Quantum Chromodynamics

HASCO Summer School, Göttingen, 17 July - 25 July 2023

quantum chromodynamics - overview

- strong interaction part of the standard mode
 - jet production
 - internal structure of hadrons
- ingredients:
 - 3 families of quarks/anti-quarks,
 come in 3 colours
 - gluon, 8 colour states
 - coupling constant $\alpha_s \sim 0.1$, relatively large \rightarrow "strong" coupling

- Events factorised into
 - Hard Process
 - QCD radiation
 - PDFs/Beams
 - Hadrons
 - parton model: hadrons consist of color neutral combinations of 3 quarks (Baryons) or quark anti-quark pairs (Mesons)
 - lattice QCD confirms mass spectrum of hadrons as property of QCD

- Events factorised into
 - Hard Process
 - QCD radiation
 - PDFs/Beams
 - Hadrons

recap of pQCD so far

- running coupling $\alpha_s(\mu) \to \infty$ as $\mu \to \Lambda_{QCD}$ (confinement) and $\alpha_s(\mu) \to 0$ as $\mu \to \infty$ (asymptotic freedom) \to LHC energies naively within range of perturbative QCD
- Feynman rules derived from Lagrangian for SU(3) gauge theory

$$\mathcal{L}_{QCD} = \bar{\psi}_q^a \left(i \gamma^\mu (D_\mu)_{ab} - \delta_{ab} m_q \right) \psi_q^b - \frac{1}{4} F_{\mu\nu}^A F^{A \mu\nu}$$

 non-abelian theory → interaction between gluons in addition to gluonquark vertices

QCD calculations

- simplest process involving quarks: $e^+e^- \to \gamma^* \to q\bar{q}$
- not actually involving QCD, generic fermion production (but N_{c} times)

next higher order (+ gluon attached to other quark + virtual corrections)

$$\begin{array}{ccc}
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

$$\sim \bar{u}(p_1)(-ig_s)t^A \epsilon \frac{ip_1}{2p_1 \cdot k}(-ie)\gamma^{\mu}v(p_2)$$

assume massless partons, $p_1^2 = 0$, $k^2 = 0$ and analyse the soft gluon $k \rightarrow 0$ limit

$$\begin{array}{ccc}
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

$$\sim \bar{u}(p_1)(-ig_s)t^A \epsilon \frac{ip_1}{2p_1 \cdot k}(-ie)\gamma^{\mu}v(p_2)$$

$$\sim \bar{u}(p_1)(-ig_s)t^A \frac{ip_1 \cdot \epsilon}{p_1 \cdot k}(-ie)\gamma^\mu v(p_2)$$

use $\ell p_1 = 2\epsilon \cdot p_1 - p_1 \ell$ and the Dirac equation $\bar{u}(p_1)p_1 = 0$

$$\begin{array}{ccc}
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

$$\sim \bar{u}(p_1)(-ig_s)t^A \epsilon \frac{ip_1}{2p_1 \cdot k}(-ie)\gamma^{\mu}v(p_2)$$

$$\sim \bar{u}(p_1)(-ig_s)t^A \frac{ip_1 \cdot \epsilon}{p_1 \cdot k}(-ie)\gamma^\mu v(p_2)$$

$$\sim g_s t^A \frac{p_1 \cdot \epsilon}{p_1 \cdot k} \times$$

soft gluon emissions factorise!

 $\sim g_s t^A \frac{p_2 \cdot \epsilon}{p_2 \cdot k} \times$

soft gluon emissions factorise!

perform sum over gluon polarisations $\epsilon_{\mu}\epsilon_{
u} o -g_{\mu
u}$, and colours $t^At^B o C_F$

perform sum over gluon polarisations $\epsilon_{\mu}\epsilon_{
u} o -g_{\mu
u}$, and colours $t^At^B o C_F$

Note: phase space factorises as well $d\phi_{q\bar{q}g} = d\phi_{q\bar{q}} d\phi_{+1}$

Factorisation with "eikonal" factor!

eikonal

$$\frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)}$$

observation: divergent if $k \parallel p_1$ or $k \parallel p_2$ or $k \to 0$

⇒ collinear and soft/infrared limits

eikonal

$$\frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)}$$

observation: divergent if $k \parallel p_1$ or $k \parallel p_2$ or $k \to 0$

⇒ collinear and soft/infrared limits

Explicitly in some reference frame, use $p_i \cdot k = E_i E_k (1 - \cos \theta_{ik})$

$$\frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \sim \frac{1}{E_k^2} \frac{1}{(1 - \cos \theta_{1k})(1 - \cos \theta_{2k})}$$

 \Rightarrow divergencies visible for $\theta_{ik} \to 0$ (collinear) and $E_k \to 0$ (soft)

eikonal

$$\frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)}$$

observation: divergent if $k \parallel p_1$ or $k \parallel p_2$ or $k \to 0$

⇒ collinear and soft/infrared limits

Explicitly in some reference frame, use $p_i \cdot k = E_i E_k (1 - \cos \theta_{ik})$

$$\frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)} \sim \frac{1}{E_k^2} \frac{1}{(1 - \cos \theta_{1k})(1 - \cos \theta_{2k})}$$

 \Rightarrow divergencies visible for $\theta_{ik} \to 0$ (collinear) and $E_k \to 0$ (soft)

General structure, divergencies and factorisation in the soft and collinear limits is a universal property of QCD amplitudes!

divergencies ...?

• If amplitudes in QCD are divergent in the infrared, how can we ever calculated meaningful results?

divergencies ...?

- If amplitudes in QCD are divergent in the infrared, how can we ever calculated meaningful results?
- Answer: we did not yet consider the full $\mathcal{O}(\alpha_s)$ correction, also have to take into account virtual terms

• on their own divergent as well \Rightarrow sum turns out to be finite!

divergencies ...?

- If amplitudes in QCD are divergent in the infrared, how can we ever calculated meaningful results?
- Answer: we did not yet consider the full $\mathcal{O}(\alpha_s)$ correction, also have to take into account virtual terms

- on their own divergent as well \Rightarrow sum turns out to be finite!
- \Rightarrow we can calculate at least inclusive (enough) cross sections (e.g. $e^+e^- \rightarrow$ hadrons, but not $e^+e^- \rightarrow$ exactly 2 quarks)

What is "inclusive enough"?

- We have seen that not all observables are well defined in QCD, since we must not disturb the cancellation of real and virtual singularities
- We must exclude anything that is sensitive to arbitrarily soft and/or collinear emissions
 - typical example: multiplicities
- Observables that are not affected by a soft/collinear emission are called infrared-collinear (IRC) safe

- A typical example for the construction of IRC safe quantities are sequential recombination algorithms used to define jets
 - 1. compute distance measure d_{ij} for each pair of final-state particles and the beam distance d_{iR} for each particle
 - 2. determine minimum of all d_{ij} , d_{iB}
 - A. if one of the d_{ij} is smallest, combine those particles i,j
 - B. if one of the beam distances d_{iB} is smallest, i is a jet and removed from the procedure
 - 3. go back to 1, repeat until all objects are clustered

- distance measures are a matter of choice
 - only formal requirement is IRC safety, i.e. a soft/collinear emission should not change the jets obtained from the algorithm

$$k_T$$
 - algorithm/Durham - algorithm:

$$d_{ij} = \min\left(k_{T,i}^2, k_{T,j}^2\right) \frac{\Delta R^2}{R^2}, \quad d_{iB} = \min\left(k_{T,i}^2, k_{T,j}^2\right)$$
$$\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

$$\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

- distance measures are a matter of choice
 - only formal requirement is IRC safety, i.e. a soft/collinear emission should not change the jets obtained from the algorithm

anti-
$$k_T$$
 - algorithm:

$$d_{ij} = \min\left(k_{T,i}^{-2}, k_{T,j}^{-2}\right) \frac{\Delta R^2}{R^2}, \quad d_{iB} = \min\left(k_{T,i}^{-2}, k_{T,j}^{-2}\right)$$
$$\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

$$\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

- distance measures are a matter of choice
 - only formal requirement is IRC safety, i.e. a soft/collinear emission should not change the jets obtained from the algorithm

Cambridge/Aachen - algorithm:

$$d_{ij} = \frac{\Delta R^2}{R^2}, \quad d_{iB} = 1$$

$$\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

$$\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

- Standard reference for implementations: FastJet program
 - Generalised k_t algorithm

$$d_{ij} = \min\left(k_{T,i}^{2p}, k_{T,j}^{2p}\right) \frac{\Delta R^2}{R^2}, \quad d_{iB} = \min\left(k_{T,i}^2, k_{T,j}^2\right)$$

$$\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

Durham

$$p = 1$$

closest match to structure of QCD matrix elements, theoretical interest Cambridge/Aachen

$$p = 0$$

angular ordered splitting sequence, close match to QCD coherence

anti- k_t

$$p = -1$$

closest to defining jets as "cones" with radius R around hard particles, default choice in LHC experiments

jet algorithms

Jet cross sections at the LHC

- jets are infrared save, so we can compute their production cross section in perturbation theory
- powerful tests of perturbative QCD
- here: compared to measurement by ATLAS at $\sqrt{s}=13\,\,\mathrm{TeV}$

- Events factorised into
 - Hard Process
 - QCD radiation
 - PDFs/Beams
 - Hadrons

- Events factorised into
 - Hard Process

- QCD radiation
- PDFs/Beams
- Hadrons

- Events factorised into
 - Hard Process

- QCD radiation
- PDFs/Beams
- Hadrons

- Events factorised into
 - Hard Process

- QCD radiation
- PDFs/Beams
- Hadrons

- so far jets look rather empty, consist of usually 1 parton at LO, at most 2 at NLO
- but we saw matrix elements for additional soft emissions diverging ⇒ no suppression of higher orders, should expect arbitrary number of soft/collinear gluons

- so far jets look rather empty, consist of usually 1 parton at LO, at most 2 at NLO
- but we saw matrix elements for additional soft emissions diverging ⇒ no suppression of higher orders, should expect arbitrary number of soft/collinear gluons

- so far jets look rather empty, consist of usually 1 parton at LO, at most 2 at NLO
- but we saw matrix elements
 for additional soft emissions
 diverging ⇒ no
 suppression of higher orders,
 should expect arbitrary
 number of soft/collinear
 gluons

- so far jets look rather empty, consist of usually 1 parton at LO, at most 2 at NLO
- but we saw matrix elements for additional soft emissions diverging ⇒ no suppression of higher orders, should expect arbitrary number of soft/collinear gluons

jet evolution

- so far jets look rather empty, consist of usually 1 parton at LO, at most 2 at NLO
- but we saw matrix elements for additional soft emissions diverging ⇒ no suppression of higher orders, should expect arbitrary number of soft/collinear gluons

jet evolution

- so far jets look rather empty, consist of usually 1 parton at LO, at most 2 at NLO
- but we saw matrix elements for additional soft emissions diverging ⇒ no suppression of higher orders, should expect arbitrary number of soft/collinear gluons

Nice pictures... Can we be quantitative about this?

average number of gluons

we already saw how to calculate approximate higher orders via factorisation:

- picture: emission of additional gluons from emitter, same divergence structure, only different colour factor
- repeats at all orders → we can iteratively generate emissions from the hard process + from subsequent emissions

average number of gluons

• quark with energy Q, on average we expect

$$\langle N_g \rangle = \frac{2\alpha_s C_F}{\pi} \int_{-\pi}^{Q} \frac{dE}{E} \int_{-\pi}^{\pi/2} \frac{d\theta}{\theta} \Theta(E\theta > Q_0)$$

• note we cut $E\theta \sim k_t > Q_0$ to avoid soft and collinear divergencies

$$\langle N_g \rangle \sim \frac{\alpha_s C_F}{\pi} \ln^2 \frac{Q}{Q_0}$$

- reasonable values Q=200 GeV, $Q_0=1$ GeV $\rightarrow \ln^2 \frac{\mathcal{Q}}{Q_0} \approx 30$
 - $\rightarrow \langle N_g \rangle > 1 \Rightarrow$ adding single orders in perturbation theory not sufficient

average number of gluons

 all orders result for gluon multiplicity:

$$\langle N_g \rangle \sim \frac{C_F}{C_A} \sum_{n=1}^{\infty} \frac{1}{(n!)^2} \left(\frac{C_A}{2\pi \beta_0 \alpha_s(Q)} \right)^n$$

$$\langle N_g \rangle \sim \frac{C_F}{C_A} \exp \left(\sqrt{\frac{2C_A}{\pi \beta_0 \alpha_s(Q)}} \right)$$

• comparison to data, assume $\langle N_g \rangle \sim \langle N_{had} \rangle$

- Events factorised into
 - Hard Process

- QCD radiation
- PDFs/Beams
- Hadrons

- Events factorised into
 - Hard Process

QCD radiation

- PDFs/Beams
- Hadrons

- Events factorised into
 - Hard Process

QCD radiation

- PDFs/Beams
- Hadrons

- Events factorised into
 - Hard Process

• QCD radiation

- PDFs/Beams
- Hadrons

parton distribution functions

- initial states are not partons but hadrons made up of them
- in pQCD, we can only calculate matrix element with incoming partons information about internal structure of hadrons
- parton model picture:
 - quarks bound inside proton
 - in collision, single parton is involved, carrying momentum fraction \boldsymbol{x} of the proton momentum
 - which parton?
 - select according to probability distributions $f_p(x)$ for each parton species

parton distribution functions

hadronic cross sections factorise

$$\sigma_{hh\to X}(s) = \sum_{p_1,p_2} \int dx_1 f_{p_1}(x_1) \int dx_2 f_{p_2}(x_2) \sigma_{p_1p_2\to X}(x_1x_2s)$$

• note:

partons assumed collinear with hadron/proton:

$$\vec{p}_i = x_i \vec{p}_h$$

• effective parton collision with reduced center of mass energy $\hat{s} = x_1 x_2 s$

 x_1P_1

 x_2P_2

 $\hat{\sigma}_{ij}(\alpha_s)$

parton distribution functions — sum rules

- can we say anything about the PDFs?
- we know overall make-up of hadrons \Rightarrow sum rules, e.g. for proton $|uud\rangle$:

$$\int_0^1 dx \left(f_u(x) - f_{\bar{u}}(x) \right) = 2 \qquad \text{and}$$

$$\int_0^1 dx \left(f_d(x) - f_{\bar{d}}(x) \right) = 1$$

pdf and factorisation scale

 lets have a closer look at real virtual cancellation:

$$\sigma_{g+h}(p) \simeq \sigma_h(zp) \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

$$\sigma_{V+h}(p) \simeq -\sigma_h(p) \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_s C_F}{\pi} \underbrace{\int_0^{Q^2} \frac{dk_t^2}{k_t^2}}_{\text{infinite}} \underbrace{\int_0^1 \frac{dz}{1-z} [\sigma_h(zp) - \sigma_h(p)]}_{\text{finite}}$$

sum finite for $z \to 1$ (soft), but not $k_t \to 0$ (collinear)

additional divergence regulated by factorisation scale μ_F and "absorbed" into pdf

pdf and factorisation scale

full factorisation theorems include dependence on factorisation scale

$$\sigma_{hh\to X}(s) = \sum_{p_1,p_2} \int dx_1 f_{p_1}(x_1,\mu_F^2) \int dx_2 f_{p_2}(x_2,\mu_F^2) \sigma_{p_1p_2\to X}(\hat{s},\mu_R^2,\mu_F^2)$$

- emission with $k_t < \mu_F$ part of pdf
- emission with $k_t > \mu_F$ part of the hard process
- we can calculate the change of pdf with energy scale μ_F in perturbative QCD (collinear emissions, again use factorisation)
- typically $\mu_F \sim Q$ energy of the hard process

parton distribution functions — measured

MSTW 2008 NLO PDFs (68% C.L.)

- PDFs fitted to cross sections various processes, in ranges where fixed order QCD calculations are applicable
- note g is scaled by a factor $1/10 \rightarrow \text{gluons}$ by far dominating at the LHC

- Events factorised into
 - Hard Process

• QCD radiation

- PDFs/Beams
- Hadrons

- Events factorised into
 - Hard Process

• QCD radiation

• PDFs/Beams

• Hadrons

- Events factorised into
 - Hard Process

QCD radiation

• PDFs/Beams

Hadrons

- Events factorised into
 - Hard Process

QCD radiation

PDFs/Beams

Hadrons

Left out so far: non-perturbative components

- parton hadron transition
- underlying event

no first principle QCD calculation, modelling required

hadronisation models

- capture main non-perturbative aspects of QCD
- universality:
 - should not depend on process/ energy (typical: tune/measure at LEP, then apply at the LHC)
- work in large N_c limit \Rightarrow each quark uniquely connected to another one, form string/cluster

Lund-string fragmentation

implemented in PYTHIA

cluster-hadronisation model

implemented in Herwig & Sherpa

underlying event modelling

- primary parton collision → leaves energetic remnants, can in principle interact again
- simple model [Sjöstrand, Zijl Phys. Rev. D 36 (1987) 2019]:
 - hard process at scale $p_{t,hard}$
 - generate sequence of additional 2 o 2 scatterings ordered in p_t

$$\mathcal{P}(p_{t}) = \frac{1}{\sigma_{ND}} \frac{d\sigma_{QCD}^{2 \to 2}}{dp_{t}^{2}} \exp \left[-\int_{p_{t}^{2}}^{p_{t,hard}^{2}} \frac{1}{\sigma_{ND}} \frac{d\sigma_{QCD}^{2 \to 2}}{dp_{t}^{'2}} dp_{t}^{'2} \right]$$

putting it all together - event generators

- Events factorised into
 - Hard Process
 - automated generation of up to NLO matrix elements
 - QCD radiation
 - Markov-Chain Monte Carlo in parton shower algorithms
 - matching to NLO calculations
 - PDFs/Beams/Underlying event
 - modelling of beam remnants / underlying event / multiple parton interactions
 - Hadrons
 - modelling of hadronisation
 - simulation of hadron decays

QCD in event generators

ATLAS pure jets analysis [G. Aad et al. Eur. Phys. J. C 71 (2011) 1763]

QCD in event generators

ATLAS pure jets analysis [G. Aad et al. Eur. Phys. J. C 71 (2011) 1763]

QCD in event generators

ATLAS Z(\rightarrow e⁺e⁻/ μ ⁺ μ ⁻) + jets analysis [G. Aad et al. Phys. Rev. D 85 (2012) 032009]

