# Introduction to statistics

Tomas Dado (Dortmund)

## Introduction

- Focusing on HEP statistics approaches
- Quantum mechanics/field theory = statistical theory
  - Needed for every interpretation
- Here we will go through
  - Basics of statistics
  - Hypotheses testing
  - Discovery and limit setting
  - Parameter estimation
  - Unfolding

 Should be able to understand these plots at the end of this presentation



## **Useful references**

- G. Cowan, *Statistical Data Analysis*, Oxford University Press, 1998
  - Related: Cowan's Academic lectures: <u>indico link</u>
- F. James, Statistical methods in experimental physics, 2nd ed., World Scientific, 2006
- K. Cranmer, *Practical Statistics for the LHC*, <a href="https://arxiv.org/abs/1503.07622">https://arxiv.org/abs/1503.07622</a>
- Cowan et al, Asymptotic formulae for likelihood-based tests of new physics, <a href="https://arxiv.org/abs/1007.1727">https://arxiv.org/abs/1007.1727</a>

• Commonly used model for the binned likelihood fit in HEP: *HistFactory: A tool for creating statistical models for use with RooFit and RooStats*, <a href="https://cds.cern.ch/record/1456844">https://cds.cern.ch/record/1456844</a>

## **Basics**

## **Frequentist statistics**

Probability = outcomes of repeatable observations

$$P(x) = \lim_{n \to \infty} \frac{\text{number of outcomes of } x}{n}$$

- I.e. we need **repeatable events**
- Does Higgs boson exist? Is the mass of the top quark between 172 and 173 GeV? ...?
  - It is **either true or false** but we do not know which
  - The frequentists tools tell us about outcomes of (hypothetical) **repeated experiments**

 The preferred theories (models, hypotheses, ...) are those for which our observations would be considered "<u>usual</u>"

## **Bayesian statistics**

- Interpretation of probability extended to a degree of belief
  - The degree of belief is updated based on the observations
- Probability observing data X, assuming the hypothesis H  $P(H|\vec{x}) = \frac{P(\vec{x}|H)\pi(H)}{\int P(\vec{x}|H)\pi(H) \, dH}$

Normalisation, i.e. sum of all possible outcomes

## Bayesian statistics example

- Assume 2% of the population have COVID19 in a given time
- The tests for COVID19 detect the virus in 90% of the cases and give false-positive (show positive result even when there is no COVID19 virus) in 5% of the cases
- The test result is positive, what is the probability that the person has the COVID19 virus?

#### We can use the Bayes' formula for this

- P(H) = 0.02 this is the prior probability, i.e. before we do the test
- P(x,H) = 0.9 i.e. if the person is positive, what is the likelihood of getting a positive result
- Normalisation =  $0.9 \times 0.02 + 0.05 \times 0.98$  i.e. has the virus and positive test + does not have virus and has a positive test
- Using the Bayes' formula:

$$rac{0.9 imes 0.02}{0.9 imes 0.02 + 0.05 imes 0.98} pprox 24\%$$

 How would the probability change if the person would do another test and it came back positive?

## Frequentist vs Bayesian

- Frequentist
  - Limit of a long term frequency
  - o Do not need an infinite sample for the definition to be useful
  - Sometimes no ensemble exists
- Bayesian
  - Probability is a degree of belief
  - Intrinsically subjective (choice of the prior)
    - No golden rule for the choice of priors

 "Bayesians address the question everyone is interested in, by using assumptions no-one believes. Frequentists use impeccable logic to deal with an issue of no interest to anyone" - L. Lyons

# **Hypothesis testing**

## **Definitions**

Hypothesis testing is a core of the scientific method



- **Hypothesis** *H* specifies the **probability for the data**, i.e., the outcome of the observation, *x*
- Possible values of data (x) form the <u>sample space</u> ("data space")
- The probability for x given H is also called the likelihood of the hypothesis, written L(x|H).
  - E.g. The probability to observe N number of events with a given selection assuming the validity of the Standard Model

# **Hypothesis testing**

How to **confirm a hypothesis?** 

- Karl Popper: You cannot!
- But you can reject a hypothesis!



Find a region, W, of the data space where the is only small probability α to observe data x provided H<sub>0</sub> is true - this is the "critical region"

$$P(x \in w|H_0) \leq \alpha$$

- Reject hypothesis if data is observed in W
- $\alpha$  is called "size" or "**significance level**" of the test



## How to select the critical region?

- Infinitely many critical regions for a given hypothesis
- No unique way to select it
- Can define an <u>alternative hypothesis</u> H<sub>1</sub>
- Roughly speaking:
  - Choose the critical region so that the **probability of observing data under**  $H_0$  is low and **probability of observing data under**  $H_1$  is high



## Rejecting H<sub>0</sub> does not mean "H<sub>0</sub> is wrong and H<sub>1</sub> is right"

- Frequentist only outcome of repeated experiments
- Bayesian depends on the priors

## Type-I and type-II errors

- <u>Type-I error</u> (false negative)
  - Reject hypothesis  $H_0$  if it is true
  - $\circ$  Maximum probability for this is  $\alpha$

$$P(x \in W | H_0) \le \alpha$$

- **Type-II error** (false positive)
  - Accept hypothesis  $H_0$  if it is false and  $H_1$  is true
  - Occurs with probability β

$$P(x \in S - W \mid H_1) = \beta$$

• 1 -  $\beta$  is called the "power" of the test







#### False positive





### **Test statistics**

- Assume that for each event we have a collection of numbers
  - Number of jets, leptons, MET value, ..., have multiple bins, ...
  - Data (x) will follow some joint PDF for the different observables
  - The critical region is **multidimensional** cumbersome to work with
- Can define the **boundary** of the critical region using an equation of form

$$t(x_1,\ldots,x_n)=t_{\mathrm{cut}}$$

• Where  $t(x_1, ..., x_n)$  is the <u>scalar</u> test statistics

We have turned an N-dimensional problem to a 1-dimensional one!



## Optimal choice for the test statistics

- How to choose the test statistics?
- **Neyman-Pearson lemma**: For a test of size  $\alpha$  of the simple hypothesis  $H_0$ , to obtain the highest power with respect to the simple alternative  $H_1$ , choose the critical region W such that the likelihood ratio satisfies

$$\frac{P(\mathbf{x}|H_1)}{P(\mathbf{x}|H_0)} \ge k$$

everywhere in W and is less than k else - k is a constant chosen such that the test has size  $\alpha$ 

• The optimal scalar test statistics is then

$$t(\mathbf{x}) = \frac{P(\mathbf{x}|H_1)}{P(\mathbf{x}|H_0)}$$

## p-value

- Level of agreement (compatibility) of data and a given hypothesis (model) H
- p-value -> probability, under assumption of H, to observe data with equal or lesser
   compatibility with H relative to the data we got
  - This is NOT a probability that H is true!



## p-value and significance

• We can define the significance *Z* as the **number of standard deviations** ("sigmas") that a Gaussian variable would fluctuate in one direction to give the same p-value

$$p = \int_{Z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = 1 - \Phi(Z) \longrightarrow Z = \Phi^{-1}(1-p)$$

#### Gaussian cumulative function





| z (one tail) | p-value |
|--------------|---------|
| 1.00         | 0.16    |
| 2.00         | 0.023   |
| 3.00         | 0.0013  |
| 4.00         | 3.2e-05 |
| 5.00         | 2.9e-07 |
| 6.00         | 9.9e-10 |
|              |         |

# **Discovery and limits**

## **Discovery in HEP**

- We want to discover new physics (BSM)
- **Typically** 
  - Hypothesis  $H_0$ , i.e. the "null hypothesis" is the SM prediction
    - "Background-only" hypothesis
  - Alternative hypothesis H₁ is your favourite model
- We know what to do
  - Find the  $P(x,H_0)$  and  $P(x,H_1)$ , i.e. the **likelihood**
  - **Build the test statistics** using the ratios
  - Calculate the p-value
    - Reject/accept
- How to get the PDF?
  - Use **MC simulation**
  - Need to get a distribution of the values
    - Pseudo-experiments/toys!



the ratio

# Simple example

- Suppose we are doing a counting experiment
  - Predicted number of background events is b
  - Predicted number of signal events is s
  - Observed number of events will follow Poisson distribution

$$P(n|b) = \frac{b^n}{n!}e^{-b}$$
 
$$P(n|s+b) = \frac{(s+b)^n}{n!}e^{-(s+b)}$$
 Signal + bkg



- We observe *n* instances of *x*
- <u>Likelihoods for the hypotheses</u>
  - Background only
  - Signal + bkg



$$L_{s+b} = \frac{(s+b)^n}{n!} e^{-(s+b)} \prod_{i=1}^n \left( \pi_{s} f(\mathbf{x}_i|s) + \pi_{b} f(\mathbf{x}_i|b) \right)$$

(Prior) probabilities for an event to be signal or bkg

## Simple example continued

Define test statistics (-2 logarithm of the likelihood ratio)

$$Q = -2\ln\frac{L_{s+b}}{L_b} = -s + \sum_{i=1}^n \ln\left(1 + \frac{s}{b}\frac{f(\mathbf{x}_i|\mathbf{s})}{f(\mathbf{x}_i|\mathbf{b})}\right)$$

- Let us assume we observe Q = Q<sub>obs</sub>
  - HEP standard
    - Claim discovery at 5 sigma
    - Reject B-only hypothesis when p-value is  $< 2.9 \times 10^{-7}$



# Let's add systematics

- So far, only considered <u>statistical uncertainty</u>
- In reality, many systematic uncertainties affect the predictions
- Can add the systematics into the likelihood
  - Define "signal strength",  $\mu$ , as  $\mathbf{n} = \mu . \mathbf{s} + \mathbf{b}$ 
    - $\mu$  = 1 means cross-section as predicted by the model
- $\mu=rac{\sigma_{obs.}}{\sigma_{pred.}}$

- o Add "nuisance parameters" to the likelihood
  - Parameters that impact the likelihood, but we are not interested in them, e.g. systematic uncertainties
  - Usually, "subsidiary" or "auxiliary" measurements are used to constrain NPs



## **Commonly used model**

- More and more common approach for including systematics in HEP statistical analysis:
  - o include systematic uncertainties as unknown parameters in the model
  - nuisance parameters modifying expectations in a parametric way
  - o nuisance parameters constrained by <u>subsidiary</u> measurements





constrained parameters:

nuisance parameters (<u>NPs</u>) associated to systematic uncertainties

### unconstrained parameters:

in bin *i* 

parameter of interest (<u>POI</u> or " $\mu$ ") + unconstrained nuisance parameters (e.g. background normalization parameters)

(signal+background)

Gaussian

for nuisance

parameter *j* 

# Profile-likelihood significance



- Observing new physics  $\Leftrightarrow$  excluding background-only hypothesis  $\Leftrightarrow$  excluding  $\mu$  = 0
- Only consider upward fluctuations

$$q_0 = \begin{cases} -2 \ln \lambda(0) & \hat{\mu} \ge 0 \\ 0 & \hat{\mu} < 0 \end{cases}$$
  $p_0 = \int_{q_{0, \text{obs}}}^{\infty} f(q_0|0) \, dq_0$ 

## Wald's approximation

- Running the <u>fit can take a long time</u>
- We need a PDF for the test statistics 
   ⇔ many fits to toy data
  - $\circ$  For 5 sigma discovery we need ~10<sup>7</sup> toys!
- Luckily, there is a **powerful approximation** Wald's approximation
- For large n, the likelihood ratio is approximately chi-square distributed!
  - Does not require the likelihood to be chi-square or gaussian distributed!

$$-2\ln\lambda(\mu) = \frac{(\mu - \hat{\mu})^2}{\sigma^2} + \mathcal{O}(1/\sqrt{N})$$

$$\hat{\mu} \sim \text{Gaussian}(\mu', \sigma)$$
 sample size

Under this assumption, the significance is simply

$$Z = \Phi^{-1}(1 - p_0) = \sqrt{q_0}$$

Usually a good approximation as long as number events in each bin is greater than ~10

- I.e. need to **run the fit only twice unconditional** and **with**  $\mu$  **fixed to 0** 
  - Get the -2 ln *L* values for the fits and take the square root of the difference

### **Look-elsewhere effect**

- What if we are looking for a resonance with an unknown mass and see an excess in some mass?
  - Should we just quote the significance for that mass point?



- Need to take into account the "trials"
  - We are "testing" multiple bins
  - We have more options to find an excess
  - Need to correct for this!
- Significance for a fixed mass point ⇔ local significance
- Significance for the floating mass ⇔ global significance
  - Global significance <= local significance</li>
- How to relate local significance to the global one?
  - No simple recipe
  - Need to run toys
    - Usually only 100s, not millions

# Reading significance plots

https://arxiv.org/abs/1207.7214



- Dashed curve = "Expected" median p<sub>0</sub>
  - p<sub>0</sub> for each mass of the SM Higgs boson - from MC
- Blue band = 1 sigma variations of the  $p_0$  value
- <u>Full line</u> = "Observed" p<sub>0</sub> value from real data

> 5 sigma at around m<sub>H</sub> = 125 GeV

# **Setting limits**

- What if we do not see any significant excess?
  - We can **set limits**!
- What values of  $\mu$  can be excluded with the observed data?
  - I.e. the implied rate for a given  $\mu$  would be very high for the observed data
  - One-sided test provide an "upper limit"
- Slightly modify the test statistics used for discovery
  - $\circ$  If  $\mu$  comes out negative (unphysical) we can compare to the closest model with  $\mu$  = 0

$$\tilde{\lambda}(\mu) = \begin{cases} \frac{L(\mu, \hat{\boldsymbol{\theta}})}{L(\hat{\mu}, \hat{\boldsymbol{\theta}})} & \hat{\mu} \ge 0, \\ \frac{L(\mu, \hat{\boldsymbol{\theta}})}{L(0, \hat{\boldsymbol{\theta}})} & \hat{\mu} < 0. \end{cases} \qquad \tilde{q}_{\mu} = \begin{cases} -2\ln\tilde{\lambda}(\mu) & \hat{\mu} \le \mu \\ 0 & \hat{\mu} > \mu \end{cases}$$

This is the test statistics commonly used (e.g. Higgs combinations)

## **Setting limits - continued**

- Settings limits = finding the highest value of  $\mu$  that results in p-value not smaller than  $\gamma$ 
  - y is usually chosen as 0.05, i.e. 95% confidence level (CL)
  - $\circ$  "What is the largest value of  $\mu$  that is still compatible with the data?"



- Need to solve for μ
  - Nasty integral equation
  - Can run pseudo-experiments to get the distribution of the test statistics
    - Find  $\mu$  that leads to  $p_{\mu} = 0.05$

## **Asymptotic limit settings**

- Can use the Wald's approximation
  - The test statistics approaches chi-square

$$q_{\mu} = \begin{cases} \frac{(\mu - \hat{\mu})^2}{\sigma^2} & \hat{\mu} < \mu \\ 0 & \hat{\mu} > \mu \end{cases} \quad \tilde{q}_{\mu} = \begin{cases} \frac{\mu^2}{\sigma^2} - \frac{2\mu\hat{\mu}}{\sigma^2} & \hat{\mu} < 0 \\ \frac{(\mu - \hat{\mu})^2}{\sigma^2} & 0 \le \hat{\mu} \le \mu \\ 0 & \hat{\mu} > \mu \end{cases}$$



- <u>Limit estimation in practice (simplified)</u>
  - Get the best fit value of  $\mu$  and its uncertainty (more on this later)
  - $\circ$  Set  $\mu$  to +2 sigma (approximately 95%) this is a starting point of the iterative estimation
  - $\circ$  Calculate the p-value for this this  $\mu$ 
    - If p-value too small, decrease  $\mu$ , if p-value too large increase  $\mu$
    - Repeat!
    - Stop when the p-value is sufficiently close to 0.05
  - Usually requires O(10) fits
- If the asymptotic approximation is not valid, have to use toy experiments

## The CLs issue

- Suppose we have a low sensitivity to a particular signal
  - Test statistics for s+b is very similar to background-only
  - There is non-negligible probability to exclude s+b even when we have low sensitivity



## The CLs procedure

A. Read et al.

- **Solution** to the issue: do not use only p-value for the s+b but divide by p-value for b-only
- Define CLs

$$CL_s=rac{CL_{s+b}}{CL_b}=rac{p_{s+b}}{1-p_b}$$

• Reject s+b hypothesis if CLs < α

- Reduces "effective p-value"
  - If low sensitivity
- Ratio of p-values
  - Not liked by statisticians
- Used in almost all HEP searches



## **Expected limits**

- **Expected limits** can be calculated using the MC prediction
  - Assume background only, what would be the limit on  $\mu$  in case data = MC?
  - o Can do it for several models, e.g. different masses of the Higgs boson
- Frequentist approach
  - Distribution of the p-value ⇔ distribution of the 95% CL limits
  - Can quote **median expected limit** and **± 1(2) sigma variations**







### **Expected excluded mass range**



### **Observed excluded mass range**



#### **Parameter estimation**

#### **Estimators**

- Often **not searching for a new process** 
  - E.g. Measuring top-quark mass, CKM matrix elements, ...
- How to get the <u>parameters from the model with their uncertainties?</u>
- We need the PDF of the estimation
- **Parameters** are **constants of the estimator** that characterise the shape



- We want to find some function of data to estimate the parameter(s):  $\widehat{\theta}(\vec{x})$ 
  - Estimator written with a hat

#### **Estimators continued**

Repeating the measurement -> get PDF



- We want <u>unbiased</u> estimator (bias = 0) with <u>small variance</u> (small statistical uncertainty)
  - Generally: conflicting requirements

#### Maximum-likelihood estimate

- <u>Maximum-likelihood estimate</u> ⇔ values of parameters that maximize the likelihood
  - Usually: use negative log likelihood
  - Frequentists statistics: Minimise the NLL (i.e "fit")
    - Use minimiser tools, e.g. Minuit



- If the hypothesized  $\theta$  is close to the true value, then we expect a high probability to get data like that which we actually found
- ML estimators are not guaranteed to have any 'optimal' properties
  - In practice they're very good

- Uncertainty of the parameter?
  - Value of θ where the negative log likelihood shifts by one half (1 sigma = 0.5, 2 sigma = 2, 3 sigma = 4.5, ...)
    - Motivated by the Normal distribution where shift of 0.5 happens at exactly 1 sigma

#### Example: Higgs mass measurement - https://arxiv.org/abs/1503.07589



## **Adding systematic uncertainties**

- **Nuisance parameters** (systematic uncertainties) can be added to the likelihood
  - Recall the common model  $L(\vec{n} \mid \theta, k) = \prod_i P(n_i \mid S_i(\theta, k) + B_i(\theta, k)) \times \prod_i G(\theta_i)$
- <u>Maximum-likelihood</u> ⇔ also the NPs get their best fit value and an uncertainty
  - Covariance matrix of all parameters (including NPs)
    - Can also get **correlations of the parameters** ("post-fit")
  - Lot of physics in these values!

- The uncertainty (likelihood shifts by one half) includes stat+syst
  - How to get an impact of individual sources of the uncertainties?
  - Fix a given NP value to +- 1 sigma, repeat the minimisation and check impact on the parameter of interest
    - Repeat for all NPs
  - Stat-only uncertainty can be obtained by fixing all NPs to their fitted values and repeating the fit and getting the uncertainty on the POI

#### Reading pull/ranking plots ATLAS-CONF-2020-058

Impact of a given NP on the POI (ttH signal strength here). Full boxes ⇔ post-fit impact, empty boxes ⇔ pre-fit impact

NPs "ranked" by their impact on the POI

Some parameters do not have a Gaussian term (e.g. normalisation of a given background) ⇔ centred around 1



Central value and uncertainty of a Nuisance parameter indicated with the black point and error bar

- Is the central value postfit different than 0 ("pull")?
- Is the post-fit uncertainty smaller than prefit ("constraints")?

In the model, most of the NPs have a Gaussian term in the likelihood ⇔ can talk about "sigmas".

### Dangers of constraining systematic uncertainties

- Post-fit uncertainty smaller than prefit ⇔ constraint
  - Reduces total uncertainty good!
  - o <u>Is it reliable?</u>
    - Should the measurements have power to constrain a given uncertainty?

Is the measurements "better" than dedicated calibrations?Are the variation granular enough?

- Usually: pass nominal and +- 1 sigma variations
  - <u>Interpolation/extrapolation</u> to get **continuous** impact



will not be able to fit these points



2-point variations especially problematic!

# **Unfolding**

Slides from: Michele Pinamonti

### What is *unfolding* about?

- **Unfolding** is:
  - removal of detector resolution effects from observed distribution,
     to extract (our best-guess of) underlying true distribution
  - o i.e. extraction of a **differential cross-section**
- Can be done to extract:
  - total-phase-space or fiducial-phase-space cross-sections
  - cross-sections vs. variable defined at particle-level or at parton-level
- The unfolding problem can be essentially reduced to a response-matrix-inversion problem



- Most delicate point is the so-called *regularization*:
  - o introduced to avoid *amplification of statistical fluctuations* in unfolded data (*oscillations*), happening when just **inverting** response matrix







- Regularization techniques always imply some level of assumptions ⇒ inevitable bias
  - Variance-bias optimisation

### **Tikhonov regularisation**

- ullet Recall the unfolding problem  $Aec{x}=ec{b}$
- This can be reformulated as a **minimisation** problem (chi-square):  $\chi^2=(A\vec x-\vec b)^T(A\vec x-\vec b)=\min$ 
  - $\circ$  Can minimise to find the best fit for  $ec{x}$
  - Can **impose some additional constraint** (will bias the result!)

$$L(ec{x}) \equiv \chi^2(ec{x}) + \Phi(ec{x}) 
ightarrow {
m min}$$

• <u>Common choice</u> for the constraint: **second discrete derivative (Tikhonov)** 

$$\Phi(ec{x}) = au \sum_i (x_{i-1} - 2x_i + x_i)^2$$

- Choice of  $\tau \Leftrightarrow$  strength of the regularisation
- ullet Different choices of  $\Phi(ec{x})$  possible e.g. SVD  $\longrightarrow A = U \, S \, V^T$ 
  - See e.g. <a href="https://arxiv.org/abs/hep-ph/9509307">https://arxiv.org/abs/hep-ph/9509307</a>

# Impact of regularisation

#### Taken from:

https://arxiv.org/abs/1611.01927



# **Iterative Bayesian Unfolding (IBU)**

- Frequently used in high-signal measurements
- Uses Bayes theorem iteratively:



- prior based on theoretical prediction in first iteration
- o following iterations use result of previous ones as prior

#### **Systematics**:

- not included in the formalism
- accessed via ensamble test

$$p_1(T|D) \propto \mathcal{L} \cdot \pi(T)$$

$$p_2(T|D) \propto \mathcal{L} \cdot p_1(T|D)$$

$$p_3(T|D) \propto \mathcal{L} \cdot p_2(T|D)$$

. . .



#### **Regularization:**

- achieved by stopping after a few iterations  $(N_{iter} \rightarrow \infty \Rightarrow unregularized unfolding, i.e. matrix inversion)$
- finding optimal stopping point
   is an important feature of using IBU

# Thank you for your attention

Questions?

"If your experiment needs a statistician, you need a better experiment."

— Ernest Rutherford