EDIT 2011 Excellence in Detectors and Instrumentation Technologies CERN, Geneva, Switzerland - 31 January - 10 February 2011

Silicon Strips and Pixel Technologies Present & Future Pixel Systems at LHC

CERN-P

A. La Rosa, C. Gallrapp, D. Dobos H. Pernegger CERN & TU Dortmund

- 0.02

01.-10.02.2011, EDIT 2011, CERN

TU Dortmund Pixel Detectors at LHC

ALICE Pixels

ALICE Inner Tracker & Silicon Pixel Detector

 6 layer ITS (Inner Tracking System)
 consists of 2 layers of silicon pixel (SPD), 2 layers of silicon drift (SDD) and 2 layers of silicon strip detectors (SSD).

CERN-PI

ALICE Silicon Pixel Detector

- Smallest building block: half-stave
- I 20 half-staves (40 inner + 80 outer)
- Each half-stave consists of:
 - I MCM
 - max. height: 5 mm
 - 2 fc bonded ladders
 - 5 chips + 1 sensor

TU Dortmund

- I multilayer bus
- ☑ 1200 pixel chips
 ☑ 9.83 x 10⁶ pixels

CERN-PH

01.-10.02.11

Pixel Detectors at LHC

ALICE Silicon Pixel Detector Half Stave

ortmund

Pixel Detectors at LHC 01.-10.02.11

ALICE Silicon Pixel Detector Tigger and DAQ

Fast-OR

extraction

850 ns

Dortmund

Pixel Trigger electronics

225 ns

Processing

Pixel Detectors at LHC

- Dedicated FastOr (FO) circuitry in each pixel cell
- Active if at least one pixel per chip is hit
- Transmitted every 100 ns
- Two data streams: data + FO
- Low latency pad detector with I 200 pads
- Used for L0 trigger decisions (cosmics, pp, HI)

Optical

splitters

250 ns

To DAQ

120 Fibers

350 ns

- Extract and synchronize
 I200 FO bits every 100 ns
- User defined and
 - programmable algorithms (MB, topological trigger,

01.-10.02.1

6

1200 bits @ 10 MHz high multiplicity trigger,..) 12 Gb/s Overall latency: 850 ns

25 ns

ALICE Silicon Pixel Detector Events & Results

dN_{ch}/dr $\mathbf{\underline{M}}$ Ist paper shows pseudorapidity density based on SPD data at 900 GeV (using SPD trigger in L0 decision) \sqrt{s} = 900 GeV ALICE pp NSD UA5 pp NSD EPJ C:Vol.65, I (2010) ALICE pp INEL UA5 pp INEL Δ 284 events, 23/11/2009 2 900 GeV 7 TeV 0.00 0.62 CERN 01.-10.02.11 Pixel Detectors at LHC Dortmund

CMS Pixels

CMS Silicon Pixel Detector

Dortmund

Barrel Pixel Detector (BPix) has 3 layers of radii 4.3 cm, 7.2 cm and 11.0 cm

BPix has 768 modules

CERN-P

Forward Pixel Detector (FPix) has 2disks on each side at 34.5 cm and 46.5 cm

01.-10.02.11

FPix has 672 modules

☑ Total of ~15,840 Readout Chip

Pixel Detectors at LHC

CMS Pixel Detector Analogue Readout

Dortmund

01.-10.02.1

- On receiving a L1 trigger, the Token Bit Manager (TBM) initiates a Chinese-whisper of "token bits" that instruct each ROC to send its hit data to the TBM
- The signal from the TBM is electrical and analog. It encodes the ROC #, row and column and charge deposit of each pixel hit
- The electrical signal from the TBM is converted to optical by the Analog-Optical Hybrid (AOH)

Pixel Detectors at LHC

CMS BPIX & FPIX and their DAQ

- Pixel Front End Driver (FED) digitizes analog signals given the level thresholds for decoding.
- FEDs send digitized data down S-Link cables to the Data Acquisition System (DAQ).

TU Dortmund

CERN-PH

Pixel Detectors at LHC

01.-10.02.11

12

CMS Primary Vertex & Neutral Kaon Reconstruction

Diamond Detectors

Diamond Properties and Grow

Why diamond?

Market Marke

 \rightarrow low leakage current

- ☑ low dielectric constant (5.7)
 - \rightarrow low capacitance

\overrightarrow{O} high displacement energy (43 eV/atom) \rightarrow radiation hard

- Migh thermal conductivity (~2kW/m.K)
 → no cooling
- high energy to create e/h pair (13 eV) & low average created signal (36 e₀ / μm)

Dortmund

 \rightarrow low signal, but also low noise

Microwave CVD **Plasma Reactor** magnetron plasma gas inlet vacuum pump water cooling

Metallization

Pixel Detectors at LHC

- on doping needed
- metal contacts (pads, strips, pixels) sputtered or evaporated

01.-10.02.11

15

ATLAS pCVD Diamond Pixel Module

Diamond Pixel Module - Industrialization

U Dortmund

before rework

Pixel Detectors at LHC

after rework

18

01.-10.02.11

diamond sensor can be reused if module QA fails

CERN-PH

pCVD Diamond Module: Resolution & Efficiency

Pixel Detectors at LHC

✓ residuals show expected behavior:
 18 µm → unfold telescope resolution
 → 14 µm as expected from 50 µm/√12
 ✓ 97.5% efficiency lower limit due to scattered tracks (4 GeV electrons)

ortmund

01.-10.02.

3D Silicon Detectors

Silicon 3D Detectors Basics & History

3D Silicon:

- Integrate the implants not on the surface but through the detector
- Allows highly segmented pixel detectors, but additionally:
- Distance from n- to p-column small: low depletion voltage!
- Short drift distance = fast signal
 = high rate capable!

3D Silicon History

- MEMS technology + VLSI to sensor fab: Deep Reactive Ion Etching (DRIE)
- Electrode implants: etched, doped, filled columns (S. Parker 1995)
- Dicing: etched, doped edge trench (C. Kenney 1997)
- Key benefits: Radiation hardness and active edges

-10.02

2

Pixel Detectors at LHC

22

Silicon 3D Radiation Hardness

- Decoupled directions: track traversal versus drift field
- Low depletion voltage

CERN-

- Short charge collection path, fast signal
- \bullet Retain full charge from MIP in 250 μm Si
- Signal loss dominated by trapping

Silicon 3D Sensor Family

The 3D sensors family:

IRST and separately CNM.

Being presently fabricated (No data available yet)

Double column No active edge

IRST/CNM fabricated in the RD50 Framework in 2005 Tested with SCTA readout Electronics. Data and Simulations show that the design is NOT radiation hard For B-layer replacement.

Pixel Detectors at LHC

01.-10.02.11

23

iceMOS- Being presently fabricated Work performed in the RD50 framework (No data available yet) passivation Metal Full 3D SIO2 No active edge Single column poly-n+ Si(n--) No active edge Si-n+ Si-p+ SiO2 poly-p+

J Dortmund

ERN

CERN-PH

Silicon 3D Sensor Electrode Configurations

Silicon 3D Sensor Radiation Hardness & Efficiency

200

180

160

140

120

100

80

60

0

4E n

2E n

3E n

3E p

5x1015

Pixel Detectors at LHC

after irr

before irr

25

2.5x10¹⁶

01.-10.02.11

- radiation tolerance up to 3-5x10¹⁵ n_{eq}/cm²
- for inclined tracks 3D sensors have similar efficiency and spatial resolution as planar silicon sensors

Dortmund

CERN-

1x10¹⁶

C. DaVia and S. J. Watts July 08

1.5x10¹⁶

ortmund

CERN-P

Hand-On: Pixel Detectors at LHC e.g. ATLAS Pixel FE-I3

01.-10.02.11

26

Pixel Detectors at LHC

ATLAS Pixel Detector

6.2m

Juctor tracker

01.-10.02.11

27

p transition radiation tracker

Pixel Detectors at LHC

End-cap semiconductor tracker

ATLAS Pixel Detector

TU Dortmund

28

ATLAS Pixel Detector

ATLAS Pixel Detector

- 3 barrels + 3 forward/ backward disks
- 112 stave and 4 sectors
- 1744 modules
- 80 million channels

ATLAS Pixel Module

Dortmund

CERN-P

ATLAS Pixel Module

- I6 front-end chips (FE-I3) module with a Module Controller Chip (MCC)
- 46080 R/O channels 50 μm
 x 400 μm (50 μm x 600 μm
 for edge pixel columns
 between neighboring FE-I3
 chips)
- Planar n-in-n DOFZ silicon sensors, 250um thick
- Designed for 1x10¹⁵ IMeV fluence and 50 Mrad

Pixel Detectors at LHC

• Optolink R/O: 40-80 Mb/link

01.-10.02.11

30

ATLAS Pixel FE-I3 Sensor

ATLAS Pixel FE-I3 Chip column 0–17

Dortmund

CERN-P

01.-10.02.11

32

Pixel Detectors at LHC

FE-13 Pixel Cell Block Diagram

CERN-PH TU Dortmund Pixel Detectors at LHC 01.-10.02.11 33

FE-I3 Pixel Signal Shapes

Hand-On Measurement Program

Front-end Tuning (selected steps of a many tuning, calibration and quality assurance steps program):

- Digital test
- 2. Threshold Scan
- 3. Time-Over-Threshold Calibration
- 4. Source Scan

Backup Slides

Inner Detector Tracking Performance Momentum resolution and scale using resonances: J/ψ example

Primary vertex reconstruction

Tracking Performance: Peaks, Cascades & $J/\psi \rightarrow ee$

Observed all most classic resonances: Ks, K*, φ , Λ , Ω , Ξ , D, D* and J/ Ψ Momentum scale known to permil in this mass region.

Extract signal from background:

- 2 EM clusters (track-match)
- p_T (e± tracks) > 4, 2 GeV
- track quality, calo shower
- key handle: large transition radiation in TRT
- invariant mass from track parameters after
- Bremsstrahlung recovery (Gaussian Sum Filter)
- Signal: 222 ± 11 events
- Background: 28 ± 2 events
- Mass peak: 3.09 ± 0.01 GeV
 Mass resol.: 0.07 ± 0.01 GeV

e⁺e

2.5

2

3

3.5

m_{ee} [GeV]

39

78 nb⁻¹

B-Tagging

Motivation: ATLAS Insertable B-Layer (IBL)

Pixel Detectors at LHC

- ight space → no shingling, slim or active edges
- I-I.5 % X₀ material budget
- 5×10¹⁵ n_{eq}/cm² requirement

Dortmund

beam pipe radius can be reduced from 29 to 25 mm

01.-10.02.11

42

Motivation: ATLAS for sLHC: Layout & Fluences

Threshold and Noise excellent threshold and noise performance:

CERN-

threshold: $1450 \pm 25 e^{-}$, noise: $137 \pm 10 e^{-}$ & overdrive 800 e^{-} no changes from bare FEs ($1497 \pm 26 e^{-}$; $138 \pm 8 e^{-}$) to module "invisible sensor": low capacitance C & leakage current I_{leak}

Industrialization: Rework of Diamond Sensors

- diamond edge left metallized
 - module shorted: IOV bias
- 7/16 FEs damaged
- reworked at IZM
 - backside metallization redone
 - etching
 - all FEs replaced
 - diamond sensor can be reused if module QA fails

Dortmund

CERN-

before

01.-10.02.1

45

Pixel Detectors at LHC