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Introduction

e Focusing on HEP statistics approaches
e Quantum mechanics/field theory = statistical theory
o Needed for every interpretation o M
e Here we will go through
o Basics of statistics
Hypotheses testing
Discovery and limit setting
Parameter estimation
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Useful references

G. Cowan, Statistical Data Analysis, Oxford University Press, 1998

o Related: Cowan'’s Academic lectures: indico link
e F.James, Statistical methods in experimental physics, 2nd ed., World Scientific, 2006
e K. Cranmer, Practical Statistics for the LHC, https://arxiv.org/abs/1503.07622
e Cowan et al, Asymptotic formulae for likelihood-based tests of new physics,
https://arxiv.org/abs/1007.1727

e Commonly used model for the binned likelihood fit in HEP: HistFactory: A tool for creating
statistical models for use with RooFit and RooStats, https://cds.cern.ch/record/1456844
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Frequentist statistics

e Probability = outcomes of repeatable observations

number of outcomes of z

P(z) = lim

n—o0 n

e |le.we need repeatable events
e Does Higgs boson exist? Is the mass of the top quark between 172 and 173 GeV?...?
o lItis either true or false but we do not know which
o The frequentists tools tell us about outcomes of (hypothetical) repeated experiments

e The preferred theories (models, hypotheses, ...) are those for which our observations would
be considered “usual”
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Bayesian statistics

e Interpretation of probability extended to a degree of belief
o The degree of belief is updated based on the observations

e Bayes'formula Probability . »
observing data X, Prior probability

rT) =
[ P(Z|H)w(H) dH
!

Normalisation, i.e. sum of all possible outcomes
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Bayesian statistics example

e Assume 2% of the population have COVID19 in a given time

e The tests for COVID19 detect the virus in 90% of the cases and give false-positive (show positive
result even when there is no COVID19 virus) in 5% of the cases

e The test result is positive, what is the probability that the person has the COVID19 virus?

We can use the Bayes' formula for this

e P(H)=0.02-this is the prior probability, i.e. before we do the test

e P(x,H)=0.9-i.e.if the person is positive, what is the likelihood of getting a positive result

e Normalisation =0.9 x 0.02 + 0.05 x 0.98 - i.e. has the virus and positive test + does not have
virus and has a positive test

e Using the Bayes' formula:

0.9%0.02 -
0.9%x0.02+0.05x0.98 24%

e How would the probability change if the person would do another test and it came back
positive?
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Frequentist vs Bayesian

e Frequentist
o Limit of a long term frequency

o Do not need an infinite sample for the definition to be useful
o Sometimes no ensemble exists
e Bayesian
o Probability is a degree of belief
o Intrinsically subjective (choice of the prior)
= No golden rule for the choice of priors

e “Bayesians address the question everyone is interested in, by using assumptions no-one
believes. Frequentists use impeccable logic to deal with an issue of no interest to anyone” - L.
Lyons
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Hypothesis testing




Definitions

e Hypothesis testing is a core of the scientific method

Observation

I / question \
Report Research
conclusions topic area
Scientific
method
Analyze .
Hypothesis
\ Test with /
experiment

e Hypothesis H specifies the probability for the data, i.e., the outcome of the observation, x
e Possible values of data (x) form the sample space (“data space”)
e The probability for x given H is also called the likelihood of the hypothesis, written L(x|H).
o E.g. The probability to observe N number of events with a given selection assuming the
validity of the Standard Model
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Hypothesis testing

How to confirm a hypothesis?
e Karl Popper: You cannot!

e Butyou can reject a hypothesis!
Q\t{ — —

data space W

e Find aregion, W, of the data space where the is
only small probability a to observe data x
provided H is true - this is the “critical region”

P(x€w|H) = a

e Reject hypothesis if data is observed in W critical I'CgiOl’l W
e qis called “size” or “significance level” of the test

ﬁ



How to select the critical region?

Infinitely many critical regions for a given hypothesis
No unique way to select it
Can define an alternative hypothesis H,
Roughly speaking:
o Choose the critical region so that the probability of observing data under H is low and
probability of observing data under H. is high

f(X|H0) Critical Rejecting H, does not mean “H, is
relz;ilgr? wrong and H, is right”
> e Frequentist - only outcome of
f(x|H1) repeated experiments
/ e Bayesian - depends on the priors

N '
ﬁ




Type-l and type-ll errors

e Type-l error (false negative)
o Reject hypothesis H,, if it is true

o Maximum probability for this is a
P(xe W|Hy)<a
e Type-ll error (false positive)

o Accept hypothesis H ) if it is false and H_ is true
o Occurs with probability

PxeS-W|H )=p

False positive

NOT HOTDOG HOTDOG
5

e 1-[iscalledthe “power” of the test
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Test statistics

e Assume that for each event we have a collection of numbers

o Number of jets, leptons, MET value, ..., have multiple bins, ...

o Data (x) will follow some joint PDF for the different observables

o The critical region is multidimensional - cumbersome to work with
e (Can define the boundary of the critical region using an equation of form

":‘ 2 T T T T
t(:IIl, e ,-.wn) = Teut 5 t,
accept Hy «i-ie reject Hy
e Where t(x,, ..., x ) is the scalar test statistics 15 r §
g(t1Hy)

N LT gltiH,)
We have turned an N-dimensional

problem to a 1-dimensional one! e | |




Optimal choice for the test statistics

e How to choose the test statistics?

e Neyman-Pearson lemma: For a test of size a of the simple hypothesis H,, to obtain the highest
power with respect to the simple alternative H., choose the critical region W such that the
likelihood ratio satisfies

P(x|Hy) -
P(x|Hy) —
everywhere in W and is less than k else - k is a constant chosen such that the test has size a

k

e The optimal scalar test statistics is then

_ P(x|Hy)
) = P(x[Ho)
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p-value

e Level of agreement (compatibility) of data and a given hypothesis (model) H
e p-value -> probability, under assumption of H, to observe data with equal or lesser
compatibility with H relative to the data we got
o This is NOT a probability that H is true!

More likely observation
A —~
P-value

Very un-likely
observations

Very un-likely
observations

Observed

data point\
°

Set of possible results

~

Probability density




p-value and significance

e We can define the significance Z as the number of standard deviations (“sigmas”) that a
Gaussian variable would fluctuate in one direction to give the same p-value

o 1 g2 -
p=/Z \/T_ﬂe /2d$=1—‘1f’(z) Z =9 1(1_p)

Gaussian cumulative function

o 6 | R ) R I
e Z (one tail) | p-value
1 e-x’/2 8
= 1.00 0.16
945
7z 2.00 0.023
o 3.00 0.0013
4.00 3.2e-05
0 5.00 2.9e-07
6.00 9.9e-10




Discovery and limits
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Discovery in HEP

e We want to discover new physics (BSM)

e Typically
o Hypothesis H, i.e. the “null hypothesis” is the SM prediction
m  “Background-only” hypothesis g i

o Alternative hypothesis H. is your favourite model
e We know what to do
o Find the P(x,H,) and P(x,H.), i.e. the likelihood

04

signal (H,)

£

0.3

Illlllllllllllll

o Build the test statistics using the ratios background
o Calculate the p-value 02 E
m Reject/accept | ( O)

e How to get the PDF?
o Use MC simulation
o Need to get a distribution of the values

0.1

- i I -5 0 s 10
m Pseudo-experiments/toys! . amaitgx)
We usually use (-2 times) logarithm of
the ratio

~



Simple example or-

0.35F

) . . 0.30 F
e Suppose we are doing a counting experiment

o Predicted number of background events is b I o0 b
o Predicted number of signal events is s = o151
o Observed number of events will follow Poisson distribution

— (.25 F
-

0.10

bn B ' b n 0.05 F
P(nlb) = L b P(n|s+b) = ue_(sﬂ’) 0.00
! n.
Background only Signal + bkg

e We observe n instances of x e 5
o Likelihoods for the hypotheses Ly = —e b <:|b
o Background only — T z:l_Il f(xilb)

o Signal + bkg —_— ) .
_ 5HY)" () [T (msf (xils) + my £ (x:[b))

i=1

(Prior) probabilities for an event to be signal or bkg
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Simple example continued

e Define test statistics (-2 logarithm of the likelihood ratio)

Is constant, can be |gnored

LQ—}-b S X7|S)
= O] — E:l -
Q 21n .S+ ll( b )

f(x;|b)
- - Suppose in real experiment
e Letusassume we observe Q =Q_,_ ¢.g. b =100, s =20. / 0 izpobserved herel?
9:0.08 i
e HEP star.rdar.d . aetli Q.. PRD
o Claim discovery at 5 sigma e [ 5
o Reject B-only hypothesis /(Qls*b) et g /
when p- value is < 2.9 x 107 P E
p-value of i; F | p-value of s+b
bonly [ PN

-80 -60 -40 -20 0




Let’s add systematics

e Sofar, only considered statistical uncertainty
e Inreality, many systematic uncertainties affect the predictions
e (Can add the systematics into the likelihood
o Define “signal strength”, uy,asn=u.s + b —
m U =1 means cross-section as predicted by the model Opred.
o Add “nuisance parameters” to the likelihood
m Parameters that impact the likelihood, but we are not interested in them, e.g.
systematic uncertainties
m  Usually, “subsidiary” or “auxiliary” measurements are used to constrain NPs

O obs.

Set of measurements

Likelihood Nuisance parameters

ﬁ




Commonly used model

e More and more common approach for including systematics in HEP statistical analysis:
o include systematic uncertainties as unknown parameters in the model
o nuisance parameters modifying expectations in a parametric way
o nuisance parameters constrained by subsidiary measurements

e The binned profile-likelihood:

Gaussian
data Poisson (or other pdf...)

N - | S I /
L(n|0, k) =11, P(n,| 50, )*B(0, k)) < []. G(0)

_ / v !

. . data events  prediction in bin i constraint term
constrained parameters: C : :

; in bin i (signal+background) for nuisance
nuisance parameters (NPs) arameter i
associated to systematic P J
uncertainties unconstrained parameters:

parameter of interest (POl or “p”) + unconstrained nuisance

parameters (e.g. background normalization parameters) a



Profile-likelihood significance

More likely observation

o Define test statistics Maximises L for a given fixed y ,Ll
/ 2 P-value
L ( é) E‘ Very un-likely Very un-likely
A /-1/7 E observations observations
(ll’) _ ~ = g lil Observed —
L([L. 0) data pomt\'
‘ < ®
\ Set of possible results
Likelihood value that maximises
Best fit y the likelihood for all parameters

e Observing new physics ¢ excluding background-only hypothesis < excluding y =0
e Only consider upward fluctuations

—2InA(0)  4>0 o
(10—{ Po = / f(q0]0) dqo
q

0 i <0
K 0,o0bs

ﬁ



Wald’s approximation

Running the fit can take a long time
We need a PDF for the test statistics < many fits to toy data
o For 5 sigma discovery we need ~107 toys!
Luckily, there is a powerful approximation - Wald's approximation
For large n, the likelihood ratio is approximately chi-square distributed!
o Does not require the likelihood to be chi-square or gaussian distributed!
~\2
—21In () = % +O(1/VN)

. S / .
i~ Gaussian(u', o) sample size

Usually a good approximation
Under this assumption, the significance is simply as long as number events in

1 each bin is greater than ~10
Z=9""(1-po) = Vao

l.e. need to run the fit only twice - unconditional and with y fixed to 0
o Getthe-2In L values for the fits and take the square root of the difference




Look-elsewhere effect

e What if we are looking for a resonance with an unknown mass and see an excess in some mass?
o Should we just quote the significance for that mass point?

https://arxiv.org/abs/1606.03833

M= T T T T T LR T T T H I - n
s O F amlas | 'D T E e Need to take into account the “trials
R o e . o We are “testing” multiple bins
- Background-only it 2 o We have more options to find an excess
G 1P i = o Need to correct for this!
- iS=13Tal, 52 ] e Significance for a fixed mass point ¢ local significance
e E e Significance for the floating mass ¢ global significance
L F o Global significance <= local significance
10‘1%— —;
- S S Leeeltssd] e How to relate local significance to the global one?
s T { 3 o No simple recipe
(o) - ==
3 125_ ? H # & E o Need to run toys
RN l #ll # . Modd 4 Wi 4] m Usually only 100s, not millions
IS A
T 5F |ﬂl T =
© E [ ] [ ] E
® -10 —
[m)] E f E

200 400 600 800 1000 1200 1400 1600 1800 2000

m,, [GeV] a


https://arxiv.org/abs/1606.03833

Reading significance plots

https://arxiv.org/abs/1207.7214

Q_O ET T T T [T T T T [T T T T [T T T T [T T T T [T T T T[T T T T[T TTTH PY Dashed curve = “Expected” medlan po
E = ATLAS 2011- 20:_L12 —— Obs. o p,for each mass of the SM Higgs
I Far e A bosn- om
. s‘e _______ = —1" ___________ e Blue band = 1 sigma variations of the
10_1ZZ-.-...ZZZZ..IZ..'ZZIZIZIIZIZIZIIZIZIZZ"IZIIII...Z""""ZIII-ZIZ. ?g po value
i 26 o Fullline = “Observed” p, value from
10° s G e 30 real data
19" i
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Setting limits

e What if we do not see any significant excess?
o We can set limits!
e What values of y can be excluded with the observed data?
o l.e.the implied rate for a given y would be very high for the observed data
o One-sided test - provide an “upper limit”
e Slightly modify the test statistics used for discovery
o If y comes out negative (unphysical) we can compare to the closest model with =0

&=
B
(v} 3))

L >0, . —2In\p) a<p
G =

Ap) = 4 .
n<0. L >

[ I
. —_
=
Qo>
[ —

=
S|
(e}

\

This is the test statistics commonly used (e.g. Higgs combinations)
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Setting limits - continued

e Settings limits = finding the highest value of y that results in p-value not smaller than y
o yis usually chosen as 0.05, i.e. 95% confidence level (CL)
o “What is the largest value of u that is still compatible with the data?”

Test statistics o o
/ Maximises likelihood

\ = _ A _ for a fixed y
po= [ 1 (aln0Go) g,
q

™\ Observed value a, tilde

P-value for a given p

e Need to solve for y
o Nasty integral equation
o Canrun pseudo-experiments to get the distribution of the test statistics
m Find py that leads to P, = 0.05

ﬁ



Asymptotic limit settings

e Can use the Wald’s approximation Gp
o The test statistics approaches chi-square (jﬂ
(p—p)% - w2 i< 0
U = G = { =p?® 0< i< u
0 i > p o == It
0 >

e Limit estimation in practice (simplified)
o Get the best fit value of y and its uncertainty (more on this later)
o Setpto +2 sigma (approximately 95%) - this is a starting point of the iterative estimation
o Calculate the p-value for this this y
m If p-value too small, decrease y, if p-value too large increase y
m Repeat!
m Stop when the p-value is sufficiently close to 0.05
o Usually requires O(10) fits
e If the asymptotic approximation is not valid, have to use toy experiments

g 5



The CLs issue

e Suppose we have a low sensitivity to a particular signal
o Test statistics for s+b is very similar to background-only
o Thereis non-negligible probability to exclude s+b even when we have low sensitivity

m Can be caused by downward fluctuation
Low sensitivity to s

Well separated s and b

0.5

fla)

0.1

flQ)

0.4

: b
ZAS LR 7(0b)
D v

008 —

- f(QIb)

0.3

£(Q] s+b)

0.04




The CLs procedure - scascial

e Solution to the issue: do not use only p-value for the s+b but divide by p-value for b-only

e DefineCLs 5 008
CL b Dsip = i
CL, = —+ = f(Qls+b)
5 CLy 1-p, 008 Qs f(Q'b)
e Reject s+b hypothesis if CLs < a I \4 /
0.04 — :
1-CL, |
e Reduces “effective p-value” =p 3-_ - CLow
o If low sensitivity b i ~ Ps+p
e Ratio of p-values i F sy |D

-80

—4— Observed CLb

o Not liked by statisticians
e Used in almost all HEP searches

----- Expected CLs - Median
0.8 [ Expected CLs + 10
[J ExpectedCLs £ 2 6

0.6
........

04

0.2



https://dx.doi.org/10.1088/0954-3899/28/10/313

Expected limits

e Expected limits can be calculated using the MC prediction
o Assume background only, what would be the limit on p in case data = MC?
o Cando it for several models, e.g. different masses of the Higgs boson
e Frequentist approach
o Distribution of the p-value ¢ distribution of the 95% CL limits
o Can quote median expected limit and X 1(2) sigma variations

00 01 02 03 04




https://arxiv.org/abs/1207.7214
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LO
o
107 CL, Limits —
110 150 200 300 400 500
my, [GeV]
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Expected excluded mass range

—_
o

Vs =7 TeV: [Ldt =\a.
Vs=8TeV: JLdt= k.

/\

95% CL Limit on

ATLAS '2 111 '-2'01'2' -iw

+ 20

— Observed
----- Bkg. Expected
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Observed excluded mass range

-i1c5

+ 20

—_
o

Vs=7TeV: [Ldt=4.6-4.8 5"

Vs=8TeV: [Ldt=5.8-59/" — Observed
----- Bka. Expected

| IIIIII|

95% CL Limit on

| Illml




Parameter estimation
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Estimators

e Often not searching for a new process
o E.g. Measuring top-quark mass, CKM matrix elements, ...
e How to get the parameters from the model with their uncertainties?
e We need the PDF of the estimation
e Parameters are constants of the estimator that characterise the shape

f(a;0) = e */?

SN

random variable parameter

e We want to find some function of data to estimate the parameter(s): (%)
o  Estimator written with a hat

ﬁ



Estimators continued

e Repeating the measurement -> get PDF

PDF
T (8:0) 4

large

variance

-

biased

/ Estimator

f — 0

9 — Parameter

e We want unbiased estimator (bias = 0) with small variance (small statistical uncertainty)
o Generally: conflicting requirements

ﬁ




Maximum-likelihood estimate

e Maximum-likelihood estimate < values of parameters that maximize the likelihood

o Usually: use negative log likelihood
o Frequentists statistics: Minimise the NLL (i.e “fit") MENUIT
m  Use minimiser tools, e.g. Minuit
o Bayesian statistics: Sample posterior likelihood, using Markov-chain Monte Carlo (MCMCQ)
e If the hypothesized 0 is close to the true value, then we expect a high probability to get data like
that which we actually found
e ML estimators are not guaranteed to have any ‘optimal’ properties

o In practice they're very good

e Uncertainty of the parameter?
o Value of 8 where the negative log likelihood shifts by one half (1 sigma =0.5, 2 sigma =2, 3
sigma =4.5, ...)
m Motivated by the Normal distribution where shift of 0.5 happens at exactly 1 sigma

ﬁ



https://root.cern.ch/download/minuit.pdf

Example: Higgs mass measurement = s nivorabs/ssosorsss

—_— 7 1 Ll 1] T l 1] 1] T T I T 1 T 1 I T Ll T L
e o
g -~ ATLAS and CMS — Hory ]
Z 6 - — H—ZZ -4l ]
c -~ LHC Run 1 —— Combined yy+4l
NI E mewes Stat. only uncert. 7]
S : . Likelihood scan wider
o ] when systematic
4 .. "L kR e uncertainties are added
o ] (next slide)
3 . =
2 =
Uncertainty ) X 3
N—- -------------------------------------------- -
0 N L | I
1

N

+ 124.5 125 \ 125.5 126

m,, [GeV]
Best fit mass parameter
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https://arxiv.org/abs/1503.07589

Adding systematic uncertainties

e Nuisance parameters (systematic uncertainties) can be added to the Iikelihood

o Recall the common model L(n | 0, k) IL. P(n | 5.0, k)+B(0, k)) x I, G(B)
e Maximum-likelihood < also the NPs get their best f|t value and an uncertalnty

o Covariance matrix of all parameters (including NPs)
m Can also get correlations of the parameters (“post-fit”)
o Lot of physics in these values!

e The uncertainty (likelihood shifts by one half) includes stat+syst
o How to get an impact of individual sources of the uncertainties?
o Fix a given NP value to +- 1 sigma, repeat the minimisation and check impact on the
parameter of interest
m Repeat for all NPs
o Stat-only uncertainty can be obtained by fixing all NPs to their fitted values and repeating
the fit and getting the uncertainty on the POI

ﬁ




Reading pull/ranking plots ATLAS-CONF-2020-058

Pre-fit impact on u: > Au

[10=0+A0 [ 16=0A0 —04 02 0 02 04

LI I L L L B O BN

Impact of a given NP on the POI (ttH Post-fit impact on

signal strength here). Full boxes & 6 =0+AD 1 6=0A8 | ATLAS Preliminary ~
post-fit impact, empty boxes < pre-fit —e— Nuis. Param. Pull | Vs =13TeV, 139 fb"

impact e
ti+>1b: NLO match. SRbin{ ljets

ti+>1b: NLO match. SRbin2 ljets
tt+>1b: FSR

ti+21b: PS & hadronisation dil
t+>1b: pﬁb shape

NPs “ranked” by their tt+>1b: NLO match. SRbin1 dil
impact on the POI Wt: PS & hadronisation

tt+21b: NLO match. CR ljets
ttH: NLO matching

Wt: diagram subtraction

Central value and uncertainty of a
Nuisance parameter indicated with the
black point and error bar

e Isthe central value postfit
different than 0 (“pull”)?

e Isthe post-fit uncertainty
smaller than prefit
(“constraints”)?

tfH: PS & hadronisation

ti+>1b: PS & hadronisation ljets
ti+>1b: ISR

tf+21b: NLO match. SRbin2 dil

In the model, most of the NPs have a
Gaussian term in the likelihood & can

Some paramEters do not have a ttH: cross-section (QCD scale) talk about ”sigmas".

Gaussian term (e.g. normalisation of a KE=TE)
given background) < centred around 1  tt:>1b: NLO match. SRbin4 ljets
ti+>1b: NLO match. SRbin3 ljets
ttH: A ,, STXS theory unc.

Wt: generator

||\||||||i|||||||||||||| ||||i|||||||||

2 15 -1 -05 0 05 1 15 2
(0-6,)/40



https://cds.cern.ch/record/2743685

Dangers of constraining systematic uncertainties

e Post-fit uncertainty smaller than prefit & constraint
o Reduces total uncertainty - good!
o Isitreliable?
m Should the measurements have power to constrain a given uncertainty?
m |s the measurements “better” than dedicated calibrations?
m Arethe variation granular enough?
e Usually: pass nominal and +- 1 sigma variations Pythia

o Interpolation/extrapolation to get continuous impact

A ’ A Next years
generator

2-point variations especially problematic!

‘ Nature
K J

@ Sherpa

This configuration

will not be able to
fit these points

A

e S S N

“*--- following this

"true" distribution

-
'




Unfolding

Slides from: Michele Pinamonti
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What is unfolding about?

e Unfoldingis:
o removal of detector resolution effects from observed distribution,
to extract (our best-guess of) underlying true distribution
o i.e.extraction of a differential cross-section
e (Can be done to extract:
o total-phase-space or fiducial-phase-space cross-sections
o cross-sections vs. variable defined at particle-level or at parton-level
e The unfolding problem can be essentially reduced to a response-matrix-inversion problem

T T
ATLAS e Data

e
g
.

2

9]
> T T = Vs=13TeV,36.11b" oW
8 E ATLAS 5 ‘[i)a[a 3 10 Boosted e PWG+PY8 Rad. Up
L L 1 3 - S E 0 e PWG+PY8 Rad. D¢
@ 104? (s=13TeV,36.1 0" Fg Single top E ATLAS SNmuIatlon Vs=13TeV 5 F  Fiducial phase-space o
g F Boosted o Wejets ! Full phase-space bin-to-bin migrations = 10t e
g 'vF i B L
P - X 3 (I N
102 Multijet - 0 — E
s Stat.+Syst. unc. E E
105
o= 3
10";7 .
02k m
51.2
9
0.8
0.6

W%’/Z’WW///////%///%// ////%é

350 1000 1500 2000
thad

\ \ .
f
10 s b a5 200 L 5|
etector-level p! [Ge @ 15 E
T o -
Detector-level p;*“ [GeV] 350 500 1000 1500 2000
pir[GeV] m




“To regularize of not to regularize?

The regularization concept

e Most delicate point is the so-called regularization:
o introduced to avoid amplification of statistical fluctuations in unfolded data
(oscillations), happening when just inverting response matrix

x 102

10000

400 | (a) 400 | (b) | | (©

5000

0 ‘IW

—10000

0 025 05 075 1 0 025 05 075 1 0 025 05 075 1
y X X

200 r 200

e Regularization techniques always imply some level of assumptions = inevitable bias
o Variance-bias optimisation




Tikhonov regularisation

e Recall the unfolding problem AZ = b . .

e This can be reformulated as a minimisation problem (chi-square): x* = (A% — b)T (AZ — b) = min
o Can minimise to find the best fit for
o Canimpose some additional constraint (will bias the result!)

L(Z) = x*(Z) + ®(Z) — min

e Common choice for the constraint: second discrete derivative (Tikhonov)

<I>(£) = TZZ- (il?z'_l — 2x; + wi)z

e Choice of T & strength of the regularisation
e Different choices of <I>(5f) possible - e.g. SVD
o See e.g. https://arxiv.org/abs/hep-ph/9509307
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https://arxiv.org/abs/hep-ph/9509307

Impact of reqgularisation

Taken from:
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https://arxiv.org/abs/1611.01927

https://arxiv.org/pdf/1010.0632.pdf

lterative Bayesian Unfolding (IBU)

e Frequently used in high-signal measurements S stem?'glcslz ded inth
. : e notincluded in the
e Uses Bayes theorem iteratively: :
formalism
true data (“reco”) response e accessed via ensamble test
e . distribution .
distribution matrix
p(TID,M) o< LIDIT,M) -7 (T)
« ~ J AN e J —
posterior likelihood prior

p1(T|D) o< L - 7(T)

o prior based on theoretical prediction in first iteration ‘ p2(T|D) o< L - p1(T|D)
o following iterations use result of previous ones as prior pg(TlD) ot L pQ(TlD)

b
(N

Iteration
improves
unfolding

with truth

5
N

Regularization:
Statistcal e achieved by stopping after a few iterations

fluctuations . . . . . .
y (N..., — < = unregularized unfolding, i.e. matrix inversion)

e finding optimal stopping point
PP S| is an important feature of using IBU

Number of iterations m

x*/NDoF comparison
-
=)

o
©0
+  Optimal

08



https://arxiv.org/pdf/1010.0632.pdf

Thank you for your attention

Questions?

“If your experiment needs a statistician, you need a better experiment.”
— Ernest Rutherford



