{2}\right)}{d \ln \mu^{2}}=\beta\left(\alpha_{s}\right)$ with $\quad \beta\left(\alpha_{s}\right)=-\alpha_{s}^{2}\left(\beta_{0}+\beta_{1} \alpha_{s}+\ldots\right)$
- important to note the overall minus sign $\Rightarrow \alpha_{s} \rightarrow 0$ at high energy scales, this is known as asymptotic freedom

```
Nobel price 2004 for Gross, Polizer, Wilczek
```

- also provides evidence for validity of confinement \rightarrow at small energies, interaction strength between quarks and gluons large \rightarrow infinite energy required to separate two quarks

the running coupling

- leading order solution: only include $\beta_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi}$
$\frac{d \alpha_{s}\left(\mu^{2}\right)}{d \ln \mu^{2}}=-\beta_{0} \alpha_{s}^{2} \Rightarrow \alpha_{s}\left(\mu^{2}\right)=\frac{\alpha_{s}\left(\mu_{0}^{2}\right)}{1+\alpha_{s}\left(\mu_{0}^{2}\right) \beta_{0} \ln \frac{\mu^{2}}{\mu_{0}^{2}}}$
- divergent (Landau pole) when $\mu^{2} \sim \mu_{0}^{2} e^{-\alpha_{s} \beta_{0}}$
- alternative representation $\alpha_{s}^{-1}\left(\mu^{2}\right)=\beta_{0} \ln \frac{\mu^{2}}{\Lambda_{Q C D}^{2}}$
- $\rightarrow \Lambda_{Q C D} \sim 200 \mathrm{GeV}$ fundamental scale for breakdown of perturbation theory

the running coupling

- leading order solution: only include $\beta_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi}$
$\frac{d \alpha_{s}\left(\mu^{2}\right)}{d \ln \mu^{2}}=-\beta_{0} \alpha_{s}^{2} \Rightarrow \alpha_{s}\left(\mu^{2}\right)=\frac{\alpha_{s}\left(\mu_{0}^{2}\right)}{1+\alpha_{s}\left(\mu_{0}^{2}\right) \beta_{0} \ln \frac{\mu^{2}}{\mu_{0}^{2}}}$
- divergent (Landau pole) when $\mu^{2} \sim \mu_{0}^{2} e^{-\alpha_{s} \beta_{0}}$

$$
\begin{aligned}
& \text { But: } \\
& \alpha_{s} \rightarrow 0 \text { as } \mu \rightarrow \infty \\
& \Rightarrow \text { Perturbation } \\
& \text { theory valid at high } \\
& \text { energies (UV limit) }
\end{aligned}
$$

- alternative representation $\alpha_{s}^{-1}\left(\mu^{2}\right)=\beta_{0} \ln \frac{\mu^{2}}{\Lambda_{Q C D}^{2}}$
- $\rightarrow \Lambda_{Q C D} \sim 200 \mathrm{GeV}$ fundamental scale for breakdown of perturbation theory

the running coupling

- So what is the value at relevant (for us) energies?
- The standard is to quote the value at the Z mass $M_{Z} \sim 91.2 \mathrm{GeV}$, $\alpha_{s}\left(M_{Z}\right) \sim 0.118$
- typical jet $p_{T} \sim 50 \mathrm{GeV}$... 5 TeV
- expect much worse behaviour than QED, but should naively we are in the range where PQCD is applicable

QCD - Feynman rules

gluon-quark interaction, analogous to photonfermion with t^{A} as "charge"

QCD - Feynman rules

(all momenta incoming, $\mathrm{p}+\mathrm{q}+\mathrm{r}=0$)
gluon-quark interaction, analogous to photonfermion with t^{A} as "charge"

+ interactions between gluons, as a result of the 'non-abelian' parts of $F_{\mu \nu}^{A}$

$$
\begin{array}{lll}
\mathrm{A}, \alpha & -\mathrm{ig}^{2} \mathrm{f}^{\mathrm{XAC}} \mathrm{f}^{\mathrm{XBD}} & {\left[\mathrm{~g}^{\alpha \beta} \mathrm{g}^{\gamma \delta}-\mathrm{g}^{\alpha \delta} \mathrm{g}^{\beta \gamma}\right]} \\
-\mathrm{ig}^{2} \mathrm{f}^{\mathrm{XAD}} \mathrm{f}^{\mathrm{XBC}} \boldsymbol{\rho}^{6^{\mathrm{B}, \beta}}\left[\mathrm{~g}^{\alpha \beta} \mathrm{g}^{\gamma \delta}-\mathrm{g}^{\alpha \gamma} \mathrm{g}^{\beta \delta}\right]
\end{array}
$$

QCD - Feynman rules

$$
-\mathrm{ig}\left(\mathrm{t}^{\mathrm{A}}\right)_{\mathrm{cb}}\left(\gamma^{\alpha}\right)_{\mathrm{ji}}
$$

$$
q^{\{\mathrm{B}, \beta} \mathrm{r} \quad-\mathrm{g}^{\mathrm{ABC}}\left[(\mathrm{p}-\mathrm{q})^{\gamma} \mathrm{g}^{\alpha \beta}+(\mathrm{q}-\mathrm{r})^{\alpha} \mathrm{g}^{\beta \gamma}+(\mathrm{r}-\mathrm{p})^{\beta} \mathrm{g}^{\gamma \alpha}\right]
$$

(all momenta incoming, $\mathrm{p}+\mathrm{q}+\mathrm{r}=0$)

$$
\begin{aligned}
& -\mathrm{ig}^{2} \mathrm{f}^{\mathrm{XAC}} \mathrm{f}^{\mathrm{XBD}}\left[\mathrm{~g}^{\alpha \beta} \mathrm{g}^{\gamma \delta}-\mathrm{g}^{\alpha \delta} \mathrm{g}^{\beta \gamma}\right] \\
& -\mathrm{ig}^{2} \mathrm{f}^{\mathrm{AAD}} \mathrm{f}^{\mathrm{BC}}\left[\mathrm{~g}^{\alpha \beta} \mathrm{g}^{\gamma \delta}-\mathrm{g}^{\alpha \gamma} \mathrm{g}^{\prime}\right] \\
& -\mathrm{ig}^{2} \mathrm{f}^{\mathrm{AB}} \mathrm{f}^{\mathrm{CDD}}\left[\mathrm{~g}^{\alpha \gamma} \mathrm{g}^{\beta-}-\mathrm{g}^{\alpha \delta} \mathrm{g}^{\beta \gamma}\right]
\end{aligned}
$$

of $F_{\mu \nu}^{A}$
gluon-quark interaction, analogous to photonfermion with t^{A} as "charge"

+ interactions between gluons, as a result of the 'non-abelian' parts

+ not shown here: propagators, with colour conserving deltas, couplings to EW bosons

QCD - colour flow

- gluons carry both colour and anti-colour
- at interaction vertices they can "carry away" color and change color of patron they interact with

QCD - colour factors

- Colour factors (Casimirs) we saw earlier indeed appear in common diagrams:

$$
\begin{aligned}
& \operatorname{Tr}\left\{t^{A} t^{B}\right\}=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2} \\
& \sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}} \\
& \sum_{C, D} f^{A C D} f^{B C D}=C_{A} \delta^{A B}, \quad C_{A}=N_{c}
\end{aligned}
$$

- Observation: $g \rightarrow g g$ is enhanced relative to $q \rightarrow q g$ by factor C_{A} / C_{F}

QCD calculations

- simplest process involving quarks: $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow q \bar{q}$
- not actually involving QCD, generic fermion production (but N_{c} times)

- next higher order (+ gluon attached to other quark + virtual corrections)

QCD calculations

- simplest process involving quarks: $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow q \bar{q}$
- not actually involving QCD, generic fermion production (but N_{c} times)

- next higher order (+ gluon attached to other quark + virtual corrections)

QCD - Feynman rules

gluon-quark interaction, analogous to photonfermion with t^{A} as "charge"

(all momenta incoming, $\mathrm{p}+\mathrm{q}+\mathrm{r}=0$)

+ interactions between gluons, as a result of the 'non-abelian' parts of $F_{\mu \nu}^{A}$

$$
\begin{aligned}
& -\mathrm{ig}^{2} \mathrm{f}^{\mathrm{XAC}} \mathrm{f}^{\mathrm{XBD}}\left[\mathrm{~g}^{\alpha \beta} \mathrm{g}^{\gamma \delta}-\mathrm{g}^{\alpha \delta} \mathrm{g}^{\beta \gamma}\right] \\
& -\mathrm{ig}^{2} \mathrm{f}^{\mathrm{XAD}} \mathrm{f}^{\mathrm{XBC}}\left[\mathrm{~g}^{\alpha \beta} \mathrm{g}^{\gamma \delta}-\mathrm{g}^{\alpha \gamma} \mathrm{g}^{\beta \delta}\right] \\
& -\mathrm{i}^{2} \mathrm{f}^{\mathrm{XAB}} \mathrm{f}^{\mathrm{XCD}}\left[\mathrm{~g}^{\alpha \gamma} \mathrm{g}^{\beta \delta}-\mathrm{g}^{\alpha \delta} \mathrm{g}^{\beta \gamma}\right]
\end{aligned}
$$

+ not shown here: propagators, with colour conserving deltas, couplings to EW bosons

QCD - Feynman rules

$-\mathrm{g} \mathrm{f}^{\mathrm{ABC}}\left[(\mathrm{p}-\mathrm{q})^{\gamma} \mathrm{g}^{\alpha \beta}+(\mathrm{q}-\mathrm{r})^{\alpha} \mathrm{g}^{\beta \gamma}+(\mathrm{r}-\mathrm{p})^{\beta} \mathrm{g}^{\gamma \alpha}\right]$
(all momenta incoming, $\mathrm{p}+\mathrm{q}+\mathrm{r}=0$)

$$
\begin{aligned}
& -\mathrm{ig}^{2} \mathrm{f}^{\mathrm{XAC}} \mathrm{f}^{\mathrm{XBD}}\left[\mathrm{~g}^{\alpha \beta} \mathrm{g}^{\gamma \delta}-\mathrm{g}^{\alpha \delta} \mathrm{g}^{\beta \gamma}\right] \\
& -\mathrm{ig}^{2} \mathrm{f}^{\mathrm{XAD}} \mathrm{f}^{\mathrm{XBC}}\left[\mathrm{~g}^{\alpha \beta} \mathrm{g}^{\gamma \delta}-\mathrm{g}^{\alpha \gamma} \mathrm{g}^{\beta \delta}\right] \\
& -i g^{2} f^{X A B} f^{X C D}\left[g^{\alpha \gamma} g^{\beta \delta}-g^{\alpha \delta} g^{\beta \gamma}\right]
\end{aligned}
$$

+ interactions between gluons, as a result of the 'non-abelian' parts of $F_{\mu \nu}^{A}$
+ not shown here: propagators, with colour conserving deltas, couplings to EW bosons

QCD calculations

- simplest process involving quarks: $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow q \bar{q}$
- not actually involving QCD, generic fermion production (but N_{c} times)

- next higher order (+ gluon attached to other quark + virtual corrections)

QCD calculations

- simplest process involving quarks: $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow q \bar{q}$
- not actually involving QCD, generic fermion production (but N_{c} times)

- next higher order (+ gluon attached to other quark + virtual corrections)

QCD calculations

- simplest process involving quarks: $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow q \bar{q}$
- not actually involving QCD, generic fermion production (but N_{c} times)

- next higher order (+ gluon attached to other quark + virtual corrections)

QCD calculations

- simplest process involving quarks: $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow q \bar{q}$
- not actually involving QCD, generic fermion production (but N_{c} times)

- next higher order (+ gluon attached to other quark + virtual corrections)

QCD calculations

- simplest process involving quarks: $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow q \bar{q}$
- not actually involving QCD, generic fermion production (but N_{c} times)

- next higher order (+ gluon attached to other quark + virtual corrections)

QCD calculations - soft limit

$$
\sim \bar{u}\left(p_{1}\right)\left(-i g_{s}\right) t^{A} \gamma^{\alpha} \frac{i\left(\not p_{1}+\not k\right)}{\left(p_{1}+k\right)^{2}}(-i e) \gamma^{\mu} v\left(p_{2}\right) \epsilon_{\alpha}
$$

QCD calculations - soft limit

$$
\begin{aligned}
& \sim \bar{u}\left(p_{1}\right)\left(-i g_{s}\right) t^{A} \gamma^{\alpha} \frac{i\left(\not p_{1}+\mathbb{k}\right)}{\left(p_{1}+k\right)^{2}}(-i e) \gamma^{\mu} v\left(p_{2}\right) \epsilon_{\alpha} \\
& \sim \bar{u}\left(p_{1}\right)\left(-i g_{s}\right) t^{A} \epsilon \frac{i p_{1}}{2 p_{1} \cdot k}(-i e) \gamma^{\mu} v\left(p_{2}\right)
\end{aligned}
$$

assume massless partons, $p_{1}^{2}=0, k^{2}=0$ and analyse the soft gluon $k \rightarrow 0$ limit

QCD calculations - soft limit

$$
\begin{aligned}
& \sim \bar{u}\left(p_{1}\right)\left(-i g_{s}\right) t^{A} \gamma^{\alpha} \frac{i\left(\not p_{1}+\mathbb{k}\right)}{\left(p_{1}+k\right)^{2}}(-i e) \gamma^{\mu} v\left(p_{2}\right) \epsilon_{\alpha} \\
& \sim \bar{u}\left(p_{1}\right)\left(-i g_{s}\right) t^{A} \epsilon \frac{i p_{1}}{2 p_{1} \cdot k}(-i e) \gamma^{\mu} v\left(p_{2}\right) \\
& \sim \bar{u}\left(p_{1}\right)\left(-i g_{s}\right) t^{A} \frac{i p_{1} \cdot \epsilon}{p_{1} \cdot k}(-i e) \gamma^{\mu} v\left(p_{2}\right)
\end{aligned}
$$

use $\notin p_{1}=2 \epsilon \cdot p_{1}-\not p_{1} \notin$ and the Dirac equation $\bar{u}\left(p_{1}\right) \not p_{1}=0$

QCD calculations - soft limit

$$
\sim \bar{u}\left(p_{1}\right)\left(-i g_{s}\right) t^{A} \gamma^{\alpha} \frac{i\left(\not p_{1}+\not k\right)}{\left(p_{1}+k\right)^{2}}(-i e) \gamma^{\mu} v\left(p_{2}\right) \epsilon_{\alpha}
$$

$$
\sim \bar{u}\left(p_{1}\right)\left(-i g_{s}\right) t^{A} \notin \frac{i p_{1}}{2 p_{1} \cdot k}(-i e) \gamma^{\mu} v\left(p_{2}\right)
$$

$$
\sim \bar{u}\left(p_{1}\right)\left(-i g_{s}\right) t^{A} \frac{i p_{1} \cdot \epsilon}{p_{1} \cdot k}(-i e) \gamma^{\mu} v\left(p_{2}\right)
$$

$$
\sim g_{s} s^{A} \frac{p_{1} \cdot \epsilon}{p_{1} \cdot k} \times
$$

soft gluon emissions factorise!

QCD calculations - soft limit

soft gluon emissions factorise!

QCD calculations - soft limit

QCD calculations - soft limit

perform sum over gluon polarisations $\epsilon_{\mu} \epsilon_{\nu} \rightarrow-g_{\mu \nu}$, and colours $t^{A} t^{B} \rightarrow C_{F}$

QCD calculations - soft limit

perform sum over gluon polarisations $\epsilon_{\mu} \epsilon_{\nu} \rightarrow-g_{\mu \nu}$, and colours $t^{A} t^{B} \rightarrow C_{F}$

Note: phase space factorises as well
$d \phi_{q \bar{q} g}=d \phi_{q \bar{q}} d \phi_{+1}$
Factorisation with "eikonal" factor!

eikonal

$$
\frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
$$

observation: divergent if $k \| p_{1}$ or $k \| p_{2}$ or $k \rightarrow 0$
\Rightarrow collinear and soft/infrared limits

eikonal

$$
\frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
$$

observation: divergent if $k \| p_{1}$ or $k \| p_{2}$ or $k \rightarrow 0$ \Rightarrow collinear and soft/infrared limits

Explicitly in some reference frame, use $p_{i} \cdot k=E_{i} E_{k}\left(1-\cos \theta_{i k}\right)$

$$
\frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)} \sim \frac{1}{E_{k}^{2}} \frac{1}{\left(1-\cos \theta_{1 k}\right)\left(1-\cos \theta_{2 k}\right)}
$$

\Rightarrow divergencies visible for $\theta_{i k} \rightarrow 0$ (collinear) and $E_{k} \rightarrow 0$ (soft)

eikonal

$\frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}$
observation: divergent if $k \| p_{1}$ or $k \| p_{2}$ or $k \rightarrow 0$
\Rightarrow collinear and soft/infrared limits

Explicitly in some reference frame, use $p_{i} \cdot k=E_{i} E_{k}\left(1-\cos \theta_{i k}\right)$

$$
\frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)} \sim \frac{1}{E_{k}^{2}} \frac{1}{\left(1-\cos \theta_{1 k}\right)\left(1-\cos \theta_{2 k}\right)}
$$

\Rightarrow divergencies visible for $\theta_{i k} \rightarrow 0$ (collinear) and $E_{k} \rightarrow 0$ (soft)
General structure, divergencies and factorisation in the soft and collinear limits is a universal property of QCD amplitudes!

divergencies ...?

- If amplitudes in QCD are divergent in the infrared, how can we ever calculated meaningful results?

divergencies ... ?

- If amplitudes in QCD are divergent in the infrared, how can we ever calculated meaningful results?
- Answer: we did not yet consider the full $\mathcal{O}\left(\alpha_{s}\right)$ correction, also have to take into account virtual terms

- on their own divergent as well \Rightarrow sum turns out to be finite!

divergencies ... ?

- If amplitudes in QCD are divergent in the infrared, how can we ever calculated meaningful results?
- Answer: we did not yet consider the full $\mathcal{O}\left(\alpha_{s}\right)$ correction, also have to take into account virtual terms

- on their own divergent as well \Rightarrow sum turns out to be finite!
- \Rightarrow we can calculate at least inclusive (enough) cross sections (e.g.
$e^{+} e^{-} \rightarrow$ hadrons, but not $e^{+} e^{-} \rightarrow$ exactly 2 quarks)

summary of pQCD so far

- Feynman rules derived from Lagrangian for $S U(3)$ gauge theory.
- If we attempt to calculate higher order corrections to QCD cross sections, we encounter soft and collinear divergencies.
- These cancel after adding real and virtual corrections, rendering inclusive (enough) cross sections finite.
- Both matrix elements and phase space factorise in these limits \Rightarrow we can think of matrix elements with soft gluons as some hard "core" matrix element with additional emissions of soft gluons

What is "inclusive enough"?

- We have seen that not all observables are well defined in QCD, since we must not disturb the cancellation of real and virtual singularities
- We must exclude anything that is sensitive to arbitrarily soft and/or collinear emissions
- typical example: multiplicities
- Observables that are not affected by a soft/collinear emission are called infrared-collinear (IRC) safe

IRC safe observables: Jets

- A typical example for the construction of IRC safe quantities are sequential recombination algorithms used to define jets

1. compute distance measure $d_{i j}$ for each pair of final-state particles and the beam distance $d_{i B}$ for each particle
2. determine minimum of all $d_{i j}, d_{i B}$
A. if one of the $d_{i j}$ is smallest, combine those particles i, j
B. if one of the beam distances $d_{i B}$ is smallest, i is a jet and removed from the procedure
3. go back to 1 , repeat until all objects are clustered

IRC safe observables: Jets

- distance measures are a matter of choice
- only formal requirement is IRC safety, i.e. a soft/collinear emission should not change the jets obtained from the algorithm
k_{T} - algorithm/Durham - algorithm:

$$
\begin{aligned}
& d_{i j}=\min \left(k_{T, i}^{2}, k_{T, j}^{2}\right) \frac{\Delta R^{2}}{R^{2}}, \quad d_{i B}=\min \left(k_{T, i}^{2}, k_{T, j}^{2}\right) \\
& \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}
\end{aligned}
$$

IRC safe observables: Jets

- distance measures are a matter of choice
- only formal requirement is IRC safety, i.e. a soft/collinear emission should not change the jets obtained from the algorithm
anti- k_{T} - algorithm:

$$
\begin{aligned}
& d_{i j}=\min \left(k_{T, i}^{-2}, k_{T, j}^{-2}\right) \frac{\Delta R^{2}}{R^{2}}, d_{i B}=\min \left(k_{T, i}^{-2}, k_{T, j}^{-2}\right) \\
& \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}
\end{aligned}
$$

IRC safe observables: Jets

- distance measures are a matter of choice
- only formal requirement is IRC safety, i.e. a soft/collinear emission should not change the jets obtained from the algorithm

Cambridge/Aachen - algorithm:

$$
\begin{aligned}
& d_{i j}=\frac{\Delta R^{2}}{R^{2}}, \quad d_{i B}=1 \\
& \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}
\end{aligned}
$$

IRC safe observables: Jets

- Standard reference for implementations: FastJet program
- Generalised k_{t} - algorithm

$$
\begin{aligned}
& d_{i j}=\min \left(k_{T, i}^{2 p}, k_{T, j}^{2 p}\right) \frac{\Delta R^{2}}{R^{2}}, d_{i B}=\min \left(k_{T, i}^{2}, k_{T, j}^{2}\right) \\
& \Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}
\end{aligned}
$$

Durham
$p=1$
closest match to structure of QCD matrix elements, theoretical interest

Cambridge/Aachen
$p=0$
angular ordered splitting sequence, close match to QCD coherence

anti- k_{t}
$p=-1$
closest to defining jets as
"cones" with radius R around
hard particles, default choice
in LHC experiments

Jet cross sections at the LHC

- jets are infrared save, so we can compute their production cross section in perturbation theory
- powerful tests of perturbative QCD
- here: compared to measurement by ATLAS at $\sqrt{s}=13 \mathrm{TeV}$

QCD at colliders

- Events factorised into
- Hard Process
- QCD radiation
- PDFs/Beams/Underlying event
- Hadrons

QCD at colliders

- Events factorised into
- Hard Process
- QCD radiation
- PDFs/Beams/Underlying event
- Hadrons

QCD at colliders

- Events factorised into
- Hard Process
- QCD radiation
- PDFs/Beams/Underlying event
- Hadrons

