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Mass

We have an idea what a (rest) mass is
Gives rise to inertia F = ma

Leads to gravitational attraction

Is equivalent to energy E = mc2

Where does our mass come from?

>99.9% of the mass of an atom is in nuclei

Mass of nucleus slightly less than proton +
neutron mass (binding energy)

Most of the mass of a nucleons (≈ 1 GeV) is
generated “dynamically” in the strong
interaction (this is non-trivial)

Rest mass of quarks only few MeV
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Elementary particle mass

Elementary particle mass small but
crucial, without it

Electrons would fly away
(ratom ∝ 1/me)

Protons would decay (mp = mn)

Weak force wouldn’t be weak
short-ranged (r ≈ ℏ

cmW
≈ 10−18 m)

So where does it come from?

p

n ν̄e
e–

e–
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Origin of elementary particle mass
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The Higgs mechanism – how does this actually work

In the Standard Model, particle masses are introduced by electroweak
symmetry breaking, using the Higgs Mechanism

Will discuss a few things in more detail

Why do we need a field to “give mass”?

What is a (quantum) field?

How can it give particles mass?

How is it related to “electroweak symmetry breaking”?

How do we know it’s there?
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So... why do we need to give particles mass with a field

Really would like to have a gauge theory of interactions
Elegant

Analogue to EM force

Renormalizable (one can get rid of infinities)

But gauge theories give massless bosons

If we ignore this and add mass “by hand”: infinite cross-section for
boson scattering (see lecture Ulla Blumenschein)

And fermion mass also not compatible with SM gauge symmetry...

The Higgs mechanism allows us to “work around” these issues
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Fields, potential, and mass
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A field and its potential

Will recap first
What is a field

What is the potential of a field

For that, I brought you the infinite spring model

Hannes Mildner HASCO summer school 2023 July 18, 2023 10 / 77



Infinite spring model

ϕ
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individual coupling k2
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Towards a relativistic Lagrangian

Some simple algebra

Lsprings = 1
2M(∂ϕ(x, t)

∂t
)2︸ ︷︷ ︸

T

−1
2k1(∂ϕ(x, t)

∂x )2 − 1
2k2ϕ(x, t)2︸ ︷︷ ︸

−V

Replace M , k1, k2 with c, ℏ, m
↔ 1

2
1
c2 (∂ϕ(x,t)

∂t )2 − 1
2(∂ϕ(x,t)

∂x )2 − 1
2m

2 c2

ℏ2ϕ
2(x, t)

Four-vector notation and c = 1, ℏ = 1:
Lϕ = 1

2(∂µϕ(x))(∂µϕ(x)) − 1
2m

2ϕ2(x)

Lagrangian for relativistic wave equation (Klein–Gordon equation)
Lϕ = 1

2(∂µϕ(x))(∂µϕ(x)) − 1
2m

2ϕ2(x)

m2 corresponds to individual spring coupling k2 (not M) – related to
potential energy from absolute displacement of ϕ

Hannes Mildner HASCO summer school 2023 July 18, 2023 12 / 77



Towards a relativistic Lagrangian

Some simple algebra

Lsprings = 1
2M(∂ϕ(x, t)

∂t
)2︸ ︷︷ ︸

T

−1
2k1(∂ϕ(x, t)

∂x )2 − 1
2k2ϕ(x, t)2︸ ︷︷ ︸

−V

Replace M , k1, k2 with c, ℏ, m
↔ 1

2
1
c2 (∂ϕ(x,t)

∂t )2 − 1
2(∂ϕ(x,t)

∂x )2 − 1
2m

2 c2

ℏ2ϕ
2(x, t)

Four-vector notation and c = 1, ℏ = 1:
Lϕ = 1

2(∂µϕ(x))(∂µϕ(x)) − 1
2m

2ϕ2(x)

Lagrangian for relativistic wave equation (Klein–Gordon equation)
Lϕ = 1

2(∂µϕ(x))(∂µϕ(x)) − 1
2m

2ϕ2(x)

m2 corresponds to individual spring coupling k2 (not M) – related to
potential energy from absolute displacement of ϕ

Hannes Mildner HASCO summer school 2023 July 18, 2023 12 / 77



Towards a relativistic Lagrangian

Some simple algebra

Lsprings = 1
2M(∂ϕ(x, t)

∂t
)2︸ ︷︷ ︸

T

−1
2k1(∂ϕ(x, t)

∂x )2 − 1
2k2ϕ(x, t)2︸ ︷︷ ︸

−V

Replace M , k1, k2 with c, ℏ, m
↔ 1

2
1
c2 (∂ϕ(x,t)

∂t )2 − 1
2(∂ϕ(x,t)

∂x )2 − 1
2m

2 c2

ℏ2ϕ
2(x, t)

Four-vector notation and c = 1, ℏ = 1:
Lϕ = 1

2(∂µϕ(x))(∂µϕ(x)) − 1
2m

2ϕ2(x)

Lagrangian for relativistic wave equation (Klein–Gordon equation)
Lϕ = 1

2(∂µϕ(x))(∂µϕ(x)) − 1
2m

2ϕ2(x)

m2 corresponds to individual spring coupling k2 (not M) – related to
potential energy from absolute displacement of ϕ

Hannes Mildner HASCO summer school 2023 July 18, 2023 12 / 77



Towards a relativistic Lagrangian

Some simple algebra

Lsprings = 1
2M(∂ϕ(x, t)

∂t
)2︸ ︷︷ ︸

T

−1
2k1(∂ϕ(x, t)

∂x )2 − 1
2k2ϕ(x, t)2︸ ︷︷ ︸

−V

Replace M , k1, k2 with c, ℏ, m
↔ 1

2
1
c2 (∂ϕ(x,t)

∂t )2 − 1
2(∂ϕ(x,t)

∂x )2 − 1
2m

2 c2

ℏ2ϕ
2(x, t)

Four-vector notation and c = 1, ℏ = 1:
Lϕ = 1

2(∂µϕ(x))(∂µϕ(x)) − 1
2m

2ϕ2(x)

Lagrangian for relativistic wave equation (Klein–Gordon equation)
Lϕ = 1

2(∂µϕ(x))(∂µϕ(x)) − 1
2m

2ϕ2(x)

m2 corresponds to individual spring coupling k2 (not M) – related to
potential energy from absolute displacement of ϕ

Hannes Mildner HASCO summer school 2023 July 18, 2023 12 / 77



Klein–Gordon equation

Bonus: let’s solve the field equation

With Euler–Lagrange equation: ∂µ( ∂L
∂(∂µϕ)) − ∂L

∂ϕ = 0

L = 1
2∂µϕ(x)∂µϕ(x) − 1

2m
2ϕ(x)2

⇒ ∂µ∂
µϕ+m2ϕ = 0

Expand: (i ∂∂t)
2ϕ = ((−i∇)2 +m2)ϕ ↔ E2 = p2c2 +m2c4

Take away: solutions of Klein–Gordon equation obey dispersion
relation E2 = p2c2 +m2c4
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Particles

Nature is described by quantum field theory (QFT)

In QFT: particles discrete excitations of field

Energy of particles: E2 = p2 +m2 (m2 from quadr. potential term)
m is minimum energy cost for
particle creation

Photons can be generated
with arbitrarily low energy
(e.g. radio waves)

Electrons: need to pay at
least 511 keV

Reminiscent of minimum energy
required to excite QM harmonic
oscillator
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Gauge theories
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Global symmetry

Now we have an idea of mass in QFT – let’s
see why this is a problem for gauge theories

Let’s look at complex field
ϕ = 1√

2(ϕ1 + iϕ2) with real fields ϕi

Lagrangian:
Lϕ = (∂µϕ∗(x))(∂µϕ(x)) −m2ϕ∗(x)ϕ(x)

Describes – for now – two independent degrees
of freedom (Lϕ = Lϕ1 + Lϕ2)

“U(1)” Symmetry: ϕ(x) → eiαϕ(x) leaves
Lagrangian invariant

Conserved current – according to Noether’s
theorem – turns out to be electric charge
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Local symmetry

Recipe to introduce interaction: demand local symmetry!
Why? Will spit out a nice theory that describes nature.

We want ϕ(x) → eiα(x)ϕ(x)

Issue: extra term with i∂µα(x) arises from derivative

Solution: covariant derivative Dµ = ∂µ + igAµ(x)

Lagrangian becomes: Lϕ = (Dµϕ(x))∗(Dµϕ(x)) −m2ϕ∗(x)ϕ(x)

Restores gauge invariance with: Aµ(x) → Aµ(x) − 1
g∂µα(x)

Aµ(x): a field, a Lorentz
vector, with gauge
invariance... it’s the
electromagnetic potential
Aµ = (ϕE ,A)

Reminder: gauge invariance of Aµ

EM potential: Aµ = (ϕE ,A)
E = −∇ϕE − ∂A

∂t , B = ∇ × A

ϕE → ϕE − ∂
∂t
α, A → A + ∇α
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QED

Lagrangian for a vector field
LA = −1

4F
µνFµν − 1

2M
2AµA

µ

First part: EM field strength tensor Fµν = ∂µAν − ∂νAµ ,
invariant under Aµ(x) → Aµ(x) − ∂µα(x)

Second part awkward... this breaks gauge symmetry again

Conclude particle is massless – just like the photon!

Constructed QED for charged spin zero particle:
L = Lϕ + LA = −1

4F
µνFµν + (Dµϕ(x))∗(Dµϕ(x)) −m2ϕ(x)∗ϕ(x)

Massless gauge field, massive scalar

Fields are coupled through covariant derivative

How to get a massive gauge field?
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Symmetry Breaking
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Mexican hat potential
Let’s try modifying the Lagrangian of the
scalar (to make the gauge field massive...)
Lϕ = (Dµϕ)∗(Dµϕ) −m2ϕ∗ϕ

Can we switch the sign of m2

Just some parameter, why not

Let’s call it µ2 (with µ2 < 0)

But potential energy will not be bound...

Add extra term λ(ϕ∗ϕ)2, too (a
four-boson “self-coupling”)

1− 0.5− 0 0.5 1

|φ|

0

0.2

0.4

0.6

0.8

1

1.2

)φ
V

(

Why these terms? Because we can: Gauge symmetry (✓), Lorentz
invariance (✓), energy dimension of L is 4 (✓)

Great feature of QFTs: greatly restrict our ability to add extra terms
in a fundamental theory – this is one of the few we can add
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Symmetry breaking... for the springs

Again instructive to look at the infinite spring model

Equivalent potential: V = 1
2k1(∂ϕ(x)

∂x )2 + 1
2k2ϕ

2(x) + 1
4k3ϕ

4(x)
k2 < 0: weird spring that pushes stronger the more you pull it

k3 > 0: will catch it at some point
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Symmetry breaking... for the springs

Bouncing around one minimum at v,
spontaneously breaking ± symmetry

Coordinate transformation makes physics
more intuitive: ϕ(x) = v + ϕ′(x)

Can approximate potential by V (ϕ′(x)) ≈
k1
2 (∂ϕ

′(x)
∂x )2 + k′

2
2 (ϕ′(x))2 + O((ϕ′(x))3)

1− 0.5− 0 0.5 1

|φ|

0.2−

0.1−

0

0.1

0.2

)φ
V

(

vϕ

x

v
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Symmetry breaking for U(1)

Back to our complex scalar field
V (ϕ(x)) = µ2ϕ(x)∗ϕ(x) + λ(ϕ∗ϕ)2

Complex potential with U(1)
symmetry ⇒ circle of minima

At low temperatures (e.g. our
universe after 10−32 s):
field gets vacuum expectation
value (“vev”) everywhere (with
fixed but arbitrary phase),
breaking symmetry

Expand field around minimum in
terms of two real fields:
ϕ(x) = 1√

2(v + ϕ1(x) + iϕ2(x))

V(Φ)

Im(Φ)

Re(Φ)
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The would-be Goldstone boson

To first order:
ϕ(x) = 1√

2(v+ϕ1(x)+iϕ2(x)) ≈
1√
2(v + h(x))eiξ(x)/v

We will see, this gives a massive
boson h (feels potential)

Massless boson ξ? → would-be
Goldstone boson

Remove massless boson
everywhere by choosing gauge
ϕ(x) → ϕ(x)e−iξ(x)/v

No Goldstone boson, no
(apparent) U(1) symmetry:
ϕ(x) = 1√

2 (v + h(x))

V(Φ)

Im(Φ)

Re(Φ)
v

ξ

h
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Symmetry breaking: consequence for the gauge field

Start out with scalar QED Lagrangian:
L = −1

4F
µνFµν + (Dµϕ)∗(Dµϕ) − V (ϕ)

= − 1
4F

µνFµν + 1
2g

2v2AµA
µ︸ ︷︷ ︸

massive vector field M2=g2v2

+ g2vhAµA
µ + 1

2g
2h2AµA

µ︸ ︷︷ ︸
interactions

+ terms without Aµ

After symmetry breaking: massive vector field, MA = g2v2!

Interacts with h proportional to mass, ghAA = g2v = MA
v

Massive vector field: 3 polarizations – degrees of freedom conserved
(Aµ “eats” the Goldstone boson ξ and thus becomes massive)
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2 [(∂µ + igAµ)(v + h)][(∂µ − igAµ)(v + h)] − V (ϕ)

= − 1
4F

µνFµν + 1
2g

2v2AµA
µ︸ ︷︷ ︸

massive vector field M2=g2v2

+ g2vhAµA
µ + 1

2g
2h2AµA

µ︸ ︷︷ ︸
interactions

+ terms without Aµ

After symmetry breaking: massive vector field, MA = g2v2!

Interacts with h proportional to mass, ghAA = g2v = MA
v

Massive vector field: 3 polarizations – degrees of freedom conserved
(Aµ “eats” the Goldstone boson ξ and thus becomes massive)
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Taking stock

We’ve just seen the Higgs mechanism in action

Ground state “spontaneously” breaks the U(1) gauge symmetry

Physics of the scalar field described by
One massive scalar field h (direction up the potential)

“Unphysical” massless scalar field – removed thanks to gauge symmetry

Gauge field gets mass, function of gauge coupling g and vacuum
epectation value v

Gauge field couples to h proportional to mass

SM is only slightly more complicated
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Symmetry breaking in the Standard Model
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SM gauge symmetries: reminder

Recall SM gauge sector:
Electroweak symmetries: U(1)Y and SU(2)L
For U ∈ SU(2)

U†U = 1, det(U) = 1

U = eiαaτa

τa: generators of SU(2) (a = 1, 2, 3)

Covariant derivative Dµ = ∂µ − ig2
τa
2 W

a
µ − ig1

1
2Y Bµ

Gives us local U(1) and SU(2) gauge freedom

Gauge fields Bµ and W a
µ

Gauge couplings g1 and g2, g1 ̸= g2

Hypercharge Y and weak isospin T3, Q = T3 + 1
2Y
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The Higgs in the SM

We need a scalar taking part in gauge interactions:

Scalar doublet Φ =
(
ϕ+

ϕ0

)
, hypercharge Y = 1

Gauge invariant Lagrangian for scalar:
LS = (DµΦ)†(DµΦ) − µ2Φ†Φ − λ(Φ†Φ)2

Again, expand around minimum with, SU(2) “rotation” and H(x):

Φ(x) = eiθa(x)τa/v

(
0

1√
2(v +H(x))

)
Would-be Goldstone bosons θ1, θ1, θ3 for the three SU(2) generators

“Gauge away” Goldstone bosons

Expand Φ(x) =
(

0
1√
2(v +H(x))

)
to understand physics
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The Higgs in the SM

Expanding the covariant derivative
|DµΦ|2

=
∣∣∣∣(∂µ − ig2

τa
2 W

a
µ − ig1

1
2Bµ

)
Φ
∣∣∣∣2

= 1
2

∣∣∣∣∣
(
∂µ − i

2(g2W
3
µ + g1Bµ) − ig2

2 (W 1
µ − iW 2

µ)
− ig2

2 (W 1
µ + iW 2

µ) ∂µ + i
2(g2W

3
µ − g1Bµ)

)(
0

v +H

)∣∣∣∣∣
2

= 1
2(∂µH)2 + 1

8g
2
2(v +H)2|W 1

µ + iW 2
µ |2 + 1

8(v +H)2|g2W
3
µ − g1Bµ|2

Same structure as toy model, g2v2 terms create mass

But what are the massive fields? Terms like v2g1g2W
3
µBµ??

Linear combinations ∝ W 1
µ + iW 2

µ and ∝ g2W
3
µ − g1Bµ!
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The mass eigenstates

Get fields with well-defined mass as linear
combination of W a and B
W±
µ = 1√

2(W 1
µ ∓ iW 2

µ)

Zµ = g2W 3
µ−g1Bµ√
g2

2+g2
1

= cos θWW
3
µ − sin θWBµ

Aµ = g2W 3
µ+g1Bµ√
g2

2+g2
1

= cos θWW
3
µ + sin θWBµ

g1  + g2
22

θW

e θW
   g1

 g2

This corresponds to rotation with Weinberg angle
cos θW = g2√

g2
1+g2

2

= MW
MZ

→ can get θW from mass and coupling!

Results in MZ = 1
2v
√
g2

2 + g2
1, MW = 1

2vg2, and MA = 0

Will give us the correct couplings (e.g. Aµ couples to eL and eR
equally but not to νL), nice to figure out on a piece of paper...

Hannes Mildner HASCO summer school 2023 July 18, 2023 31 / 77



The mass eigenstates

Get fields with well-defined mass as linear
combination of W a and B
W±
µ = 1√

2(W 1
µ ∓ iW 2

µ)

Zµ = g2W 3
µ−g1Bµ√
g2

2+g2
1

= cos θWW
3
µ − sin θWBµ

Aµ = g2W 3
µ+g1Bµ√
g2

2+g2
1

= cos θWW
3
µ + sin θWBµ

g1  + g2
22

θW

e θW
   g1

 g2

This corresponds to rotation with Weinberg angle
cos θW = g2√

g2
1+g2

2

= MW
MZ

→ can get θW from mass and coupling!

Results in MZ = 1
2v
√
g2

2 + g2
1, MW = 1

2vg2, and MA = 0

Will give us the correct couplings (e.g. Aµ couples to eL and eR
equally but not to νL), nice to figure out on a piece of paper...

Hannes Mildner HASCO summer school 2023 July 18, 2023 31 / 77



The mass eigenstates

Get fields with well-defined mass as linear
combination of W a and B
W±
µ = 1√

2(W 1
µ ∓ iW 2

µ)

Zµ = g2W 3
µ−g1Bµ√
g2

2+g2
1

= cos θWW
3
µ − sin θWBµ

Aµ = g2W 3
µ+g1Bµ√
g2

2+g2
1

= cos θWW
3
µ + sin θWBµ

g1  + g2
22

θW

e θW
   g1

 g2

This corresponds to rotation with Weinberg angle
cos θW = g2√

g2
1+g2

2

= MW
MZ

→ can get θW from mass and coupling!

Results in MZ = 1
2v
√
g2

2 + g2
1, MW = 1

2vg2, and MA = 0

Will give us the correct couplings (e.g. Aµ couples to eL and eR
equally but not to νL), nice to figure out on a piece of paper...

Hannes Mildner HASCO summer school 2023 July 18, 2023 31 / 77



The mass eigenstates

Get fields with well-defined mass as linear
combination of W a and B
W±
µ = 1√

2(W 1
µ ∓ iW 2

µ)

Zµ = g2W 3
µ−g1Bµ√
g2

2+g2
1

= cos θWW
3
µ − sin θWBµ

Aµ = g2W 3
µ+g1Bµ√
g2

2+g2
1

= cos θWW
3
µ + sin θWBµ

g1  + g2
22

θW

e θW
   g1

 g2

This corresponds to rotation with Weinberg angle
cos θW = g2√

g2
1+g2

2
= MW

MZ
→ can get θW from mass and coupling!

Results in MZ = 1
2v
√
g2

2 + g2
1, MW = 1

2vg2, and MA = 0

Will give us the correct couplings (e.g. Aµ couples to eL and eR
equally but not to νL), nice to figure out on a piece of paper...

Hannes Mildner HASCO summer school 2023 July 18, 2023 31 / 77



The mass eigenstates

Get fields with well-defined mass as linear
combination of W a and B
W±
µ = 1√

2(W 1
µ ∓ iW 2

µ)

Zµ = g2W 3
µ−g1Bµ√
g2

2+g2
1

= cos θWW
3
µ − sin θWBµ

Aµ = g2W 3
µ+g1Bµ√
g2

2+g2
1

= cos θWW
3
µ + sin θWBµ

g1  + g2
22

θW

e θW
   g1

 g2

This corresponds to rotation with Weinberg angle
cos θW = g2√

g2
1+g2

2
= MW

MZ
→ can get θW from mass and coupling!

Results in MZ = 1
2v
√
g2

2 + g2
1, MW = 1

2vg2, and MA = 0

Will give us the correct couplings (e.g. Aµ couples to eL and eR
equally but not to νL), nice to figure out on a piece of paper...

Hannes Mildner HASCO summer school 2023 July 18, 2023 31 / 77



Left and right-handed fermions

We need to talk about the fermions, too

Without mass two independent fields with chirality L and R
Lψ = LψL

+ LψR
= ψ̄R(iγµDµ)ψR + ψ̄L(iγµDµ)ψL

Mass couples left and right: −m(ψ̄LψR + ψ̄RψL)

How to see this
Fermions obey Dirac Lagrangian
LD = ψ̄(iγµDµ −m)ψ, ψ̄ = ψ†γ0

Can choose to write ψ in terms of chiral spinors ψ =
(
ψL
ψR

)
,

γ0 =
(

1
1

)
, γi =

(
σi

−σi

)

γ0 flips ψL and ψR, γ0γi doesn’t
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Yukawa couplings

SU(2) doublets and singlets for leptons:

L =
(
νL
eL

)
→ U

(
νL
eL

)
, eR → eR

Mass terms like meēLeR spoil already the global symmetry...

Better: write gauge invariant: L = −ye(L̄Φer + ērΦ†L)

After symmetry breaking: L = − ye√
2 [ēL(h+ v)eR + ēR(h+ v)eL]

Mass term − yev√
2 (ēLeR + ēReL)

Higgs-fermion “Yukawa coupling”: − ye√
2h(ēLeR + ēReL)

ghff = mf

v

The Higgs mechanism can give us the fermion masses, too!

Slightly more complicated for quarks (as well as massive ν...)
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Higgs-fermion “Yukawa coupling”: − ye√
2h(ēLeR + ēReL)
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2h(ēLeR + ēReL)
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2 [ēL(h+ v)eR + ēR(h+ v)eL]
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ghff = mf

v

The Higgs mechanism can give us the fermion masses, too!

Slightly more complicated for quarks (as well as massive ν...)

Hannes Mildner HASCO summer school 2023 July 18, 2023 33 / 77



The vacuum expectation value

Vacuum expectation value v at the minimum of potential

v from minimum of V (Φ)
0 = ∂V

∂|Φ| = 2µ2|Φ| + 4λ|Φ|3 ⇒ |Φ|0 =
√

−µ2

2λ ⇒ v =
√

−µ2

λ

v determined from muon decay!

MW = 1
2g2v → v = 2MW

g2

Γµ ∝ G2
µ ∝ g4

2
M4

W

∝ 1
v2

Turns out:
v = 1√√

2Gµ

= 246 GeV

µ− vµ

e−
W−1

M2
W

g

g

ν̄e

v defines the “electroweak scale”

SM particle mass: v multiplied with dimensionless coupling
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Higgs mass and self couplings

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2

=︸︷︷︸
µ2=−λv2

λv2︸︷︷︸
1
2M

2

H2 − λvH3 − λ
4H

4

We can read of: M2
H = 2λv2

Three-Higgs and four-Higgs interactions: ∝ M2
H
v and ∝ M2

H
v2

Self-interaction only coupling requiring knowledge of MH

⇒ very hard to predict MH (contrast to MW , MZ)
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Higgs boson: predictions

Higgs mechanism predicts an elementary scalar field (unheard of!)

With a vacuum expectation value (outlandish!)

This solves a lot of issues... (maybe there is something to it...)

But how do we “prove” it’s there? Generate Higgs bosons H! This
gives us a huge number of testable hypotheses (selection):

New particle H

With spin zero

Couples to bosons like ghV V ∝ m2
V

v , ghhV V ∝ m2
V

v2

Couples to fermions like ghff ∝ mf

v

Couples to itself gHHH ∝ M2
H

v , gHHHH ∝ M2
H

v2

Unfortunately, no idea about its mass...
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Chronology

Quick chronology:

1962 Anderson: symmetry breaking not always with massless bosons

1964 Higgs: proposes the Higgs mechanism (relativistic variant)

1964 Brout and Englert as well as Guralnik, Hagen, Kibble: do so, too

1967 Weinberg: a model of leptons – the SM is born

1971 t Hooft and Veltman: SM is renormalizable
Only then the hunt for the Higgs boson really started...
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Search for the Higgs boson
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Higgs hunting: 70s

An early discussion of a Higgs search in 1976

Not very optimistic

Excluding < 18 MeV

Suggesting O(100 MeV)
searches
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Higgs hunting: 80s

In 1989 books are filled... e.g., Higgs cross-sections calculated for
MH up to 1 TeV (at canceled SSC)

Much more pushy... make sure the LHC can handle high luminosity
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Higgs hunting: 90s

Great decade for Higgs mass predictions

MHomer
H = πα8mP ≈ 300 GeV, not too bad
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Higgs hunting: 90s LEP, SLD and Tevatron

Precision measurements at LEP
(and SLD) sensitive to Higgs
trough virtual corrections

Tevatron measures mt, direct
searches at LEP and Tevatron
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Higgs hunting: after LEP, SLD, and Tevatron (2011)
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Indirect constraint (combined fit of observables from LEP, SLD, and
Tevatron): 91+30

−23GeV

Including direct searches (LEP, Tevatron, early LHC): 120+12
−5 GeV

Doesn’t mean Higgs with MH ≈ 120 GeV exists – it’s the most likely
mass if it exists and is exactly as in the SM
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LHC

From 2011 on, ATLAS and CMS were
finally collecting large amounts of
collision data at the LHC

First at a centre-of-mass energy of 7
TeV, in 2012 at 8 TeV, later 13 TeV

ATLAS Detector
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Higgs production modes

How do we produce the Higgs in proton collisions at the LHC?

Quarks and gluons massless – need particles that couple to proton
constituents and Higgs: weak bosons and top quark

[TeV] s
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H
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X
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G

S
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#1 pp → H (“ggH” or “ggF”)

#2 pp → qqH (vector/weak boson fusion, VBF/WBF)

#3 pp → V H (Higgs strahlung)
#4 pp → tt̄H (ttH)

Spectacular but messy final state due to top quark decays
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#1 pp → H (“ggH” or “ggF”)
Largest cross-section –
loop-suppressed but

Large couplings: top Yukawa and αS

Low-mass gluon final state preferred by parton distribution function
(loads of gluons with small momentum fraction in proton)

#2 pp → qqH (vector/weak boson fusion, VBF/WBF)

#3 pp → V H (Higgs strahlung)
#4 pp → tt̄H (ttH)
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#1 pp → H (“ggH” or “ggF”)
#2 pp → qqH (vector/weak boson fusion, VBF/WBF)

Associated quarks generate forward and backward jets, helping to
identify Higgs events

Sensitive to boson coupling

#3 pp → V H (Higgs strahlung)
#4 pp → tt̄H (ttH)

Spectacular but messy final state due to top quark decays
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#1 pp → H (“ggH” or “ggF”)

#2 pp → qqH (vector/weak boson fusion, VBF/WBF)
#3 pp → V H (Higgs strahlung)

Leptons from W or Z decay important for identification in jetty LHC
environment

#4 pp → tt̄H (ttH)
Spectacular but messy final state due to top quark decays
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Higgs decays

Higgs boson branching ratios (BRi = Γi
Γtot

, with Γtot =
∑
i Γi):

1. 58% bb̄: Large rate due to b Yukawa coupling: ΓH→ff̄ = Ncm2
fMHβ

3
f

8πv2

2. 21% WW ∗: Useful if both W s decay into leptons (5% of all cases)

3. 8% gg: Impossible to identify due to huge backgrounds

4. 6% τ+τ−: Characteristic one-prong and three-prong decays

5. 3% cc̄: Charmed hadrons similar to b hadrons, harder to identify

6. 3% ZZ∗: Golden channel when both Z bosons decay into leptons

7. 0.2% γγ: Fairly clean signal but relatively large background

8. 0.2% Zγ: Interesting if Z → ℓℓ

9. 0.02% µµ: Rarest decay we have a chance to find
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Number of signal and background events

Higgs production is rare
pp cross-section 108 nb:
> 1014 collisions in 2011

Most events: jet production

102 nb: W and Z production
(main source of isolated leptons)

Higgs production: < 10−2 nb!

Higgs events in 2011 (until today)
H(4ℓ): 10 (1400)

H(γγ): 190 (25000)

W (ℓν)H(bb̄): 240 (26000)

qqH(ττ): 370 (50000)
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First hints in December 2011

December 2011: first hints in
the 4ℓ (ℓ = e, µ) channel

How to read this plot?
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What are the odds?

 [GeV]4lm
100 150 200 250

E
ve

nt
s/

5 
G

eV

0

2

4

6

8

10

-1Ldt = 4.8 fb∫
 = 7 TeVs

4l→(*)
ZZ→H

DATA
Background

=125 GeV)
H

Signal (m
=150 GeV)

H
Signal (m

=190 GeV)
H

Signal (m
Syst.Unc.

ATLAS

 [GeV]Hm
200 300 400 500 600

0
Lo

ca
l p

-510

-410

-310

-210

-110

1

Observed
Expected

ATLAS
 4l→(*)

 ZZ→H
-1Ldt = 4.8 fb∫

=7 TeVs

σ2

σ3

110

About 2% probability for the background to fluctuate and look this
signal-like, at 125 GeV and 240 GeV

On its own that’s nothing – we are testing many mass hypotheses
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First hints in December 2011: γγ
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 All classes combined

Now it becomes interesting – ATLAS and CMS both see excesses at
125 GeV in the H → γγ search

Bump above background fit with smooth function
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Higgs boson: status December 2011

 [GeV]Hm

110 115 120 125 130 135 140 145 150

0
Lo

ca
l p

-610

-510

-410

-310

-210

-110

1

Exp. Comb.

Obs. Comb.

 4l→Exp. H 

 4l→Obs. H 

γγ →Exp. H 

γγ →Obs. H 

νlν l→Exp. H 

νlν l→Obs. H 

Obs. Comb. (ESS)

ATLAS 2011

σ2 

σ3 

σ4 

-1
 L dt ~ 1.04-4.9 fb∫

 = 7 TeVs

Higgs boson mass (GeV)
110 115 120 125 130 135 140 145

Lo
ca

l p
-v

al
ue

-610

-510

-410

-310

-210

-110

1

σ1

σ2

σ3

σ4
Combined observed
Expected for SM Higgs
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)-1 WW             (4.6 fb→H 
)-1 4l       (4.7 fb→ ZZ →H 
)-1 2l 2q  (4.6 fb→ ZZ →H 

-1L = 4.6-4.8 fb
 = 7 TeVsCMS,  

Combined: both experiment excesses around 125 GeV (p0 < 0.001)

Mass and rate as expected for SM Higgs

Why didn’t we declare discovery then and there?

Hannes Mildner HASCO summer school 2023 July 18, 2023 51 / 77



Fast forward December 2015
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We require 5σ for a discovery

Many searches and many mass points, some fluctuations are expected
(sometimes quantified as “look elsewhere effect”)

See here ATLAS and CMS high-mass X → γγ search – both
experiments see excess at 750 GeV after first year at 13 TeV
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Fast forward December 2015
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Small p values – but turned out to be fluctuation!

To be fair: experimental collaborations very cautious

In contrast to Higgs: no one ordered this excess

For the Higgs boson the story ended differently of course
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Higgs boson discovery 2012
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Higgs boson discovery 2012
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Study of Higgs boson properties
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Higgs Properties – (is it really the SM Higgs boson?)

Remember:
But how do we “prove” the Higgs mechanism exists? Generate Higgs
bosons H! This gives us a huge number of testable hypotheses
(selection):

New particle H

With spin zero

Couples to bosons like ghV V ∝ m2
V

v , ghhV V ∝ m2
V

v2

Couples to fermions like ghff ∝ mf

v

Couples to itself gHHH ∝ M2
H

v , gHHHH ∝ M2
H

v2
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Higgs spin

Spin 1
2 and 1 (due to H → γγ:

Landau–Yang theorem) excluded

Only real contender: spin 0&2

Use for example H → WW decay:
For Spin 0: W+ and W−

opposite spin

ℓ− (ℓ+) always left (right) handed
1
2 -spin fermions ℓ and ν align with
boson spins

Leptons emitted in ≈same
direction (small ∆ϕℓℓ)

Together with H → ZZ: all tested
hypotheses excluded with >99% CL

W+ H W−

ν

ℓ+ ℓ−

ν̄

 [rad]
ll

∆ φ
0 0.5 1 1.5 2 2.5 3

A
rb

itr
ar

y 
un

its

0

0.05

0.1

0.15

0.2

0.25

0.3  Background
+ = 0P J

q = kg, k+ = 2P J
 = 1q = 0.5, kg, k+ = 2P J

 = 0q = 1, kg, k+ = 2P J

-1 = 8 TeV, 20.3 fbs

ATLAS

µ = 0, e
j

 WW*, n→H 
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Towards couplings: cross-sections and branching ratios
Higgs boson production modes

a)

κt,b

g

g

H

t,b

t,b

t,b

b)

κV

q

q′

V

V
H

q

q′
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H
t,b
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e)

κt

q

b
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W
t
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H
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κW
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W

W

t

H

Higgs boson decay channels
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H

γ,Z

γ

W

W

W
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κt,b

H

γ,Z

γ

t,b
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t,b

Higgs boson pair production

k)

κt,b
κλ
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t,b
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t,b

H

H

H

l)
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g
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κV κλ
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V H
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κ2V

q
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q
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V

V H

H

o)

κV

κV

q
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V

V
V

q
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H

H

Each measurement sensitive to a combination of couplings from
production and decay (e.g. ZH(bb̄): sensitive to gHZZ and gHbb)

κ framework: each SM coupling is multiplied by parameter κi to
study deviations from the SM (all κi = 1 ⇒ SM), e.g.:
σgg→H→4ℓ = (1.040κ2

t︸ ︷︷ ︸
top-loop

−0.038κ2
b︸ ︷︷ ︸

bottom-loop

+0.002κtκb︸ ︷︷ ︸
interference

) × κ2
Z︸︷︷︸

decay

×σSM
gg→H→4ℓ

Measurements of many channels needed untangle effect of couplings
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Fermion decays: τ+τ−
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Other backgrounds
Misidentified 
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Bk
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0 1 2 3 4 5 6 7 8
SMB)×σ / (measB)×σ(

VBF

ggF

VH

ttH

0.17−
+0.200.90  0.12−

+0.13                                0.12−
+0.15                                                 (                 )         

0.28−
+0.340.96  0.15−

+0.15                                0.23−
+0.31                                                 (                 )         

0.58−
+0.610.98  0.48−

+0.50                                0.33−
+0.34                                                 (                 )         

1.08−
+1.281.06  0.94−

+1.07                                0.53−
+0.70                                                 (                 )         

Tot.     Stat., Syst.                    (                 )         

ATLAS ττ →H -1 = 13 TeV, 139 fbs
| < 2.5

H
 = 88 %, |y

SM
pTotal Stat. Theo.

VBF H(ττ) most sensitive,
compromise of purity and event
count

We covered boson decays – H(ττ) first fermionic channel observed

Broad peak (due to νs) around estimated MH over Z(ττ) background
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Fermion decays: bb̄
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ATLAS bb→H = 7 TeV, 8 TeV, and 13 TeVs
-1, and 24.5-79.8 fb-1, 20.3 fb-1      4.7 fb

µH→bb = σH+X ×BRH→bb

σSM
H+X

×BRSM
H→bb

VH most sensitive

In many cases, no single observable (e.g. mbb) powerful enough

For H(bb̄): use machine learning (trained on simulation) to separate
signal from background, combine many channels ⇒ observation
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Fermion decays the 2nd generation: H(µµ)
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68% CL
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 = 125.38 GeVHm
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CMS

µ = 1.2 ± 0.4 ⇒ 3σ evidence!

H(µµ) Buried under background of Drell–Yan µ+µ− production

2nd gen quarks? H(cc̄) maybe towards the end of the LHC program
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All channels

Four main production (ggF, VBF,
VH, ttH) and five main decay
channels (γγ, ZZ, WW , ττ , bb̄)
discovered by ATLAS and CMS

Here ATLAS combined fit of 25
combinations of prod. and decay

ggF measurements: 10% precision
in γγ, ZZ, and WW decays

Fermion decay channels measured
with up to 20% precision

Compatible with SM (pSM = 72%)

Systematic uncertainties sizable in
most precise channels
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p

4− 2− 0 2 4 6 8 10 12 14

 B normalized to SM×σ
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0.08+
 (  0.10−
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0.17+
 (  0.23−
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Coupling results

CMS results on
κf × mf

v

√
κV × mV

v

Remember, SM
prediction:

gHff = mf

v

gHV V = M2
V

v

Combined fit of ≈all
measurements: excellent
agreement with SM
prediction, coupling
proportional to mass
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Invisible width

q

q

H

χ

χ

Run: 279984

Event: 237776402

2015-09-21 20:21:50 CEST

mjj = 2.5 TeV

Δηjj = 4.0

Δɸjj = 1.6 Jet 1: pT = 408 GeV

Jet 2: pT = 301 GeV

 = 504 GeV
<latexit sha1_base64="WAi4T6BII7WjGvNw8UfOcuWBZaw="></latexit>

Emiss
T

x–y view 

Jet 1

Jet 2

Can also constrain decays into invisible particles (e.g. dark matter)

Look for unbalanced events (with missing transverse energy, “MET”)

Best channel VBF (ggH: H decay at rest, no transverse momentum)

CMS and ATLAS Γinv. ≲ 0.1 at 95% CL
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Total width

g

g

H

Z

Z

gg→ H → ZZ

g

g

Z

Z

gg→ ZZ (cont.)

100        200   300    500 1000      2000
 (GeV)ν2l2m
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σd

)2|H|SM H signal (

)2|C|SM contin. (

)2|H+C|SM total (
2|C|+2|H|

CMSSimulation 13 TeV

)µ (l=e, ν2l2→gg

300              500 1000
 (GeV)ZZ

Tm

1
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S
M

 to
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1
×

1
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210
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E
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nt
s 

/ b
in

CMS  (13 TeV)-1138 fb

>200 GeVmiss
T

, pν2l2brNDC
Observed
Total, no off-shell
gg+EW SM total
Other SM

Like all unstable particles, Higgs has a natural width of ΓH ≈ ℏ
τ

ΓH = 4.1 MeV too small, τ = 1.6 × 10−22 s too short for observation

Constrain width in four-lepton events using events with
mreconstr. ≫ MH : large impact of interference with non-H events

CMS: ΓH = 3.2+2.4
−1.7 MeV, ATLAS: ΓH = 4.5+3.3

−2.5 MeV
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Higgs Mass

 (GeV)γγm
105 110 115 120 125 130 135 140

a.
u.

0

2

4

6

8

10

12

14

16

FWHM = 3.10 GeV

Untagged 0 γγ→H

                    13 TeVSimulation CMS

Simulation

model
Parametric

 = 1.35 GeV
eff

σ

122 123 124 125 126 127 128 129

 CMS
 (8 TeV)-1 (7 TeV) + 19.7 fb-1Run 1: 5.1 fb

 (13 TeV) -12016: 35.9 fb

 (GeV)Hm

γγ→Run 1 H

Total (Stat. Only)

 0.31) GeV± 0.34 ( ±124.70 

 4l→ ZZ→Run 1 H  0.42) GeV± 0.46 ( ±125.59 

Run 1 Combined  0.26) GeV± 0.28 ( ±125.07 

γγ→2016 H  0.18) GeV± 0.26 ( ±125.78 

 4l→ ZZ→2016 H  0.19) GeV± 0.21 ( ±125.26 

2016 Combined  0.13) GeV± 0.16 ( ±125.46 

Run 1 + 2016  0.11) GeV± 0.14 ( ±125.38 

Total Stat. Only

Mass resolution in most precise channels (4ℓ and γγ), at best 1-2 GeV

Precise measurement of MH from center of distribution

Calibration of pµ and Eγ scale on Z(µµ) and Z(ee) events

CMS: MH = 125.38 ± 0.14 (stat) ± 0.08 (syst) statistically limited
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Self couplings

6

6 �

�

�

^_
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�
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102

103

104

gg
F

+
VB

F 
(H

H
) [

fb
]

Expected: [ 1.2, 7.2]

Observed: [ 1.0, 6.6]

ATLAS Preliminary
s =  13 TeV, 139 fb 1

Observed limit (95% CL)
Expected limit (95% CL)
Comb. exp. limit ±1
Comb. exp. limit ±2
Theory prediction
SM prediction

bb
bb +

Combined

Self coupling: direct
measurement with di-Higgs
production

Small cross-section due to
destructive interference of
dominant diagrams (Theory
prediction smaller for κλ = 1
than κλ = 0)

Search in H(γγ)H(bb̄) and
H(ττ)H(bb̄) channels with
multivariate methods

Close to excluding κλ = 0, long
way to SM sensitivity
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Future of Higgs physics
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Importance of the Higgs field

Higgs at the heart of the Standard Model
Hard to overstate its importance for the
theory

Actually not that hard (“god particle”)

But it is the crucial ingredient to make
various parts of the SM work

Also leaves many questions unanswered
Yukawa sector I: huge number of
parameter (13/19 SM parameters)

Yukawa sector II: pattern and range of
masses (me = 511 keV, mt = 173 GeV)?

Origin of the potential?
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Higgs and BSM physics
Higgs very SM like – kills loads of (pre-LHC) BSM theories

Higgs-less models (duh)

4th generation of quarks (due to ggH rate)

Many more... SM describes LHC physics annoyingly well

But there has to be new physics (e.g. dark matter!) – and the Higgs
plays an important role in many of them
Hence many new physics searches with Higgs bosons

Searches for additional Higgs bosons (e.g. predicted by SUSY)

Non-standard couplings (Higgs mixture of SM and BSM Higgs?),
resulting in anomalous decays, final states, kinematics

Another connection to new physics: MH gets large quantum
corrections and should be close to the scale of new physics (or even
Planck mass) unless “accidentally light” – Why is it light?
Coincidence or new physics at low scales?
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Indirect searches: EFT

My favorite way to search for new physics: effective field theory (EFT)
Premise:

Mass of new particles outside LHC energy range

At low energy: new fundamental model effectively looks like the SM

Observe new physics in modified interactions of known particles

How to model this? ⇒ add new terms to the Lagrangian

But all terms with energy dimension 4 already in SM!
Add expansion in terms of “dimension n+ 4” operators:∑
n

∑
i
c

(n+4)
i
Λn O

(n+4)
i , where O(n+4)

i is product of fields with energy
dimension n+ 4

Many of these terms contain Φ, e.g., c
(6)
ΦW
Λ2 Φ†ΦW a

µµW
aµµ

At the unknown energy scale Λ this will break down
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STXS: measuring kinematics

How to measure Higgs production
with modified interactions?

Split measurements in many bins
depending on kinematics

For example ggH:
Stage 1.2

= 0-jet

pHjj
T

≥ 2-jet

mjj [350,∞]

≃ 2-jet

& 3-jet

& 3-jet

≃ 2-jet

pH
T

0

10
350

700

1000

mjj

1500

∞

mjj [0, 350]

200

120

60

0

pH
T

= 1-jet

pH
T [0, 200]

0 ∞25
∞0 25

gg→H

pH
T [200,∞]

300

200

pH
T

∞
650

450

0.15

pHj
T /pH

T

ATLAS and CMS are measuring
this already with ok precision →

8− 6− 4− 2− 0 2 4 6 8 10

Parameter normalised to SM value

 < 10 GeVH

T
p0­jet,   0.89  (  0.20−

 0.22+  ,  0.18−

 0.19+  ) 0.10−

 0.11+ 

 < 200 GeVH

T
p ≤0­jet, 10   1.14  (  0.14−

 0.15+  ,  0.12±  ) 0.07−

 0.09+ 

 < 60 GeVH

T
p1­jet,   0.57  (  0.28±  ,  0.21−

 0.22+  ) 0.18± 

 < 120 GeVH

T
p ≤1­jet, 60   1.06  (  0.27−

 0.28+  ,  0.24−

 0.25+  ) 0.12−

 0.13+ 

 < 200 GeVH

T
p ≤1­jet, 120   0.66  (  0.39−

 0.41+  ,  0.35−

 0.36+  ) 0.17−

 0.19+ 

 < 60 GeVH

T
p < 350 GeV, jjm 2­jet, ≥   0.47  (  1.06−

 1.09+  ,  0.98±  ) 0.39−

 0.47+ 

 < 120 GeVH

T
p ≤ < 350 GeV, 60 jjm 2­jet, ≥   0.25  (  0.53±  ,  0.46±  ) 0.26± 

 < 200 GeVH

T
p ≤ < 350 GeV, 120 jjm 2­jet, ≥   0.54  (  0.42−

 0.44+  ,  0.36−

 0.38+  ) 0.22−

 0.23+ 

 < 200 GeVH

T
p < 700 GeV, jjm ≤ 2­jet, 350 ≥   2.76  (  1.04−

 1.11+  ,  0.93−

 0.99+  ) 0.45−

 0.52+ 

 < 200 GeVH

T
p 700 GeV, ≥ jjm 2­jet, ≥   0.74  (  1.43−

 1.54+  ,  1.29−

 1.33+  ) 0.63−

 0.76+ 

 < 300 GeVH

T
p ≤200   1.06  (  0.31−

 0.35+  ,  0.27−

 0.29+  ) 0.15−

 0.19+ 

 < 450 GeVH

T
p ≤300   0.65  (  0.43−

 0.47+  ,  0.39−

 0.42+  ) 0.16−

 0.21+ 

 450 GeV≥ H

T
p   1.86  (  1.19−

 1.47+  ,  1.12−

 1.37+
  ) 0.42−

 0.52+ 

 1­jet≤   1.40  (  0.99−

 1.10+  ,  0.93−

 1.02+  ) 0.35−

 0.40+ 

 vetoVH < 350 GeV, jjm 2­jet, ≥   2.98  (  1.52−

 1.64+  ,  1.37−

 1.46+  ) 0.66−

 0.75+ 

 topoVH < 350 GeV, jjm 2­jet, ≥   1.00  (  0.52−

 0.58+  ,  0.47−

 0.51+  ) 0.23−

 0.28+ 

 < 200 GeVH

T
p < 700 GeV, jjm ≤ 2­jet, 350 ≥   0.33  (  0.47−

 0.49+  ,  0.41−

 0.44+  ) 0.24−

 0.22+ 

 < 200 GeVH

T
p < 1000 GeV, jjm ≤ 2­jet, 700 ≥   0.95  (  0.65−

 0.71+  ,  0.57−

 0.62+  ) 0.31−

 0.35+ 

 < 200 GeVH

T
p < 1500 GeV, jjm ≤ 2­jet, 1000 ≥   1.38  (  0.49−

 0.57+  ,  0.45−

 0.50+  ) 0.21−

 0.29+ 

 < 200 GeVH

T
p 1500 GeV, ≥ jjm 2­jet, ≥   1.15  (  0.35−

 0.39+  ,  0.32−

 0.35+  ) 0.14−

 0.18+ 

 200 GeV≥ H

T
p 350 GeV, ≥ jjm 2­jet, ≥   1.21  (  0.27−

 0.31+  ,  0.24−

 0.27+  ) 0.12−

 0.15+ 

 < 75 GeVV

T
p   2.47  (  1.02−

 1.17+  ,  1.02−

 1.15+  ) 0.12−

 0.22+ 

 < 150 GeVV

T
p ≤75   1.64  (  0.80−

 0.99+  ,  0.79−

 0.97+  ) 0.12−

 0.20+ 

 < 250 GeVV

T
p ≤150   1.42  (  0.58−

 0.74+  ,  0.48−

 0.61+  ) 0.33−

 0.42+ 

 < 400 GeVV

T
p ≤250   1.36  (  0.53−

 0.72+  ,  0.48−

 0.63+  ) 0.22−

 0.35+ 

 400 GeV≥ V

T
p   1.91  (  1.08−

 1.45+  ,  0.95−

 1.22+  ) 0.50−

 0.79+ 

 < 150 GeVV

T
p   0.21  (  0.76−

 0.71+  ,  0.54±  ) 0.53−

 0.46+ 

 < 250 GeVV

T
p ≤150   1.30  (  0.46−

 0.63+  ,  0.41−

 0.53+  ) 0.22−

 0.34+ 

 < 400 GeVV

T
p ≤250   1.28  (  0.54−

 0.73+  ,  0.48−

 0.64+  ) 0.23−

 0.36+ 

 400 GeV≥ V

T
p   0.39  (  1.14−

 1.28+
  ,  0.91−

 1.04+  ) 0.68−

 0.74+ 

 < 60 GeVH

T
p   0.75  (  0.66−

 0.78+  ,  0.63−

 0.72+  ) 0.21−

 0.29+ 

 < 120 GeVH

T
p ≤60   0.69  (  0.44−

 0.53+  ,  0.42−

 0.49+  ) 0.15−

 0.20+ 

 < 200 GeVH

T
p ≤120   0.86  (  0.47−

 0.55+  ,  0.43−

 0.50+  ) 0.19−

 0.23+ 

 < 300 GeVH

T
p ≤200   0.96  (  0.52−

 0.62+  ,  0.48−

 0.56+  ) 0.20−

 0.25+ 

 < 450 GeVH

T
p ≤300   0.28  (  0.70−

 0.79+  ,  0.59−

 0.66+  ) 0.38−

 0.43+ 

 450 GeV≥ H

T
p   0.16  (  1.76−

 1.93+  ,  1.24−
 1.44+  ) 1.25−

 1.28+ 

   2.90  (  2.87−

 3.63+  ,  2.73−

 3.35+  ) 0.89−

 1.39+ 

 PreliminaryATLAS
­1 = 13 TeV, 139 fbs

| < 2.5
H

y = 125.09 GeV, |Hm

 = 92%
SM

p

Total Stat.

Syst. SM

           Total    Stat.    Syst.

ZZ*B × H→gg

ZZ*B × Hqq→qq

ZZ*B × νHl→qq

ZZ*B × Hll→gg/qq

ZZ*B × Htt

ZZ*B × tH

0 0.5 1 1.5 2
0.5

5

ZZ*
/BγγB   1.09  (  0.12−

 0.14+  ,  0.11−

 0.12+  ) 0.06± 

ZZ*
/B

bb
B   0.78  (  0.21−

 0.28+  ,  0.18−

 0.23+  ) 0.11−

 0.16+ 

ZZ*/BWWB   1.06  (  0.13−

 0.14+  ,  0.10−

 0.11+  ) 0.08−

 0.09+ 

ZZ*/BττB   0.86  (  0.14−

 0.16+  ,  0.10−

 0.12+  ) 0.09−

 0.10+ 

           Total    Stat.    Syst.
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STXS: EFT impacts
ATLAS Preliminary
√s = 13 TeV 139 fb
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STXS: EFT impacts
ATLAS Preliminary
√s = 13 TeV 139 fb
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STXS: EFT impacts
ATLAS Preliminary
√s = 13 TeV 139 fb
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STXS: EFT impacts
ATLAS Preliminary
√s = 13 TeV 139 fb
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The future: high luminosity LHC

5 to 7.5 x nominal Lumi
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interaction
regions
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The future: high luminosity LHC
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The far future: a Higgs factory

LHC energy limited by radius and strength of magnets

Long term goal: new collider with 100 km circumference
First as electron–positron collider “FCC-ee”, precisely probing Higgs
properties in clean environment

Eventually as new 100 TeV hadron collider “FCC-hh”
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Conclusion

Spontaneous breaking of electroweak symmetry crucial part of SM

Gives mass to weak bosons and fermions without breaking symmetry
of underlying theory

Higgs boson discovered by ATLAS and CMS at the LHC in 2012

So far, properties agree with SM expectation

Higgs could be a tool to observe first hints of BSM physics

Still only the beginning of experimental Higgs physics
Analysis of Run 3 dataset (maybe you will contribute to this?) can
bring factor of 2 improvements

High luminosity LHC will increase dataset tenfold

Higgs physics also central consideration for future collider
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