Introduction to CMOS Pixel Sensors

Marc Winter (IPHC-Strasbourg)

(next week : Jérôme Baudot / IPHC-Strasbourg) ▷ more information on IPHC Web site: http://www.iphc.cnrs.fr/-CMOS-ILC-.html

OUTLINE

- Main features of CMOS pixel sensors
 - ▷ motivation ▷ principle: sensing & read-out ▷ limitations ▷ hit characteristics
- Achieved performances
 - ▷ means of evaluation
 ▷ beam test characterisation
 ▷ sources of performance deterioration
- Applications
 - ▷ system integration aspects
 ▷ subatomic physics apparatus
- Outlook
 - \triangleright 2D sensors \triangleright 3D sensors
- Summary

The Quadrature of the Vertex Detector

- CMOS pixel sensors offer the perspective of "combining the extremes" (ultimately !)
- Several labs develop CMOS pixel sensors : Italy (INFN, Univ.), UK (RAL), CERN, France (IPHC, Saclay), USA, ...
- Several experiments chosed/envisage CMOS pixel sensors : STAR (construct), CBM (devt),

ALICE (option), SuperB (option), ILC (option), ...

CMOS Technology

- C.M.O.S. = Complementary Metal-Oxide-Semiconductor
- CMOS pixel sensors exploit the fabrication processes used in industry for mass production of integrated circuits:
 - * micro-processors, micro-controler, RAM, ...
 - * cell phones, lap tops, cars, ...

- CMOS fabrication mode :
 - * μ circuit lithography on a substrate
 - * proceeds through reticules (2x2 cm²) organised in wafers

Main Features of CMOS Sensors

- P-type low-resistivity Si hosting n-type "charge collectors"
 - signal created in epitaxial layer (low doping):

Q \sim 80 e-h / $\mu m \mapsto$ signal \lesssim 1000 e $^-$

- charge sensing through n-well/p-epi junction
- excess carriers propagate (thermally) to diode with help of reflection on boundaries with p-well and substrate (high doping)

- Prominent advantages of CMOS sensors:
 - ♦ granularity: pixels of \le 10×10 μm^2 ⇒ high spatial resolution
 - $\diamond~$ low mat. budget: sensitive volume \sim 10 20 μm \Rightarrow total thickness \lesssim 50 μm
 - \diamond signal processing μ circuits integrated in the sensors \Rightarrow compacity, high data throughput, flexibility, etc.
 - other attractive aspects: T_{room} operation, cost, multi-project run frequency, industrial reliability, industrial technology devts & evolution, etc.

hinspace hinspace hinspace hinspace Thinning down to \sim 30 μm permitted

Basic Read-Out Architecture

CMOS Pixel Sensors: Read-Out Architectures

- Signal sensing and read-out are decoupled :
 - * signal sensing (charge collection) is continuous (no dead time)
 - \Rightarrow signal read-out may be performed in various ways, independently of charge collection
- Signal processing alternatives :
 - * self-triggered : only fired pixels are (randomly) read-out \equiv hybrid pixels
 - * rolling shutter (less power consumption) : read-out of all pixels,
 followed by sparsification outside of sensitive area
 - * snap-shot : requires 2 consecutive read-outs,

with 1 used for average noise subtraction

(rather suited to light imaging due to \sim 50 % dead time)

- Signal transfer alternatives :
 - * continuous : permanent output to outside world
 - * intermittent : signal stored on chip until read-out sign is provided
 - \hookrightarrow event based trigger or beam-time structure (ILC) $\triangleright \triangleright \triangleright$

Overview of Rolling Shutter Architecture

Sensor organisation:

- * Signal sensing and analog processing in pixel array
- * Mixed and Digital circuitry integrated in chip periphery
- * Read-out in rolling shutter mode

(pixels grouped in columns read-out in //)

• Main consequences:

* Read-out speed :

- \equiv integration time
- \equiv nb of pixels imes pixel read-out time (O(100 ns))

*** Power consumption :**

limited inside the pixel array to the row being read out

*** Material budget :**

peripheral band(s) for mixed+digital circuitry, insensitive to impinging particles (\sim 10 % of chip surface)

*** Time stamp :**

each row corresponds to a specific time intervalle \Rightarrow adapt track reconstruction code

Signal Sensing & Processing Architectures

- Main sensing and read-out micro-circuit elements
 - * in-pixel conversion of charge into electrical signal (e.g. voltage) with average noise subtraction
 - * signal discrimination (in perspective of zero-suppression)
 - * discriminator output encoding (sparsification with charge encoding)
 - $\ensuremath{\, \ensuremath{ \e$
- In-pixel μ circuitry :

chip periphery

pre-amp + shaper + discriminator

inside pixel

Limitations of the Technology

- Very thin sensitive volume
 - \Rightarrow impact on signal magnitude (mV !)
 - \Rightarrow very low noise FEE required
- Sensitive volume almost undepleted
 - \Rightarrow impact on radiation tolerance & speed
 - \triangleright tendency : high-resistivity epitaxial layer \Rightarrow improved radiation tolerance
- Commercial fabrication
 - \Rightarrow fabrication parametres (doping profile \rightarrow epitaxial layer, number of metal layers, etc.) not optimal for charged particle detection :
 - * real potential of CMOS pixel sensors not exploited
 - * choice of process often driven by epitaxial layer characteristics,
 at the expense of the FEE circuitry parametres (feature size, nb of Metal Layers)
- Use of P-MOS transistors inside pixel array restricted in most processes
 - \Rightarrow limited signal processing functionnalities inside pixels (most performed on sensor periphery)
 - ▷ tendency : buried n-well techno. \Rightarrow allows use of P-MOS transistors (watch charge coll. eff. !)

Hit Characteristics

- Standard processes : charges diffuse thermally
 - $* \lesssim 10^3 \, {\rm e^-}$ shared among \sim 10-15 pixels per cluster
 - $\,\ast\,$ typically \lesssim 200/300 e^- on seed pixel

- High-resistivity epitaxial layer : larger charge sensing volume
 - * less diffusion \Rightarrow less pixels/cluster
 - * larger charge collected/pixel \Rightarrow higher SNR

Sensor Noise: Sources, Reduction Strategies

• Main Sources :

- * in pixel : sensing diode capacitance $\triangleright \triangleright \triangleright$
- * in pixel : leakage current collected by sensing diode $\triangleright \triangleright$
- * outside pixel : signal processing micro-circuits

- Tricks to minimise the noise :
 - * maximal amplification inside pixel
 - \Rightarrow minimises the impact of the noise $\triangleright \triangleright \triangleright$ of the signal processing micro-circuits
 - * operate chip with short integration time
 - \Rightarrow minimises the integrated leakage current
 - * operate chip at low temperature $\triangleright \triangleright \triangleright$
 - \Rightarrow minimises the thermal noise

M.I.P. Detection Performance Evaluation

- Laboratory :
 - * test steering & read-out functionalities (e.g. pattern generator)
 - * evaluate charge collection efficiency & noise (⁵⁵Fe)
 - * assess charge-to-voltage conversion factor (⁵⁵Fe)
 - * estimate "m.i.p." detection efficiency with β (¹⁰⁶Ru)
- M.I.P. beam :
 - * typically \sim 100 GeV/c π^- at CERN-SPS
 - \Rightarrow minimise multiple scattering
 - * install chip to test inside beam telescope (EUDET BT)
 - * determine :
 - detection efficiency (and SNR)
 - fake hit rate (and noise)
 - single point resolution

CMOS Pixel Sensors: State of the Art

courtesy of Ch. Hu-Guo / TWEPP-2010

M.I.P. Detection Efficiency & Fake Hit Rate

- Motivation : find a sensor working point with high detection efficiency and marginal contamination by noise fluctuations (fake hits)
- Detection efficiency
 - fraction of tracks reconstructed in telescope
 which are also reconstructed in the sensor
 - * study as function of discriminator threshold
 - * a high threshold may harm detection efficiency
- Fake hit rate
 - * fraction of noise fluctuations which pass the discriminator threshold
 - * study as a function of discriminator threshold
 - * a high threshold is best to keep fake rate marginal (typically $\lesssim 10^{-3/-4}$)

Spatial Resolution

 Compare position of impact on sensor surface predicted with BT to hit reconstructed with sensor under test: clusters reconstructed with eta-function, exploiting charge sharing between pixels

• Impact of pixel pitch (analog output): ho
ho
ho $\sigma_{
m sp} \sim {f 1} \ \mu {f m}$ (10 μm pitch) $ightarrow \lesssim {f 3} \ \mu {f m}$ (40 μm pitch)

• Impact of charge encoding resolution :

hinspace ex. of 20 μm pitch $\Rightarrow \sigma^{digi}_{sp}$ = pitch/ $\sqrt{12}$ \sim 5.7 μm

Nb of bits	12	3-4	1
Data	measured	reprocessed	measured
σ_{sp}	\lesssim 1.5 μm	\lesssim 2 μm	\lesssim 3.5 μm

Radiation Tolerance

 $\triangleright \triangleright \triangleright$

 \square

- Introductory remarks :
 - * still evolving (csq of CMOS industry process param. evolution)
 - * CMOS technology expected to tolerate high ionising radiation doses (>> 10 MRad), in particular at < 0°C and short t_{integ}
 - * main a priori concern : NON-ionising radiation
 (in absence of thick depleted sensitive volume)
- Influence of pixel pitch :
 - * fig: all measts done with low resistivity epitaxial layer, but 1
 - \Rightarrow high density sensing diodes (\equiv small pitch) improves non-ionising radiation tolerance
- Influence of epitaxial layer resistivity :

st ex: 400 $\Omega \cdot cm$ & O(1)V depletion voltage

st trend : \gtrsim 1 $k\Omega \cdot cm$ & >> 10 V

 \Rightarrow tolerance to \gtrsim 10 $^{14-15}$ n $_{eq}$ /cm 2 not excluded

Sensor Integration in Ultra Light Devices

• "Useful" sensor thickness \lesssim 30 $\mu m \Rightarrow$ opens new possibilities w.r.t. thicker sensors

Dash coarse thickness of sensors (e.g. EUDET BT) is 50 μm

- **STAR-PXL ladder** (room temperature, single-end supported):
 - $\, \ast \,$ total material budget \simeq 0.37 % X_{0} :
 - $\circ~$ 50 μm thin sensors \simeq 0.05 % X $_0$
 - $\circ~$ flexible cable \simeq 0.07 % X_{0}
 - $\circ~$ mechanical support \simeq 0.2 % X_{0}
 - $\circ~$ adhesive, etc. \simeq 0.05 % X_{0}

- Double-sided ladders with \sim 0.2-0.3 % X $_0$:
 - ⇒ manifold bonus : compactness, alignment, redundancy, pointing accuracy (shallow angle), fake hit rejection, etc.

- Unsupported & flexible ladders with \lesssim 0.15 % X $_{
 m 0}$
 - ⇒ 30 μm thin CMOS sensors mounted on thin cable & embedded in thin polyimide \rightarrow suited to beam pipe ?

Applications in Subatomic Physics

- Beam telescopes :
 - * EUDET (FP-6 / 2006-2010) : 6 planes with $1 \times 2 \text{ cm}^2$ sensors
 - * AIDA (FP-7 / 2011-2015) : \geq 3 planes with 5×5 cm² sensors
- Vertex detectors :
 - * STAR-PXL at RHIC : 2 layers
 - * CBM-MVD at FAIR/GSI : 2-3 stations
 - * option for ALICE-ITS at LHC: Layer-0 + ...
 - * option for Vertex detector at SuperB fact. : L0 + ...
 - * option for ILD-VTX at ILC : 3 double-layers
- Trackers ("large pitch") :
 - * BES-III at BEPC
 - * in general : trackers surrounding vertex detectors
- EM calorimetres : SiW calorimetre

Perspectives: Fast 2D sensors

- Evolve towards feature size << 0.35 μm :
 - * μ circuits : smaller transistors, more Metal Layers, ...
- Benefits :
 - * faster read-out \Rightarrow improved time resolution
 - * higher μ circuit density \Rightarrow higher data reduction capability
 - * thinner gates, depletion \Rightarrow improved radiation tolerance
- On-going R&D (examples) :
 - * APSEL sensor (130nm) for SuperB & ILC Vx Det. :
 - \circ in-pixel pre-amp + shaping + discri. $\triangleright \triangleright \triangleright$
 - sensing through buried n-well
 - о shallow n-well hosting P-MOS T
 - * *LePIX* project (90 nm) for sLHC trackers :
 - large pixels connected individually to peripheral FEE (fast !)
 - o high-resistivity substrate, high depletion voltage
- Main limitations :
 - * VDSM technologies not optimised for analog μ circuits (low V !) \Rightarrow reliability
 - st conflict between speed (e.g. 10 ns) and granularity (e.g. 20imes20 μm^2 pixels)
 - \Rightarrow Natural trend : chip stacking

Using 3DIT to reach Ultimate CMOS Sensor Performances

- 3D Integration Technologies allow integrating high density signal processing μ circuits inside small pixels by stacking (\sim 10 μ m) thin tiers interconnected at pixel level
- 3DIT are expected to be particularly beneficial for CMOS sensors :
 - * combine different fab. processes \Rightarrow chose best one for each tier/functionnality
 - * alleviate constraints on peripheral circuitry and on transistor type inside pixel, etc.
- Split signal collection and processing functionnalities :
 - * Tier-1: charge sensing
 - * Tier-2: analog-mixed μ circuits
 - * Tier-3: digital μ circuits

Conventional MAPS 4 Pixel Layout

• The path to nominal exploitation of CMOS pixel potential :

* fully depleted 10-20 μm thick epitaxy $\Rightarrow \leq 5$ ns collection time, rad. hardness > Hybrid Pix. Sensors ??? * FEE with < 10 ns time resolution \rightarrow solution for CLIC & HL-LHC specifications ???

• 3DIC \equiv consortium coordinated by FermiLab has already produced 1st generation of chips

3D 4 Pixel Layout

SUMMARY

- CMOS sensor technology is becoming mature for high performance vertexing
 - * most relevant for specifications governed by granularity, material budget, power consumption, ...
 - * excellent performance record with beam telescopes (e.g. EUDET project)
 - st 1st vertex detector experience will be gained with STAR-PXL, starting data taking in \sim 2 years
 - * new generation of sensors under development for experiments > 2015 (including trackers & calo.)
- Technology full potential still far from being exploited (despite improvement due to high-resistivity epitaxial layer processes)
- Evolution of industry opens the door to 2 "natural" steps towards the "ultimate" performances of the technology :
 - st fast 2D sensors based on VDSM CMOS technologies may allow for \lesssim O(1) μs , >> 10 MRad
 - * 3D chips are expected to "exhaust" the technology potential, but there is a long way to go

 \Rightarrow may lead to fast & rad. hard devices suited to sLHC & CLIC

- Goal : establish a well defined correspondence between the measured sensor output voltages and the amplitude of the charge collected by each diode
- Mean: use radioactive sources emitting particles with adapted and well defined energy
- Ex: ⁵⁵Fe
 - st emits X-Rays with 5.9 keV (\sim 90%) or 6.49 keV (\sim 10%)
 - * X-Rays interact with Si atoms through photo-electric effect \Rightarrow the ejected p.e. carries ~ 100% of the X-Ray energy

(e⁻ binding energy ...)

- st the p.e. creates eh pairs at the expense of \sim 3.6 eV per pair
 - \Rightarrow 5900/3.6 \simeq 1640 eh pairs (6490/3.6 \simeq 1800 eh)
- Calibration with $^{55}\mathrm{Fe}\ \mathrm{X}\mathrm{-Rays}$
 - * a few % of X-Rays impinge sensor near sensing diode
 - \Rightarrow nearly all e⁻ created get collected by nearby sensing diode
 - * the charge distribution observed on the ADC scale exhibits 2 peaks

1 Pixel - Cluster Signal Distribution

