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some observations from first lecture … 

Some of you 
are already 
familiar with 
QCD …
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some observations from first lecture …

… and a lot of 
are excited 
about QCD at 
this school! So 
lets get started!
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quantum chromodynamics - overview
• strong interaction part of the 

standard mode

• jet production

• internal structure of hadrons


• ingredients:

• 3 families of quarks/anti-quarks, 

come in 3 colours

• gluon, 8 colour states


• coupling constant , 
relatively large  “strong” 
coupling 

αs ∼ 0.1
→
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quantum chromodynamics - overview
• strong interaction part of the 

standard mode

• jet production

• internal structure of hadrons


• ingredients:

• 3 families of quarks/anti-quarks, 

come in 3 colours

• gluon, 8 colour states


• coupling constant , 
relatively large  “strong” 
coupling 

αs ∼ 0.1
→

• accounts for strong interaction processes 
observed at colliders 
• hadronic jets & heavy-flavour 

production 
• short-distance parton structure of 

hadrons 
➡ QCD plays a role in the prediction & 

interpretation of any LHC result 

• ingredients 
• 3 families of quarks  

 

each one has an anti-partner and 
comes in 3 „colour“ states 

• 1 gluon, comes in 8 „colour“ states 
• a relatively large coupling ~1/10 with a 

fast „inverse“ running

(u
d), (c

s), ( t
b)

Quantum chromodynamics.
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field mass [GeV] spin el. charge [e] #colour
d ~0.005 1/2 -1/3 3
u ~0.002 1/2 +2/3 3
s ~0.1 1/2 -1/3 3
c ~1.3 1/2 +2/3 3
b ~4.2 1/2 -1/3 3
t ~172.8 1/2 +2/3 3
g 0 1 0 8

∼ r
1
r2 1.4 × 10−2

1
r

e−mW,Zr 2.2 × 10−6

1
r2 1.2 × 10−38

interaction long-distance rel. strength*

strong 1

electromagnetic

weak

gravity
*at 1 GeV = 0.2 fm = 2  10-14 cm×
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reading material
• much of these lectures based on 

previous HASCO lectures (Steffen 
Schumann 2012, Enrico Bothmann 
2022) 


• standard reference: Ellis, Stirling, 
Webber “QCD and Collider Physics”


• introductory material in general 
particle physics references, for 
example Griffiths “Introduction to 
Elementary Particles”

Contents.
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• QCD basics 
• Colour & Lagrangian 
• Perturbation theory & Running coupling 

• Soft & collinear singularities 
• concepts of jets & parton showers 
• QCD for processes with incoming protons 
• Monte-Carlo event generators

• much of the material based on Steffen Schumann’s 2012 
HASCO lectures 

• further reeding: Ellis, Stirling and Webber: „QCD and Collider 
Physics“ (aka „the pink book of QCD“); Dissertori, Knowles and 
Schmelling: „QCD High Energy Experiments and Theory“

Elements of QCD for hadron colliders
theoretical concepts and phenomenology

Ste↵en Schumann

II. Physikalisches Institut, Universität Göttingen

HASCO 2012

Göttingen

15. - 27.07. 2012

Ste↵en Schumann Elements of QCD for hadron colliders

A tour of QCD 
at hadron colliders.
Part 1 of 2

Enrico Bothmann 
Institut für Theoretische Physik,
Universität Göttingen 

HASCO 2022

[Goran Duplancic]
1

http://hasco.uni-goettingen.de
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hadron colliders in the real world
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Event Generators

Crucial for precision Collider Physics

Combine different physics at different scales:
● Hard Process
● Parton Shower
● Underlying Interaction
● Hadronization
● QED FSR
● Hadron Decays

hadron colliders for theorists
• Events factorised into


• Hard Process


• QCD radiation


• PDFs/Beams/Underlying event


• Hadrons
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hadron colliders for theorists
• Events factorised into


• Hard Process


• QCD radiation


• PDFs/Beams/Underlying event


• Hadrons

Main goal of this lecture: 

understand and analyse this 
picture
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hadrons
• Hadrons  states observed in 

experiments


• basic examples: proton, neutron


• historic situation:


• there are many more hadrons 
than we encounter “every day” 

 “zoo of hadrons”


• order, understanding from first 
principles?

=

→

Event Generators

Crucial for precision Collider Physics

Combine different physics at different scales:
● Hard Process
● Parton Shower
● Underlying Interaction
● Hadronization
● QED FSR
● Hadron Decays
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hadrons in the quark model
• observation: hadrons follow specific 

pattern —  flavour symmetry 

• structure of light hadrons can be 
explained by a model where 
hadrons are made up of three 
constituents, almost massless 
“partons” — “up” ( ), “down” ( ) 
and “strange” ( ) quarks


•  + further experiments show there 
are three more quarks — “charm” 
( ), “bottom” ( ) and “top” ( )

SU(3)

u d
s

c b t

The quark model.
• „flavour“  structure observed in spectrum of light mesons & baryons 

➡ quark model: mesons (baryons) bound states of 2 (3) quarks, led e.g. to prediction & 
discovery of  @ Brookhaven 1964 

• fractional quark electric charges to account for baryon charges ! credibility issue 
• quarks have spin-1/2 to account for observed baryon spins 

• evidence for point-like constituents („partons“) inside hadron targets at SLAC 1970
further studies: partons conform to the quark model ⤳ quark-parton-model (QPM) 

• Note:  … now let's talk about colour"

SU(3)V

Ω−

SU(3)V ≠ SU(3)c

7

Δ− Δ0 Δ+ Δ++

Σ− Σ0 Σ+

Ξ− Ξ0

Ω−

ddd ddu duu uuu

dds dus uus

dss uss
sss

baryon decouplet quark content

The quark model.
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➡ quark model: mesons (baryons) bound states of 2 (3) quarks, led e.g. to prediction & 
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• Note:  … now let's talk about colour"

SU(3)V
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properties of quarks
• to match the observed hadron spectrum: quarks should be spin-1/2 fermions


• up-type quarks with charge , down-type quarks  
(+ anti-quarks with opposite charges)


•  form electroweak multiplets


• for example proton  or neutron   Baryons


• Mesons made of quark-antiquark pairs,                                                        
e.g. neutral   and                                                                   
charged  ,  pions

Qu,c,t = 2/3 Qd,s,b = − 1/3

(u, d), (c, s), (t, b)

|uud⟩ |udd⟩ →

π0 ∼ |uū⟩ + |dd̄⟩
|π+⟩ ∼ |ud̄⟩ |π−⟩ ∼ | ūd⟩

Colour.
• problem (also see intro lecture pt. 2): quarks e.g. in spin-3/2 

baryon  are in a fully symmetric state of space, 
spin and flavour
⤳ violation of Fermi–Dirac statistics! 
➡ idea of extra d.o.f. „colour“, baryon wave function is then 

made antisymmetric in new colour index: 
 

• next problem ⤳ many new states with different colours, but no 
such degeneracy was observed 
➡ ad-hoc requirement of „confinement“: only colour-singlet 

states shall exist 

• if colour group is  & quarks in fundamental 
representation, basic colour singlets are 
•  (mesons) color+anticolour = "white" 
•  (baryons) red+blue+green = "white"

Δ++ = |u↑u↑u↑⟩

Δ++ = ϵabc |ua↑ub↑uc↑⟩

SU(3)c

|qaq̄a⟩
ϵabc |qaqbqc⟩

8
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colour
• Historic puzzle: we observe hadrons in states like   

three identical fermions, apparently in a completely symmetric wave 
functions  violation of Fermi-Dirac statistics?


• Solution: if we had an additional quantum number,                                    
lets call it colour, with three possible states,                                                  
we could anti-symmetrise as                               




• We don’t observe this quantum number (apart from theses statistics), so 
postulate: all physical, experimental observed states are colour-neutral  
confinement

|Δ++⟩ = |u↑u↑u↑⟩ →

→

|Δ++⟩ = ϵabc |ua,↑ub,↑uc,↑⟩

→

Colour.
• problem (also see intro lecture pt. 2): quarks e.g. in spin-3/2 
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➡ idea of extra d.o.f. „colour“, baryon wave function is then 

made antisymmetric in new colour index: 
 

• next problem ⤳ many new states with different colours, but no 
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➡ ad-hoc requirement of „confinement“: only colour-singlet 
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8
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parton model evidence — the R-ratio
• consider ratio of total cross sections 


• you saw the diagram for  in the standard model lecture

• only differences for quarks: come in 3 colours and with fractional charges


• different mass thresholds, at low energies only  quarks 




• above charm, threshold, one more up-type quark 

R = ∑
q

σ(e+e− → qq̄)/σ(e+e− → μ+μ−)

e+e− → μ+μ−

d, u, s

R = Nc [( 2
3 )

2

+ 2 (−
1
3 )

2

] = Nc
2
3

R = Nc [2 ( 2
3 )

2

+ 2 (−
1
3 )

2

] = Nc
10
9
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parton model evidence — the R-ratio 11
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4040
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4160
ψ

4415
ψ

 hadrons data→ -e+e
(HVPTools compilation)

BES
KEDR
pQCD (massless)

Davier-Hoecker-Malaescu-Zhang, 2019

Fig. 8. The total hadronic e+e≠ annihilation rate R as a function of centre-of-mass energy. Inclusive measurements from
BES [49] and KEDR [50, 51] are shown as data points, while the sum of exclusive channels from this analysis is given by
the narrow blue bands. Also shown for the purpose of illustration is the prediction from massless perturbative QCD (solid
red line).

where the uncertainties account for lowest and higher
order hadronic, and other contributions, respectively.
The result (7) deviates from the experimental value,
aexp

µ = 11 659 209.1 ± 5.4 ± 3.3 [55, 59], by 26.0 ± 7.9
(3.3‡).

A compilation of recent SM predictions for aµ com-
pared with the experimental result is given in Fig. 9.

Running electromagnetic coupling at m2
Z

The sum of all quark-flavour terms from Table 2 gives
for the hadronic contribution to the running of –(m2

Z)

∆–had(m2

Z) = (275.3 ± 1.0) · 10≠4 , (8)

the uncertainty of which is dominated by data sys-
tematic e�ects (0.7 · 10≠4) and the uncertainty in the
QCD prediction (0.6 ·10≠4). The use of the same inputs
with di�erent integration kernels in the calculations in-
duces a correlation of +44% between the ahad,LO

µ and
∆–had(m2

Z) uncertainties. The result without the new
BABAR/KLOE systematic uncertainty is 275.2 ± 0.9.

Adding to (8) the four-loop leptonic contribution,
∆–lep(m2

Z) = (314.979 ± 0.002) · 10≠4 [61], one finds

–≠1(m2

Z) = 128.947 ± 0.013 . (9)

The current uncertainty on –(m2

Z) is sub-dominant in
the SM prediction of the W -boson mass (the dominant

uncertainties are due to the top mass and of theoret-
ical origin), but dominates the prediction of sin2 ◊¸

e�
,

which, however, is about twice more accurate than the
combination of all present measurements [47].

5 Conclusions and perspectives

Using newest available e+e≠
æ hadrons cross-section

data we have reevaluated the lowest-order hadronic vac-
uum polarisation contribution to the Standard Model
prediction of the anomalous magnetic moment of the
muon, and the hadronic contribution to the running
electromagnetic coupling strength at the Z-boson mass.
For the former quantity we find ahad,LO

µ = (694.0±4.0)·

10≠10. In spite of new data and the use of a more precise
fit to evaluate the threshold region up to 0.6 GeV, the
uncertainty on this contribution has increased to 0.6%
since our last evaluation [1], due to the addition of a new
systematic uncertainty to account for a global discrep-
ancy between fi+fi≠ data from BABAR and KLOE.
Resolving this discrepancy would allow to reduce the
ahad,LO

µ uncertainty by 20%.15

The discrepancy between measurement and com-
plete Standard Model prediction remains at a non-
conclusive 3.3‡ level. The new Fermilab g ≠ 2 exper-
iment currently in operation [62] aims at up to four
15 The contribution of the fi+fi≠ channel to the total

ahad,LO

µ uncertainty-squared is 71%.
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QCD — gauge theory
• look back on Standard-Model lecture: QED gauge invariance ψ → e−iqα(x)ψ
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QCD — gauge theory
• look back on Standard-Model lecture: QED gauge invariance 


• for QCD, we want to use colour as “charge”   becomes vector in 3-d 
colour space, acted on by matrices 


•   matrices representing gauge group

ψ → e−iqα(x)ψ

→ ψ
ψ → eitAα(x)ψ

tA …
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QCD — gauge theory
• look back on Standard-Model lecture: QED gauge invariance 


• for QCD, we want to use colour as “charge”   becomes vector in 3-d 
colour space, acted on by matrices 


•   matrices representing gauge group 

• relevant group for QCD:  with   number of colours


• group of Special (determinant 1) Unitary  matrices


• relevant for physics: generators  with 

ψ → e−iqα(x)ψ

→ ψ
ψ → eitAα(x)ψ

tA …

SU(Nc) Nc = 3 …

Nc × Nc

tA eitAα ∈ SU(Nc)

Note: this is distinct 
from the  flavour 
symmetry we saw 
earlier! 

SU(3)
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SU(3) colour group — Gell-Mann matrices
• special (  generators traceless), unitary (  generators hermitian) 3x3 

matrices, explicit basis:


• conventionally, we actually work with 


• matrices acting on vectors 

→ →

tA
ab =

1
2

λA
ab

(ψ1, ψ2, ψ3)

Basics of QCD: the SU(3) colour group

the group of unitary 3 ⇥ 3 matrices U with det(U) = +1

 SU(3) generators, hermitian & traceless Gell-Mann matrices

QCD lecture 1 (p. 5)

What is QCD Lagrangian + colour

Quarks — 3 colours:  a =

0

@
 1

 2

 3

1

A

Quark part of Lagrangian:

Lq =  ̄a(i�
µ@µ�ab � gs�

µtC
abA

C
µ � m) b

SU(3) local gauge symmetry � 8 (= 32
� 1) generators t1

ab . . . t8

ab
corresponding to 8 gluons A

1
µ . . . A8

µ.

A representation is: tA = 1

2
�A,

�1
=

0

@

0 1 0

1 0 0

0 0 0

1

A , �2
=

0

@

0 �i 0

i 0 0

0 0 0

1

A , �3
=

0

@

1 0 0

0 �1 0

0 0 0

1

A , �4
=

0

@

0 0 1

0 0 0

1 0 0

1

A ,

�5
=

0

@

0 0 �i
0 0 0

i 0 0

1

A , �6
=

0

@

0 0 0

0 0 1

0 1 0

1

A , �7
=

0

@

0 0 0

0 0 �i
0 i 0

1

A , �8
=

0

B

@

1�
3

0 0

0
1�
3

0

0 0
�2�

3

1

C

A
,

by convention we define tA
ab ⌘

1

2
�A

ab  U = exp{i↵AtA
}

[tA, tB ] = ifABC tC

with fABC the SU(3) structure constants (anti-symmetric in all indices)

 SU(3) is a non-abelian group

Note: The analogs of SU(2) you know well, the Pauli matrices & ✏ijk

Ste↵en Schumann Elements of QCD for hadron colliders

Note: Gell-Man matrices analogous to Pauli matrices for SU(2) 
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SU(3) group - colour algebra
• defining property ,                                                                              

and chosen normalisation , 


•  are structure constants of the group, generate adjoint representation


• Casimir invariants


      ,        and     ,   


• Fierz identity


        


[tA, tB] = ifABCtC

Tr[tAtB] = TRδAB TR = 1/2

fABC

tA
abt

A
bc = CFδac CF =

N2
c − 1
2Nc

fACD fBCD = CAδAB CA = Nc

tA
abt

A
cd =

1
2

δbcδad −
1

2Nc
δabδcd
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SU(3) group - colour algebra
• defining property ,                                                                            

and chosen normalisation , 


•  are structure constants of the group, generate adjoint representation


• Casimir operators


      ,        and     ,   


• Fierz identity


        


[tA, tB] = ifABCtC

Tr[tAtB] = TRδAB TR = 1/2

fABC

tA
abt

A
bc = CFδac CF =

N2
c − 1
2Nc

fACD fBCD = CAδAB CA = Nc

tA
abt

A
cd =

1
2

δbcδad −
1

2Nc
δabδcd

Example use of Fierz identity — 


re-calculate first Casimir:


 


          


         

tA
abt

A
bc

1
2

δbbδac −
1

2Nc
δabδbc

=
Nc

2
δac −

1
2Nc

δac

=
N2

c − 1
2Nc

δac
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SU(3) group - colour algebra
• defining property ,                                                                            

and chosen normalisation , 


•  are structure constants of the group, generate adjoint representation


• Casimir operators


      ,        and     ,   
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A
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=
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SU(3) group - colour algebra
• defining property ,                                                                            

and chosen normalisation , 


•  are structure constants of the group, generate adjoint representation


• Casimir operators


      ,        and     ,   


• Fierz identity


        


[tA, tB] = ifABCtC

Tr[tAtB] = TRδAB TR = 1/2

fABC

tA
abt

A
bc = CFδac CF =

N2
c − 1
2Nc

fACD fBCD = CAδAB CA = Nc

tA
abt

A
cd =

1
2

δbcδad −
1

2Nc
δabδcd

Example use of Fierz identity — 


re-calculate first Casimir:


 


          


         

tA
abt

A
bc =

1
2

δbbδac −
1

2Nc
δabδbc

=
Nc

2
δac −

1
2Nc

δac

=
N2

c − 1
2Nc

δac

Note summation convention:


δii =
Nc

∑
i=0

δii =
Nc

∑
i=0

1 = Nc
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SU(3) group - colour algebra
• defining property ,                                                                             

and chosen normalisation , 


•  are structure constants of the group, generate adjoint representation


• Casimir operators


      ,        and     ,   


• Fierz identity


        


[tA, tB] = ifABCtC

Tr[tAtB] = TRδAB TR = 1/2

fABC

tA
abt

A
bc = CFδac CF =

N2
c − 1
2Nc

fACD fBCD = CAδAB CA = Nc

tA
abt

A
cd =

1
2

δbcδad −
1

2Nc
δabδcd

Example use of Fierz identity — 


re-calculate first Casimir:


 


          


         

tA
abt

A
bc =

1
2

δbbδac −
1

2Nc
δabδbc

=
Nc

2
δac −

1
2Nc

δac

=
N2

c − 1
2Nc

δac
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SU(3) group - colour algebra
• defining property ,                                                                             

and chosen normalisation , 


•  are structure constants of the group, generate adjoint representation


• Casimir operators


      ,        and     ,   


• Fierz identity


        


[tA, tB] = ifABCtC

Tr (tAtB) = TRδAB TR = 1/2

fABC

tA
abt

A
bc = CFδac CF =

N2
c − 1
2Nc

fACD fBCD = CAδAB CA = Nc

tA
abt

A
cd =

1
1

δbcδad −
1

2Nc
δabδcd

side note:


     we can eliminate   by using


         


and taking the trace


         


      

fABC

[tA, tB] tC = ifABDtDtC

Tr ([tA, tB] tC) = ifABD Tr (tDtC) = ifABDTRδCD

⇒ fABC = −
i

TR
Tr ([tA, tB] tC)
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SU(3) group - colour algebra
• defining property ,                                                                            

and chosen normalisation , 


•  are structure constants of the group, generate adjoint representation


• Casimir operators


      ,        and     ,   


• Fierz identity


        


[tA, tB] = ifABCtC

Tr[tAtB] = TRδAB TR = 1/2

fABC

tA
abt

A
bc = CFδac CF =

N2
c − 1
2Nc

fACD fBCD = CAδAB CA = Nc

tA
abt

A
cd =

1
1

δbcδad −
1

2Nc
δabδcd

side note:


     we can eliminate   by using


         


and taking the trace


         


      

fABC

[tA, tB] tC = ifABDtDtC

Tr ([tA, tB] tC) = ifABD Tr (tDtC) = ifABDTRδCD

⇒ fABC = −
i

TR
Tr ([tA, tB] tC)

Together with Fierz:


all colour factors 
become counting 
of in  (= 0 or 1) 

 trivial (though 
maybe 
cumbersome) 
calculation

δab
⇒
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QCD as a gauge theory
• Fundamental particles: fermionic quark fields , with flavour 

 and colour charge   free quark lagrangian 
                                                           

(  generic Dirac for each colour and flavour)

ψa
q

q = u, d, s, c, b, t a ⇒
ℒquark = ψ̄a

q iγμ∂μ ψa
q − mq ψ̄a

q ψa
q

→
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QCD as a gauge theory
• Fundamental particles: fermionic quark fields , with flavour 

 and colour charge   free quark lagrangian 
                                                           

(  generic Dirac for each colour and flavour)


• analogous to QED: forces between (electrically) charged particles mediated 
by photons  forces between colour charged particles mediated by gluons  

 spin-1 fields in adjoint representation  with                                                                   

      where   

ψa
q

q = u, d, s, c, b, t a ⇒
ℒquark = ψ̄a

q iγμ∂μ ψa
q − mq ψ̄a

q ψa
q

→

→
→ AA

μ A = 1…8

ℒgluon = −
1
4

FA
μνFA μν FA

μν = ∂μAA
ν − ∂νAA

μ − gs fABCAA
μ AB

ν
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QCD as a gauge theory
• Fundamental particles: fermionic quark fields , with flavour 

 and colour charge   free quark lagrangian 
                                                           

(  generic Dirac for each colour and flavour)


• analogous to QED: forces between (electrically) charged particles 
mediated by photons  forces between colour charged particles 
mediated by gluons                                                                    

      where   

ψa
q

q = u, d, s, c, b, t a ⇒
ℒquark = ψ̄a

q iγμ∂μ ψa
q − mq ψ̄a

q ψa
q

→

→

ℒgluon = −
1
4

FA
μνFA μν FA

μν = ∂μAA
ν − ∂νAA

μ − gs fABCAA
μ AB

ν

you know this part 
from QED/ED
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QCD as a gauge theory
• Fundamental particles: fermionic quark fields , with flavour 

 and colour charge   free quark lagrangian 
                                                           

(  generic Dirac for each colour and flavour)


• analogous to QED: forces between (electrically) charged particles 
mediated by photons  forces between colour charged particles 
mediated by gluons                                                                    

      where   

ψa
q

q = u, d, s, c, b, t a ⇒
ℒquark = ψ̄a

q iγμ∂μ ψa
q − mq ψ̄a

q ψa
q

→

→

ℒgluon = −
1
4

FA
μνFA μν FA

μν = ∂μAA
ν − ∂νAA

μ − gs fABCAA
μ AB

ν

you know this part 
from QED/ED

this is new due to 
non-abelian gauge 
group
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QCD as a gauge theory
• interactions between quarks and gluons  minimal coupling, i.e. restoring local 

gauge symmetry 


• final lagrangian 


• generic form of “Yang-Mills” Lagrangian  general gauge theories, distinguished 
by group generated by s  here  and s as discussed before


• side note: consistent quantisation requires gauge-fixing terms (also present in 
QED) and ghost fields (decouple in abelian theory)  not necessary for our 
purposes now

→
∂μ → (Dμ)ab = δab∂μ − igstA

abAA
μ

ℒQCD = ψ̄a
q (iγμ(Dμ)ab − δabmq) ψb

q −
1
4

FA
μνFA μν

→
tA → SU(3) tA

→
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lattice QCD
• numerical solution to find most likely 

field configurations


• on discrete 4D-grid (lattice), then take 
limit of small lattice spacing   
solution of QCD


• no approximation made (in principle)


• important result: mass spectrum of 
hadrons  supports QCD as theory 
of hadrons/at low energies

→

→

0

500

1000

1500

2000

M
[M
eV
]

p

K

r

K* N
L

S

X

D

S*
X*
O

experiment
width
input
QCD

Figure 3: The light hadron spectrum of QCD. Horizontal lines and bands are the experimental
values with their decay widths. Our results are shown by solid circles. Vertical error bars
represent our combined statistical (SEM) and systematic error estimates. π, K and Ξ have no
error bars, because they are used to set the light quark mass, the strange quark mass and the
overall scale, respectively.

10

[Durr et. al. ’08]
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QCD at colliders
• Events factorised into


• Hard Process


• QCD radiation


• PDFs/Beams/Underlying event


• Hadrons

Event Generators

Crucial for precision Collider Physics

Combine different physics at different scales:
● Hard Process
● Parton Shower
● Underlying Interaction
● Hadronization
● QED FSR
● Hadron Decays
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QCD — perturbation theory
• reminder: we want to calculate matrix elements as input for cross sections


• perturbation theory: expand  in powers of coupling constant 



• e.g. in QED relevant coupling is   first order naively 
accurate within ~ 1%


• how about QCD?

ℳ
ℳ = ℳ0 + gℳ1 + g2ℳ2 + …

αQED ∼ 1/137 →

see Standard Model 
lecture, Slides 51-54
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QCD coupling constant
• Lagrangian includes coupling constant   analogous to electric charge, 

determines the coupling strength  needed as input for calculations


• we will use , compare to (in suitable units) 


• Typical behaviour in QFTs: higher order terms can be absorbed into coupling 
constant, introducing dependence on energy scale  differential equation 

, with  computable in perturbation theory

gs ∼
→

αs =
g2

s

4π
αQED =

e2

4π
∼

1
137

→
dαs(μ2)
d ln μ2

= β(αs) β(αs)
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the running coupling

•    with    


• important to note the overall minus sign   at high energy scales, 
this is known as asymptotic freedom 

• also provides evidence for validity of confinement  at small energies, 
interaction strength between quarks and gluons large  infinite energy 
required to separate two quarks

dαs(μ2)
d ln μ2

= β(αs) β(αs) = − α2
s (β0 + β1αs + …)

⇒ αs → 0

→
→

Nobel price 2004 for Gross, Polizer, Wilczek
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the running coupling
• leading order solution: only include 


•
   


• divergent (Landau pole) when  


• alternative representation  


•   fundamental scale for breakdown of perturbation theory

β0 =
11CA − 2nf

12π

dαs(μ2)
d ln μ2

= − β0α2
s ⇒ αs(μ2) =

αs(μ2
0)

1 + αs(μ2
0)β0 ln μ2

μ2
0

μ2 ∼ μ2
0e−αsβ0

α−1
s (μ2) = β0 ln

μ2

Λ2
QCD

→ ΛQCD ∼ 200 GeV
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the running coupling
• leading order solution: only include 


•
   


• divergent (Landau pole) when  


• alternative representation  


•   fundamental scale for breakdown of perturbation theory

β0 =
11CA − 2nf

12π

dαs(μ2)
d ln μ2

= − β0α2
s ⇒ αs(μ2) =

αs(μ2
0)

1 + αs(μ2
0)β0 ln μ2

μ2
0

μ2 ∼ μ2
0e−αsβ0

α−1
s (μ2) = β0 ln

μ2

Λ2
QCD

→ ΛQCD ∼ 200 GeV

But:             
 as 


 Perturbation 
theory valid at high 
energies (UV limit)

αs → 0 μ → ∞

⇒
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the running coupling
• So what is the value at relevant (for 

us) energies?


• The standard is to quote the value at 
the Z mass  GeV, 




• typical jet 


• expect much worse behaviour than 
QED, but should naively we are in the 
range where pQCD is applicable

MZ ∼ 91.2
αs(MZ) ∼ 0.118

pT ∼ 50 GeV … 5 TeV

36 9. Quantum Chromodynamics

world average, we first combine six pre-averages, excluding the lattice result, using a ‰
2 averaging

method. This gives
–s(M2

Z) = 0.1176 ± 0.0011 , (without lattice) . (9.24)

This result is fully compatible with the lattice pre-average Eq. (9.23) and has a comparable error.
In order to be conservative, we combine these two numbers using an unweighted average and take
as an uncertainty the average between these two uncertainties. This gives our final world average
value

–s(M2
Z) = 0.1179 ± 0.0010 . (9.25)

�s(MZ
2) = 0.1179 ± 0.0010

� s
(Q

2 )
Q [GeV]

� decay (N3LO)
low Q2 cont. (N3LO)

DIS jets (NLO)
Heavy Quarkonia (NLO)

e+e- jets/shapes (NNLO+res)
pp/p-p (jets NLO)

EW precision fit (N3LO)
pp (top, NNLO)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  10  100  1000

Figure 9.5: Summary of measurements of –s as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of –s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

This world average value is in very good agreement with the last version of this Review, which
was –s(M2

Z
) = 0.1181 ± 0.0011, with only a slightly lower central value and decreased overall

6th December, 2019 11:50am
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QCD - Feynman rules

10 1 Fundamentals of QCD

A,a p
nnnnnnnnp

B

B./3

(p'+ie)

<5ab , , i

(all m o m e n t a incoming, p+q+r = 0)

B

|A,a

A, a

. 2 .XAC JCBD r a? yd ad 0rn
- l g f f [g g - g g ]

. 2 JCADJCBC r a|8 yd ay 0<5-i
-ig f r [g g -g g ]

. 2 JCABOCCD r a y (3(5 a(5 fly-,

- l g f f [g g - g g ]

-ABC a
g r q

- ig (tA)
cb

Fig. 1.3. Feynman rules for QCD in a covariant gauge for gluons (curly lines),
fermions (solid lines) and ghosts (dotted lines).

:DD C  5 4B 697 B9 5 B7 D7B C :DD C 6  B9  ,1  
. 676 8B :DD C  5 4B 697 B9 5 B7 . B: 2 7BC D / 4B B 0 B D C 4 75D D D:7 4B 697 B7 D7B C 8 C7 4 7 D

gluon-quark interaction, 
analogous to photon-
fermion with  as 
“charge”


tA
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tA

+ interactions between 
gluons, as a result of 
the ‘non-abelian’ parts 
of FA

μν
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QCD - Feynman rules
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gluon-quark interaction, 
analogous to photon-
fermion with  as 
“charge”


tA

+ interactions between 
gluons, as a result of 
the ‘non-abelian’ parts 
of FA

μν

+ not shown here: 
propagators, with 
colour conserving 
deltas, couplings to EW 
bosons
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QCD — colour flowQCD colour flow.

17

∝ gstA
ba

A, µ

B, ν

C, ρ

p

q

r

A, µ

ba

∝ gs f ABC

A, µ

B, ν

C, ρ

p

q

r

A, µ

b a

• gluon is charged: carries colour and anti-colour 

➡ gluon emission re-paints the mother parton

⇔

⇔

• gluons carry both colour 
and anti-colour


• at interaction vertices 
they can “carry away” 
color and change color 
of patron they interact 
with
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QCD — colour factors

QCD colour algebra.

18

• useful  colour algebra relations
⤳ appear when summing over colours of squared amplitudes

SU(NC)

trace relation corresponding diagram

a c

A B

A BTr{tAtB} = TR δAB , TR = 1
2

∑
A

tA
abtA

bc = CF δac , CF = N2
c − 1
2Nc

∑
C,D

f ACD fBCD = CA δAB , CA = Nc

⤳ gluon emissions are enhanced w/r/t gluon splittings into quark pairs 
⤳ in particular gluon emissions off other gluons come with a relatively large prefactor 

 
⤳ gluon corrections play an important role in QCD

CA = 3

• Colour factors (Casimirs) we saw earlier indeed appear in common diagrams:

• Observation:  is enhanced relative to  by factor g → gg q → qg CA/CF
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QCD calculations
• simplest process involving quarks: 


• not actually involving QCD, generic fermion production (but  times)


• next higher order (+ gluon attached to other quark + virtual corrections)

e+e− → γ* → qq̄

Nc54 3 QCD in electron-positron annihilation

e

f
Fig. 3.1. Feynman diagrams for the process e+e~ -> / / .

and positron form a photon (or Z), of virtuality Q equal to the collision
energy ^/ i , which fluctuates into a quark and an antiquark. By the uncer-
tainty principle, this fluctuation occurs on a distance scale of order 1/Q,
and if Q is large the production rate for this short-distance process should
be predicted by perturbation theory. Subsequently, the quarks and glu-
ons form themselves into hadrons. This process is called hadronization.
Hadronization occurs at a much later time scale characterized by I/A,
where A is the scale in o?5, i.e. the scale at which the coupling becomes
strong. The interactions which change quarks and gluons into hadrons
certainly modify the outgoing state, but they occur too late to modify
the original probability for the event to happen, which can therefore be
calculated in perturbation theory.

At lowest order, the total hadronic cross section is obtained by simply
summing over all kinematically accessible flavours and colours of quark-
antiquark pairs, e+e~ —> J^QQ- Real a n d virtual gluon corrections to this
basic process will generate higher-order contributions to the perturbation
series. Since it is convenient to compare the hadronic cross section to that
for /x+/i~ production, and to include the possibility of both photon and Z
exchange, we begin by considering the general high-energy 2 —» 2 process
e+e~* —> / / , with / a light charged fermion, / ^ e. At lowest order, this
is mediated by either a virtual photon or a Z in the s-channel, Fig. 3.1.
With 6 the centre-of-mass scattering angle of the final-state fermion, the
differential cross section is

da
dcosO

coS
20){Q2

}-2QfVeVfXi(s)

cos0{ - 4^/^^x1(5) + 8AeVeAfVfX2(s)} , (3-1)

where
8(8-Ml)

— K

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

56 3 QCD in electron-positron annihilation

(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

∼ ū(p1)

spinor



49
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These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

∼ ū(p1) check Feynman rules!

QCD vertex
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QCD — Feynman rules
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QCD calculations
• simplest process involving quarks: 


• not actually involving QCD, generic fermion production (but  times)


• next higher order (+ gluon attached to other quark + virtual corrections)

e+e− → γ* → qq̄

Nc54 3 QCD in electron-positron annihilation

e

f
Fig. 3.1. Feynman diagrams for the process e+e~ -> / / .

and positron form a photon (or Z), of virtuality Q equal to the collision
energy ^/ i , which fluctuates into a quark and an antiquark. By the uncer-
tainty principle, this fluctuation occurs on a distance scale of order 1/Q,
and if Q is large the production rate for this short-distance process should
be predicted by perturbation theory. Subsequently, the quarks and glu-
ons form themselves into hadrons. This process is called hadronization.
Hadronization occurs at a much later time scale characterized by I/A,
where A is the scale in o?5, i.e. the scale at which the coupling becomes
strong. The interactions which change quarks and gluons into hadrons
certainly modify the outgoing state, but they occur too late to modify
the original probability for the event to happen, which can therefore be
calculated in perturbation theory.

At lowest order, the total hadronic cross section is obtained by simply
summing over all kinematically accessible flavours and colours of quark-
antiquark pairs, e+e~ —> J^QQ- Real a n d virtual gluon corrections to this
basic process will generate higher-order contributions to the perturbation
series. Since it is convenient to compare the hadronic cross section to that
for /x+/i~ production, and to include the possibility of both photon and Z
exchange, we begin by considering the general high-energy 2 —» 2 process
e+e~* —> / / , with / a light charged fermion, / ^ e. At lowest order, this
is mediated by either a virtual photon or a Z in the s-channel, Fig. 3.1.
With 6 the centre-of-mass scattering angle of the final-state fermion, the
differential cross section is

da
dcosO

coS
20){Q2

}-2QfVeVfXi(s)

cos0{ - 4^/^^x1(5) + 8AeVeAfVfX2(s)} , (3-1)

where
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56 3 QCD in electron-positron annihilation

(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

∼ ū(p1)(−igs)tAγα

QCD vertex
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QCD calculations
• simplest process involving quarks: 


• not actually involving QCD, generic fermion production (but  times)


• next higher order (+ gluon attached to other quark + virtual corrections)

e+e− → γ* → qq̄

Nc54 3 QCD in electron-positron annihilation
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f
Fig. 3.1. Feynman diagrams for the process e+e~ -> / / .

and positron form a photon (or Z), of virtuality Q equal to the collision
energy ^/ i , which fluctuates into a quark and an antiquark. By the uncer-
tainty principle, this fluctuation occurs on a distance scale of order 1/Q,
and if Q is large the production rate for this short-distance process should
be predicted by perturbation theory. Subsequently, the quarks and glu-
ons form themselves into hadrons. This process is called hadronization.
Hadronization occurs at a much later time scale characterized by I/A,
where A is the scale in o?5, i.e. the scale at which the coupling becomes
strong. The interactions which change quarks and gluons into hadrons
certainly modify the outgoing state, but they occur too late to modify
the original probability for the event to happen, which can therefore be
calculated in perturbation theory.

At lowest order, the total hadronic cross section is obtained by simply
summing over all kinematically accessible flavours and colours of quark-
antiquark pairs, e+e~ —> J^QQ- Real a n d virtual gluon corrections to this
basic process will generate higher-order contributions to the perturbation
series. Since it is convenient to compare the hadronic cross section to that
for /x+/i~ production, and to include the possibility of both photon and Z
exchange, we begin by considering the general high-energy 2 —» 2 process
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These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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QCD calculations
• simplest process involving quarks: 


• not actually involving QCD, generic fermion production (but  times)


• next higher order (+ gluon attached to other quark + virtual corrections)

e+e− → γ* → qq̄

Nc54 3 QCD in electron-positron annihilation

e

f
Fig. 3.1. Feynman diagrams for the process e+e~ -> / / .

and positron form a photon (or Z), of virtuality Q equal to the collision
energy ^/ i , which fluctuates into a quark and an antiquark. By the uncer-
tainty principle, this fluctuation occurs on a distance scale of order 1/Q,
and if Q is large the production rate for this short-distance process should
be predicted by perturbation theory. Subsequently, the quarks and glu-
ons form themselves into hadrons. This process is called hadronization.
Hadronization occurs at a much later time scale characterized by I/A,
where A is the scale in o?5, i.e. the scale at which the coupling becomes
strong. The interactions which change quarks and gluons into hadrons
certainly modify the outgoing state, but they occur too late to modify
the original probability for the event to happen, which can therefore be
calculated in perturbation theory.

At lowest order, the total hadronic cross section is obtained by simply
summing over all kinematically accessible flavours and colours of quark-
antiquark pairs, e+e~ —> J^QQ- Real a n d virtual gluon corrections to this
basic process will generate higher-order contributions to the perturbation
series. Since it is convenient to compare the hadronic cross section to that
for /x+/i~ production, and to include the possibility of both photon and Z
exchange, we begin by considering the general high-energy 2 —» 2 process
e+e~* —> / / , with / a light charged fermion, / ^ e. At lowest order, this
is mediated by either a virtual photon or a Z in the s-channel, Fig. 3.1.
With 6 the centre-of-mass scattering angle of the final-state fermion, the
differential cross section is
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

∼ ū(p1)(−igs)tAγα i(p/1 + k/)
(p1 + k)2

(−ie)γμ

QCD vertex

propagator
QED vertex
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QCD calculations
• simplest process involving quarks: 


• not actually involving QCD, generic fermion production (but  times)


• next higher order (+ gluon attached to other quark + virtual corrections)

e+e− → γ* → qq̄

Nc54 3 QCD in electron-positron annihilation

e

f
Fig. 3.1. Feynman diagrams for the process e+e~ -> / / .

and positron form a photon (or Z), of virtuality Q equal to the collision
energy ^/ i , which fluctuates into a quark and an antiquark. By the uncer-
tainty principle, this fluctuation occurs on a distance scale of order 1/Q,
and if Q is large the production rate for this short-distance process should
be predicted by perturbation theory. Subsequently, the quarks and glu-
ons form themselves into hadrons. This process is called hadronization.
Hadronization occurs at a much later time scale characterized by I/A,
where A is the scale in o?5, i.e. the scale at which the coupling becomes
strong. The interactions which change quarks and gluons into hadrons
certainly modify the outgoing state, but they occur too late to modify
the original probability for the event to happen, which can therefore be
calculated in perturbation theory.

At lowest order, the total hadronic cross section is obtained by simply
summing over all kinematically accessible flavours and colours of quark-
antiquark pairs, e+e~ —> J^QQ- Real a n d virtual gluon corrections to this
basic process will generate higher-order contributions to the perturbation
series. Since it is convenient to compare the hadronic cross section to that
for /x+/i~ production, and to include the possibility of both photon and Z
exchange, we begin by considering the general high-energy 2 —» 2 process
e+e~* —> / / , with / a light charged fermion, / ^ e. At lowest order, this
is mediated by either a virtual photon or a Z in the s-channel, Fig. 3.1.
With 6 the centre-of-mass scattering angle of the final-state fermion, the
differential cross section is

da
dcosO

coS
20){Q2
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56 3 QCD in electron-positron annihilation
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

∼ ū(p1)(−igs)tAγα i(p/1 + k/)
(p1 + k)2

(−ie)γμv(p2)

QCD vertex

propagator
spinor
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QCD calculations
• simplest process involving quarks: 


• not actually involving QCD, generic fermion production (but  times)


• next higher order (+ gluon attached to other quark + virtual corrections)

e+e− → γ* → qq̄
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Fig. 3.1. Feynman diagrams for the process e+e~ -> / / .

and positron form a photon (or Z), of virtuality Q equal to the collision
energy ^/ i , which fluctuates into a quark and an antiquark. By the uncer-
tainty principle, this fluctuation occurs on a distance scale of order 1/Q,
and if Q is large the production rate for this short-distance process should
be predicted by perturbation theory. Subsequently, the quarks and glu-
ons form themselves into hadrons. This process is called hadronization.
Hadronization occurs at a much later time scale characterized by I/A,
where A is the scale in o?5, i.e. the scale at which the coupling becomes
strong. The interactions which change quarks and gluons into hadrons
certainly modify the outgoing state, but they occur too late to modify
the original probability for the event to happen, which can therefore be
calculated in perturbation theory.

At lowest order, the total hadronic cross section is obtained by simply
summing over all kinematically accessible flavours and colours of quark-
antiquark pairs, e+e~ —> J^QQ- Real a n d virtual gluon corrections to this
basic process will generate higher-order contributions to the perturbation
series. Since it is convenient to compare the hadronic cross section to that
for /x+/i~ production, and to include the possibility of both photon and Z
exchange, we begin by considering the general high-energy 2 —» 2 process
e+e~* —> / / , with / a light charged fermion, / ^ e. At lowest order, this
is mediated by either a virtual photon or a Z in the s-channel, Fig. 3.1.
With 6 the centre-of-mass scattering angle of the final-state fermion, the
differential cross section is

da
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

∼ ū(p1)(−igs)tAγα i(p/1 + k/)
(p1 + k)2

(−ie)γμv(p2)ϵα

vertex

propagator polarisation vector
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(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

∼ ū(p1)(−igs)tAγα i(p/1 + k/)
(p1 + k)2

(−ie)γμv(p2)ϵα
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(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

∼ ū(p1)(−igs)tAγα i(p/1 + k/)
(p1 + k)2

(−ie)γμv(p2)ϵα

∼ ū(p1)(−igs)tAϵ/
ip/1

2p1 ⋅ k
(−ie)γμv(p2)

assume massless partons,  and  analyse the 
soft gluon  limit

p2
1 = 0, k2 = 0

k → 0
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(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

∼ ū(p1)(−igs)tAγα i(p/1 + k/)
(p1 + k)2

(−ie)γμv(p2)ϵα

∼ ū(p1)(−igs)tAϵ/
ip/1

2p1 ⋅ k
(−ie)γμv(p2)

∼ ū(p1)(−igs)tA ip1 ⋅ ϵ
p1 ⋅ k

(−ie)γμv(p2)

use  and the Dirac equation ϵ/p/1 = 2ϵ ⋅ p1 − p/1ϵ/ ū(p1)p/1 = 0
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(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

∼ ū(p1)(−igs)tAγα i(p/1 + k/)
(p1 + k)2

(−ie)γμv(p2)ϵα

∼ ū(p1)(−igs)tAϵ/
ip/1

2p1 ⋅ k
(−ie)γμv(p2)

∼ ū(p1)(−igs)tA ip1 ⋅ ϵ
p1 ⋅ k

(−ie)γμv(p2)

∼ gstA p1 ⋅ ϵ
p1 ⋅ k

×

56 3 QCD in electron-positron annihilation

(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

soft gluon emissions factorise!
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(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

∼ gstA p1 ⋅ ϵ
p1 ⋅ k

×

56 3 QCD in electron-positron annihilation

(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

56 3 QCD in electron-positron annihilation

(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

∼ gstA p2 ⋅ ϵ
p2 ⋅ k

×

56 3 QCD in electron-positron annihilation

(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

soft gluon 
emissions 
factorise!

56 3 QCD in electron-positron annihilation

(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4

∼ 2g2
s tAtB p1 ⋅ ϵ

p1 ⋅ k
p2 ⋅ ϵ
p2 ⋅ k

56 3 QCD in electron-positron annihilation
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4
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56 3 QCD in electron-positron annihilation
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4
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(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
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Factorisation with “eikonal” factor!

2

Note: phase 
space factorises 
as well 
dϕqq̄g = dϕqq̄dϕ+1
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eikonal
2p1 ⋅ p2

(p1 ⋅ k)(p2 ⋅ k)
observation: divergent if  or  or 


 collinear and soft/infrared limits

k ∥ p1 k ∥ p2 k → 0

⇒
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eikonal
2p1 ⋅ p2

(p1 ⋅ k)(p2 ⋅ k)
observation: divergent if  or  or 


 collinear and soft/infrared limits

k ∥ p1 k ∥ p2 k → 0

⇒

Explicitly in some reference frame, use 


 divergencies visible for  (collinear) and  (soft)

pi ⋅ k = EiEk(1 − cos θik)

⇒ θik → 0 Ek → 0

2p1 ⋅ p2

(p1 ⋅ k)(p2 ⋅ k)
∼

1
E2

k

1
(1 − cos θ1k)(1 − cos θ2k)
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eikonal
2p1 ⋅ p2

(p1 ⋅ k)(p2 ⋅ k)
observation: divergent if  or  or 


 collinear and soft/infrared limits

k | |p1 k | |p2 k → 0

⇒

Explicitly in some reference frame, use 


 divergencies visible for  (collinear) and  (soft)

pi ⋅ k = EiEk(1 − cos θik)

⇒ θik → 0 Ek → 0

2p1 ⋅ p2

(p1 ⋅ k)(p2 ⋅ k)
∼

1
E2

k

1
(1 − cos θ1k)(1 − cos θ2k)

General structure, divergencies and factorisation in the soft and 
collinear limits is a universal property of QCD amplitudes!
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divergencies … ?
• If amplitudes in QCD are divergent in the infrared, how can we ever calculated 

meaningful results?
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divergencies … ?
• If amplitudes in QCD are divergent in the infrared, how can we ever calculated 

meaningful results?


• Answer: we did not yet consider the full  correction, also have to take 
into account virtual terms


• on their own divergent as well  sum turns out to be finite!

𝒪(αs)

⇒

56 3 QCD in electron-positron annihilation

(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution

BD,  64 5C 7:8 C: 6 C8 8C D BD, 7  C:  . 2  
/ 4787 9C BD,  64 5C 7:8 C: 6 C8 / C 4 3 8CD 0 5C4C 14C 4 , , D 5 86 8 .4 5C 7:8 . C8 8C D 9 D8 4 4 45 8 4



70

divergencies … ?
• If amplitudes in QCD are divergent in the infrared, how can we ever calculated 

meaningful results?


• Answer: we did not yet consider the full  correction, also have to take 
into account virtual terms


• on their own divergent as well  sum turns out to be finite!


•  we can calculate at least inclusive (enough) cross sections (e.g. 
, but not )
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⇒

⇒
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we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
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where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:
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where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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summary of pQCD so far
• Feynman rules derived from Lagrangian for  gauge theory.


• If we attempt to calculate higher order corrections to QCD cross 
sections, we encounter soft and collinear divergencies.


• These cancel after adding real and virtual corrections, rendering 
inclusive (enough) cross sections finite.


• Both matrix elements and phase space factorise in these limits  we 
can think of matrix elements with soft gluons as some hard “core” 
matrix element with additional emissions of soft gluons

SU(3)

⇒
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What is “inclusive enough”?
• We have seen that not all observables are well defined in QCD, since we 

must not disturb the cancellation of real and virtual singularities


• We must exclude anything that is sensitive to arbitrarily soft and/or 
collinear emissions


• typical example: multiplicities


• Observables that are not affected by a soft/collinear emission are called 
infrared-collinear (IRC) safe
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IRC safe observables: Jets
• A typical example for the construction of IRC safe quantities are sequential 

recombination algorithms used to define jets


1. compute distance measure  for each pair of final-state particles and the 

beam distance  for each particle


2. determine minimum of all 


A. if one of the  is smallest, combine those particles 


B. if one of the beam distances  is smallest,  is a jet and removed from 
the procedure


3. go back to 1, repeat until all objects are clustered

dij

diB

dij, diB

dij i, j

diB i
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IRC safe observables: Jets
• distance measures are a matter of choice


• only formal requirement is IRC safety, i.e. a soft/collinear emission should 
not change the jets obtained from the algorithm

 - algorithm/Durham - algorithm:


 ,    


kT

dij = min (k2
T,i, k2

T,j) ΔR2

R2
diB = min (k2

T,i, k2
T,j)

ΔR2
ij = (yi − yj)2 + (ϕi − ϕj)2
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IRC safe observables: Jets
• distance measures are a matter of choice


• only formal requirement is IRC safety, i.e. a soft/collinear emission should 
not change the jets obtained from the algorithm

anti-  - algorithm:


 ,    


kT

dij = min (k−2
T,i , k−2

T,j ) ΔR2

R2
diB = min (k−2

T,i , k−2
T,j )

ΔR2
ij = (yi − yj)2 + (ϕi − ϕj)2
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IRC safe observables: Jets
• distance measures are a matter of choice


• only formal requirement is IRC safety, i.e. a soft/collinear emission should 
not change the jets obtained from the algorithm

Cambridge/Aachen - algorithm:


 ,    
dij =
ΔR2

R2
diB = 1

ΔR2
ij = (yi − yj)2 + (ϕi − ϕj)2
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IRC safe observables: Jets
• Standard reference for implementations: FastJet program


• Generalised  - algorithm kt

 ,    
dij = min (k2p
T,i, k2p

T,j) ΔR2

R2
diB = min (k2

T,i, k2
T,j)

ΔR2
ij = (yi − yj)2 + (ϕi − ϕj)2

Durham





closest match to 
structure of QCD 
matrix elements, 
theoretical interest

p = 1

Cambridge/Aachen





angular ordered 
splitting sequence, 
close match to QCD 
coherence

p = 0

anti- 





closest to defining jets as 
“cones” with radius  around 
hard particles, default choice 
in LHC experiments

kt

p = − 1

R
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Jet cross sections at the LHC
• jets are infrared save, so we can 

compute their production cross 
section in perturbation theory


• powerful tests of perturbative QCD


• here: compared to measurement by 
ATLAS at s = 13 TeV

 [GeV]
T
p

210 310

 [p
b/

G
eV

]
y

 d Tp
/d
σ2 d

21−10

18−10

15−10

12−10

9−10

6−10

3−10

1

310

610

910

1210

201803290937

ATLAS
-1fb3.2 --1nb81 = 13 TeV, s

=0.4R tanti-k

uncertainties
Systematic

 EW corr.×Non-pert. corr. 
×NLOJET++ (CT14 PDF) 

)0 10×| < 0.5 (y|
)-3 10×| < 1.0 (y |≤0.5 
)-6 10×| < 1.5 (y |≤1.0 

)-9 10×| < 2.0 (y |≤1.5 
)-12 10×| < 2.5 (y |≤2.0 
)-15 10×| < 3.0 (y |≤2.5 

Figure 5: Inclusive jet cross-sections as a function of pT and |y|, for anti-kt jets with R = 0.4. The statistical uncer-
tainties are smaller than the size of the symbols used to plot the cross-section values. The dark gray shaded areas
indicate the experimental systematic uncertainties. The data are compared to NLO pQCD predictions calculated
using NLOJET++ with pmax

T as the QCD scale and the CT14 NLO PDF set, to which non-perturbative and elec-
troweak corrections are applied. The light gray (yellow in the online version) shaded areas indicate the predictions
with their uncertainties. At low and intermediate pT bins the experimental systematic uncertainties are comparable
to the theory uncertainties (drawn on top) and therefore are barely visible.

18
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QCD at colliders
• Events factorised into


• Hard Process


• QCD radiation


• PDFs/Beams/Underlying event


• Hadrons

Event Generators

Crucial for precision Collider Physics

Combine different physics at different scales:
● Hard Process
● Parton Shower
● Underlying Interaction
● Hadronization
● QED FSR
● Hadron Decays
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QCD at colliders
Event Generators

Crucial for precision Collider Physics

Combine different physics at different scales:
● Hard Process
● Parton Shower
● Underlying Interaction
● Hadronization
● QED FSR
● Hadron Decays

• Events factorised into


• Hard Process


• QCD radiation


• PDFs/Beams/Underlying event


• Hadrons


