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quantum chromodynamics - overview
• strong interaction part of the 

standard mode

• jet production

• internal structure of hadrons


• ingredients:

• 3 families of quarks/anti-quarks, 

come in 3 colours

• gluon, 8 colour states


• coupling constant , 
relatively large  “strong” 
coupling 

αs ∼ 0.1
→
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QCD at colliders
Event Generators

Crucial for precision Collider Physics

Combine different physics at different scales:
● Hard Process
● Parton Shower
● Underlying Interaction
● Hadronization
● QED FSR
● Hadron Decays

• Events factorised into


• Hard Process


• QCD radiation


• PDFs/Beams


• Hadrons
• parton model: hadrons consist of color 

neutral combinations of 3 quarks 
(Baryons) or quark anti-quark pairs 
(Mesons)


• lattice QCD confirms mass spectrum of 
hadrons as property of QCD
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recap of pQCD so far
• running coupling  as  (confinement)  and 

 as  (asymptotic freedom)  LHC energies naively 
within range of perturbative QCD


• Feynman rules derived from Lagrangian for  gauge theory 




• non-abelian theory  interaction between gluons in addition to gluon-
quark vertices

αs(μ) → ∞ μ → ΛQCD

αs(μ) → 0 μ → ∞ →

SU(3)

ℒQCD = ψ̄a
q (iγμ(Dμ)ab − δabmq) ψb

q −
1
4

FA
μνFA μν

→
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QCD calculations
• simplest process involving quarks: 


• not actually involving QCD, generic fermion production (but  times)


• next higher order (+ gluon attached to other quark + virtual corrections)

e+e− → γ* → qq̄

Nc54 3 QCD in electron-positron annihilation

e

f
Fig. 3.1. Feynman diagrams for the process e+e~ -> / / .

and positron form a photon (or Z), of virtuality Q equal to the collision
energy ^/ i , which fluctuates into a quark and an antiquark. By the uncer-
tainty principle, this fluctuation occurs on a distance scale of order 1/Q,
and if Q is large the production rate for this short-distance process should
be predicted by perturbation theory. Subsequently, the quarks and glu-
ons form themselves into hadrons. This process is called hadronization.
Hadronization occurs at a much later time scale characterized by I/A,
where A is the scale in o?5, i.e. the scale at which the coupling becomes
strong. The interactions which change quarks and gluons into hadrons
certainly modify the outgoing state, but they occur too late to modify
the original probability for the event to happen, which can therefore be
calculated in perturbation theory.

At lowest order, the total hadronic cross section is obtained by simply
summing over all kinematically accessible flavours and colours of quark-
antiquark pairs, e+e~ —> J^QQ- Real a n d virtual gluon corrections to this
basic process will generate higher-order contributions to the perturbation
series. Since it is convenient to compare the hadronic cross section to that
for /x+/i~ production, and to include the possibility of both photon and Z
exchange, we begin by considering the general high-energy 2 —» 2 process
e+e~* —> / / , with / a light charged fermion, / ^ e. At lowest order, this
is mediated by either a virtual photon or a Z in the s-channel, Fig. 3.1.
With 6 the centre-of-mass scattering angle of the final-state fermion, the
differential cross section is

da
dcosO

coS
20){Q2

}-2QfVeVfXi(s)

cos0{ - 4^/^^x1(5) + 8AeVeAfVfX2(s)} , (3-1)

where
8(8-Ml)
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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∼ ū(p1)(−igs)tAγα i(p/1 + k/)
(p1 + k)2

(−ie)γμv(p2)ϵα
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QCD calculations — soft limit
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(a)

Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.
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from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
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where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
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These results are valid for massless quarks; the effect of a non-zero quark
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0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.
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from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
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where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
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∼ ū(p1)(−igs)tAγα i(p/1 + k/)
(p1 + k)2

(−ie)γμv(p2)ϵα

∼ ū(p1)(−igs)tAϵ/
ip/1

2p1 ⋅ k
(−ie)γμv(p2)

assume massless partons,  and  analyse the 
soft gluon  limit

p2
1 = 0, k2 = 0

k → 0
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
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where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
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1
4 \M\2 =
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where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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p1 ⋅ k

(−ie)γμv(p2)

use  and the Dirac equation ϵ/p/1 = 2ϵ ⋅ p1 − p/1ϵ/ ū(p1)p/1 = 0
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
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1
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where the sum is over spins and colours. If we integrate out the Euler an-
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[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
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the energy fractions of the final-state quark and antiquark. The matrix
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =
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(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
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With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
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QCD calculations — soft limit

56 3 QCD in electron-positron annihilation
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With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.
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we shall consider only the photon-exchange contribution in detail. For the
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Factorisation with “eikonal” factor!

2

Note: phase 
space factorises 
as well 
dϕqq̄g = dϕqq̄dϕ+1
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eikonal
2p1 ⋅ p2

(p1 ⋅ k)(p2 ⋅ k)
observation: divergent if  or  or 


 collinear and soft/infrared limits

k ∥ p1 k ∥ p2 k → 0

⇒
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eikonal
2p1 ⋅ p2

(p1 ⋅ k)(p2 ⋅ k)
observation: divergent if  or  or 


 collinear and soft/infrared limits

k ∥ p1 k ∥ p2 k → 0

⇒

Explicitly in some reference frame, use 


 divergencies visible for  (collinear) and  (soft)

pi ⋅ k = EiEk(1 − cos θik)

⇒ θik → 0 Ek → 0

2p1 ⋅ p2

(p1 ⋅ k)(p2 ⋅ k)
∼

1
E2

k

1
(1 − cos θ1k)(1 − cos θ2k)
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eikonal
2p1 ⋅ p2

(p1 ⋅ k)(p2 ⋅ k)
observation: divergent if  or  or 


 collinear and soft/infrared limits

k ∥ p1 k ∥ p2 k → 0

⇒

Explicitly in some reference frame, use 


 divergencies visible for  (collinear) and  (soft)

pi ⋅ k = EiEk(1 − cos θik)

⇒ θik → 0 Ek → 0

2p1 ⋅ p2

(p1 ⋅ k)(p2 ⋅ k)
∼

1
E2

k

1
(1 − cos θ1k)(1 − cos θ2k)

General structure, divergencies and factorisation in the soft and 
collinear limits is a universal property of QCD amplitudes!
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divergencies … ?
• If amplitudes in QCD are divergent in the infrared, how can we ever calculated 

meaningful results?
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divergencies … ?
• If amplitudes in QCD are divergent in the infrared, how can we ever calculated 

meaningful results?


• Answer: we did not yet consider the full  correction, also have to take 
into account virtual terms


• on their own divergent as well  sum turns out to be finite!

𝒪(αs)

⇒
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Fig. 3.2. Feynman diagrams for the O(as) corrections to the total hadronic
cross section in e+e~ annihilation.

These results are valid for massless quarks; the effect of a non-zero quark
mass will be discussed in Section 3.2.

With q = u,..., 6, Eq. (3.7) gives R =11/3 = 3.67 and (with sin2 0W =
0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.

The O(as) corrections to the total hadronic cross section are calculated
from the real and virtual gluon diagrams shown in Fig. 3.2. For simplicity,
we shall consider only the photon-exchange contribution in detail. For the
real gluon diagrams, Fig. 3.2(b), it is convenient to write the three-body
phase space integration as

1 — dadcos(id^dxi dx2 , (3.9)
° (2TT)5 32

where a,/?,7 are Euler angles, and xi = 2Eq/yfs and x2 = 2Eq/y/s are
the energy fractions of the final-state quark and antiquark. The matrix
element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
using the Feynman rules given in Chapter 1:

1
4 \M\2 =

' Q2 Pi ' k p 2
(3.10)

where the sum is over spins and colours. If we integrate out the Euler an-
gles then the matrix element depends only on xi and x2. The contribution
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•  we can calculate at least inclusive (enough) cross sections (e.g. 
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⇒
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These results are valid for massless quarks; the effect of a non-zero quark
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0.23) Rz = 20.09. For the latter, the measured value at LEP is 20.79±0.04
[1], some 3.5% higher than the lowest-order prediction. In fact the differ-
ence is largely due to higher-order QCD corrections, and the comparison
between theory and experiment provides a determination of the strong
coupling constant, as we shall see in Chapter 12.
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we shall consider only the photon-exchange contribution in detail. For the
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element squared for eJt{qx) + e~(q2) —>• q(pi) + 9(^2) + g(k) is obtained
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What is “inclusive enough”?
• We have seen that not all observables are well defined in QCD, since we 

must not disturb the cancellation of real and virtual singularities


• We must exclude anything that is sensitive to arbitrarily soft and/or 
collinear emissions


• typical example: multiplicities


• Observables that are not affected by a soft/collinear emission are called 
infrared-collinear (IRC) safe
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IRC safe observables: Jets
• A typical example for the construction of IRC safe quantities are sequential 

recombination algorithms used to define jets


1. compute distance measure  for each pair of final-state particles and the 

beam distance  for each particle


2. determine minimum of all 


A. if one of the  is smallest, combine those particles 


B. if one of the beam distances  is smallest,  is a jet and removed from 
the procedure


3. go back to 1, repeat until all objects are clustered

dij

diB

dij, diB

dij i, j

diB i
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IRC safe observables: Jets
• distance measures are a matter of choice


• only formal requirement is IRC safety, i.e. a soft/collinear emission should 
not change the jets obtained from the algorithm

 - algorithm/Durham - algorithm:


 ,    


kT

dij = min (k2
T,i, k2

T,j) ΔR2

R2
diB = min (k2

T,i, k2
T,j)

ΔR2
ij = (yi − yj)2 + (ϕi − ϕj)2
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IRC safe observables: Jets
• distance measures are a matter of choice


• only formal requirement is IRC safety, i.e. a soft/collinear emission should 
not change the jets obtained from the algorithm

anti-  - algorithm:


 ,    


kT

dij = min (k−2
T,i , k−2

T,j ) ΔR2

R2
diB = min (k−2

T,i , k−2
T,j )

ΔR2
ij = (yi − yj)2 + (ϕi − ϕj)2
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IRC safe observables: Jets
• distance measures are a matter of choice


• only formal requirement is IRC safety, i.e. a soft/collinear emission should 
not change the jets obtained from the algorithm

Cambridge/Aachen - algorithm:


 ,    
dij =
ΔR2

R2
diB = 1

ΔR2
ij = (yi − yj)2 + (ϕi − ϕj)2
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IRC safe observables: Jets
• Standard reference for implementations: FastJet program


• Generalised  - algorithm kt

 ,    
dij = min (k2p
T,i, k2p

T,j) ΔR2

R2
diB = min (k2

T,i, k2
T,j)

ΔR2
ij = (yi − yj)2 + (ϕi − ϕj)2

Durham





closest match to 
structure of QCD 
matrix elements, 
theoretical interest

p = 1

Cambridge/Aachen





angular ordered 
splitting sequence, 
close match to QCD 
coherence

p = 0

anti- 





closest to defining jets as 
“cones” with radius  around 
hard particles, default choice 
in LHC experiments

kt

p = − 1

R
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jet algorithms

Figure 2. The four main jet reconstruction algorithms’ areas, performed on the same data with
the same input radius[7]. Noted features are the high irregularity in the the Kt algorithms area,
the conical shape of the Anti-Kt’s jets illustrating this algorithms preference for hard radiation
and the smaller e↵ective radius of the SIScone, due to the split merge procedure, which can be
observed via smaller jet areas and two jets being resolved in the place of just the one grey jet.
The di↵erent colours are used to represent the di↵erent jets and their areas.

4. Conclusion
When using jet reconstruction algorithms, two important things to consider are infra-red and
collinear safety. Due too this the iterative cone with split merge procedure and the iterative
cone with progressive removal are no longer widely used, as they are not both infra-red and
collinear safe. Other important aspects to consider are jet size and shape. A large enough jet is
necessary to capture the required amount of non-perturbatively hadronised particles while not
being too large as to capture an excessive amount of the underlying event and pile-up.
The most accurate jet algorithm for resolving jets is the Anti-Kt algorithm whereas for the study
of jet substructure, the Cambridge/Aachen algorithm is best suited. Accurate jet reconstruction
is the only way we are able to study the properties of quarks and gluons as they are unable to
be directly observed.

5
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Jet cross sections at the LHC
• jets are infrared save, so we can 

compute their production cross 
section in perturbation theory


• powerful tests of perturbative QCD


• here: compared to measurement by 
ATLAS at s = 13 TeV

 [GeV]
T
p

210 310

 [p
b/

G
eV

]
y

 d Tp
/d
σ2 d

21−10

18−10

15−10

12−10

9−10

6−10

3−10

1

310

610

910

1210

201803290937

ATLAS
-1fb3.2 --1nb81 = 13 TeV, s

=0.4R tanti-k

uncertainties
Systematic

 EW corr.×Non-pert. corr. 
×NLOJET++ (CT14 PDF) 

)0 10×| < 0.5 (y|
)-3 10×| < 1.0 (y |≤0.5 
)-6 10×| < 1.5 (y |≤1.0 

)-9 10×| < 2.0 (y |≤1.5 
)-12 10×| < 2.5 (y |≤2.0 
)-15 10×| < 3.0 (y |≤2.5 

Figure 5: Inclusive jet cross-sections as a function of pT and |y|, for anti-kt jets with R = 0.4. The statistical uncer-
tainties are smaller than the size of the symbols used to plot the cross-section values. The dark gray shaded areas
indicate the experimental systematic uncertainties. The data are compared to NLO pQCD predictions calculated
using NLOJET++ with pmax

T as the QCD scale and the CT14 NLO PDF set, to which non-perturbative and elec-
troweak corrections are applied. The light gray (yellow in the online version) shaded areas indicate the predictions
with their uncertainties. At low and intermediate pT bins the experimental systematic uncertainties are comparable
to the theory uncertainties (drawn on top) and therefore are barely visible.
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QCD at colliders
• Events factorised into


• Hard Process


• QCD radiation


• PDFs/Beams


• Hadrons

Event Generators

Crucial for precision Collider Physics

Combine different physics at different scales:
● Hard Process
● Parton Shower
● Underlying Interaction
● Hadronization
● QED FSR
● Hadron Decays
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jet evolution
• so far jets look rather empty, 

consist of usually 1 parton at 
LO, at most 2 at NLO


• but we saw matrix elements 
for additional soft emissions 
diverging      no 
suppression of higher orders, 
should expect arbitrary 
number of soft/collinear 
gluons

⇒

Multiple gluon emissions.
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jet evolution
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Nice pictures… Can we be quantitative about this?
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average number of gluons
• we already saw how to calculate approximate higher orders via factorisation:


• picture: emission of additional gluons from emitter, same divergence 
structure, only different colour factor


• repeats at all orders  we can iteratively generate emissions from the hard 
process + from subsequent emissions

→

Multiple gluon emissions.
approximate higher-order contributions or: once a gluon is emitted it can 
itself emit additional gluons 
• consider only collinear and/or soft emissions, since we have seen that 

they are logarithmically enhanced and they factorise:

35

p

k
θ

p

k

≃ 2αsCF

π
dE
E

dθ
θ

≃ 2αsCA

π
dE
E

dθ
θ

• same divergence structure, independent of emitter 

• only difference is colour factor, gluon emits  times more 

• expect structure from 1st order, , to repeat at all orders!
CA/CF = 2.25

αS ln2 Q/Q0
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average number of gluons
• quark with energy , on average we expect                                                         




• note we cut  to avoid soft and collinear divergencies 




• reasonable values ,                  

   adding single orders in perturbation theory not sufficient

Q

⟨Ng⟩ =
2αsCF

π ∫
Q dE

E ∫
π/2 dθ

θ
Θ(Eθ > Q0)

Eθ ∼ kt > Q0

⟨Ng⟩ ∼
αsCF

π
ln2 Q

Q0

Q = 200 GeV Q0 = 1 GeV → ln2 Q
Q0

≈ 30

→ ⟨Ng⟩ > 1 ⇒
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average number of gluons
• all orders result for gluon 

multiplicity: 




• comparison to data, assume 

⟨Ng⟩ ∼
CF

CA

∞

∑
n=1

1
(n!)2 ( CA

2πβ0αs(Q) )
n

⟨Ng⟩ ∼
CF

CA
exp

2CA

πβ0αs(Q)

⟨Ng⟩ ∼ ⟨Nhad⟩

Gluon vs. hadron multiplicity.

• gluon multiplicity can be calc’d
by summing all orders  of
enhanced terms:

 

• interprete as function of  

• direct comparison to data suggests:  

➡ perturbative QCD can get us quite far!

n

⟨Ng⟩ ∼ CF

CA

∞

∑
n=1

1
(n!)2 ( CA

2πb2
0αs )

n

∼ CF

CA
exp 2CA

πb2
0αs(Q)

Q ≡ s

⟨Nhad⟩ = cfit⟨Ng⟩

36
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parton distribution functions
• initial states are not partons but hadrons made up of them


• in pQCD, we can only calculate matrix element with incoming partons  need 
information about internal structure of hadrons


• parton model picture:


• quarks bound inside proton


• in collision, single parton is involved,                                                             
carrying momentum fraction  of the proton momentum


• which parton? 


• select according to probability distributions  for each parton species

→

x

fp(x)

Processes with incoming hadrons.
• so far: processes with final-state hadrons only 
• at hadron colliders, all processes are induced by 
quarks & gluons, even if otherwise of electroweak 
nature (as e.g. γ, W, Z, h production processes) 

• in order to predict cross sections for processes 
with initial-state hadrons: need info on
proton short distance structure 

starting point: the naïve parton model 

• quarks bound inside proton 
• soft gluon exchange , acts as binding 
force responsible for this confinement 

• exchange of hard photon breaks the proton apart 
via recoil 

➡ learn about proton structure via Deep Inelastic 
Scattering (DIS)

∼ ΛQCD

54

u

u
d

Q2 ≡ − q2
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parton distribution functions
Naïve parton model factorisation.
• hadronic cross section in the
naïve parton model: 

 

• cross section is factorised 

• assume partons move collinearly with
protons:  

• partonic vs. hadronic centre-of-mass energy:  

• parton distribution functions  parametrise number density of 
quarks inside protons

σ(s) = ∑
ij

∫ dx1 fi/p(x1)∫ dx2 fj/p(x2) ̂σij→X(x1x2s)

pi = xiPi

̂s = x1x2s

fi/p

55

• hadronic cross sections factorise




• note:


• partons assumed collinear with hadron/proton: 



• effective parton collision with reduced center of 
mass energy  

σhh→X(s) = ∑
p1,p2

∫ dx1 fp1
(x1)∫ dx2 fp2

(x2)σp1p2→X(x1x2s)

⃗pi = xi ⃗ph

̂s = x1x2s
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parton distribution functions — sum rules

• can we say anything about the PDFs?


• we know overall make-up of hadrons  sum rules, e.g. for proton :

          and                          

⇒ |uud⟩

∫
1

0
dx (fu(x) − fū(x)) = 2

∫
1

0
dx (fd(x) − fd̄(x)) = 1
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pdf and factorisation scale
• lets have a closer look at real - 

virtual cancellation:

           

The factorisation scale.
• consider soft & collinear emisssions from an initial-state quark 

 

• where we assume  involves momentum transfers  

 

• total cross sections receives contributions from both 

 

➡ regulate singularity in  by factorisation scale ,
& absorb singularity into redefined scale-dependent PDFs

σg+h(p) ≃ σh(zp) αsCF

π
dz

1 − z
dk2

t

k2t

σh Q ≫ kt

σV+h(p) ≃ − σh(p) αsCF

π
dz

1 − z
dk2

t

k2t

σg+h + σV+h ≃ αsCF

π ∫
Q2

0

dk2
t

k2t

infinite

∫
1

0

dz
1 − z

[σh(zp) − σh(p)]

finite

kt μF
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58

zp
p

(1−z)p

σ
h

p p
σ

h

sum finite for  (soft), 
but not  (collinear)


additional divergence 
regulated by factorisation 
scale  and “absorbed” 
into pdf

z → 1
kt → 0

μF
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pdf and factorisation scale
• full factorisation theorems include dependence on factorisation scale




• emission with  part of pdf


• emission with  part of the hard process


• we can calculate the change of pdf with energy scale  in perturbative 
QCD (collinear emissions, again use factorisation)


• typically  energy of the hard process

σhh→X(s) = ∑
p1,p2

∫ dx1 fp1
(x1, μ2

F)∫ dx2 fp2
(x2, μ2

F)σp1p2→X( ̂s, μ2
R, μ2

F)

kt < μF

kt > μF

μF

μF ∼ Q
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parton distribution functions — measuredPDFs for the LHC.

• note g/10! ⤳ gluon-initiated processes are enhanced at the LHC 
• current PDF sets extracted from DIS,  & fixed target data 
• more recently LHC data has also become important part of fits

pp̄

61

• PDFs fitted to cross sections various processes, in ranges where fixed 
order QCD calculations are applicable


• note  is scaled by a factor   gluons by far dominating at the LHCg 1/10 →
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QCD at colliders
Event Generators

Crucial for precision Collider Physics

Combine different physics at different scales:
● Hard Process
● Parton Shower
● Underlying Interaction
● Hadronization
● QED FSR
● Hadron Decays

• Events factorised into


• Hard Process


• QCD radiation


• PDFs/Beams


• Hadrons

Left out so far: non-perturbative components


• parton - hadron transition


• underlying event


no first principle QCD calculation, modelling required
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hadronisation models
• capture main non-perturbative 

aspects of QCD


• universality:


• should not depend on process/
energy (typical: tune/measure at 
LEP, then apply at the LHC)


• work in large  limit  each quark 
uniquely connected to another one, 
form string/cluster

Nc ⇒

From partons to hadrons: 
hadronisation models.

Aim: dynamical hadronisation of 
multi-parton systems 
• capture main non-perturbative 
aspects of QCD 

• universality 
⤳ robust extrapolation to new 

machines, higher energies  
⤳ should not depend on 

specifics of the hard process  
• model (un)known decays of 
(un)known hadrons  
⤳ hadron multiplicities, meson/

baryon ratios  
⤳ decay branching fractions 
⤳ hadron-momentum 

distibutions 
82

cluster-hadronisation model 
implemented in HERWIG & SHERPA 

Lund-string fragmentation 
implemented in PYTHIA 

From partons to hadrons: 
hadronisation models.

Aim: dynamical hadronisation of 
multi-parton systems 
• capture main non-perturbative 
aspects of QCD 

• universality 
⤳ robust extrapolation to new 

machines, higher energies  
⤳ should not depend on 

specifics of the hard process  
• model (un)known decays of 
(un)known hadrons  
⤳ hadron multiplicities, meson/

baryon ratios  
⤳ decay branching fractions 
⤳ hadron-momentum 

distibutions 
82

cluster-hadronisation model 
implemented in HERWIG & SHERPA 

Lund-string fragmentation 
implemented in PYTHIA 
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underlying event modelling
• primary parton collision  leaves energetic remnants, can in principle 

interact again


• simple model [Sjöstrand, Zijl Phys. Rev. D 36 (1987) 2019]:


• hard process at scale 


• generate sequence of additional  scatterings ordered in 

→

pt,hard

2 → 2 pt

𝒫(pt) =
1

σND

dσ2→2
QCD

dp2
t

exp [−∫
p2

t,hard

p2
t

1
σND

dσ2→2
QCD

dp′￼ 2
t

dp′￼ 2
t ]
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putting it all together - event generators
Event Generators

Crucial for precision Collider Physics

Combine different physics at different scales:
● Hard Process
● Parton Shower
● Underlying Interaction
● Hadronization
● QED FSR
● Hadron Decays

• Events factorised into

• Hard Process


• automated generation of up to NLO 
matrix elements


• QCD radiation

• Markov-Chain Monte Carlo in parton 

shower algorithms 

• matching to NLO calculations


• PDFs/Beams/Underlying event

• modelling of beam remnants / underlying 

event / multiple parton interactions

• Hadrons


• modelling of hadronisation

• simulation of hadron decays
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QCD in event generatorsDirect multijet production @ LHC.
ATLAS pure jets analysis [G. Aad et al. Eur. Phys. J. C 71 (2011) 1763]

88

⤳ multijet-production rates well under control
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QCD in event generatorsDirect multijet production @ LHC.
ATLAS pure jets analysis [G. Aad et al. Eur. Phys. J. C 71 (2011) 1763]

89

⤳ more differential observables can discriminate calculations / parameter choices 
⤳ matrix-element based approaches superior for high-  jetspT
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QCD in event generatorsDirect multijet production @ LHC.
ATLAS Z( ) + jets analysis [G. Aad et al. Phys. Rev. D 85 (2012) 032009]→ e+e−/μ+μ−

90


