

HYBRID PIXEL DETECTORS STATUS AND FUTURE CHALLENGES

M. Campbell CERN Geneva, Switzerland 7-9 February 2010

Outline

- Why hybrid pixels?
- Hybrid pixel detectors at LHC
- The Medipix2 chip
- The Timepix chip
- Imaging with the Timepix chip
- Spectroscopic X-ray imaging with Medipix2
- Limitations of Medipix2/Timepix
- Medipix3
- Future challenges for HEP and other fields
- Conclusions and future work

Hybrid-Pixel Detectors

Why use hybrid pixels?

- Any CMOS commercial process can be used
- The detector can be optimised for application
 - Si, thin EPI or 3D Si
 - GaAs, CdTe for mammography etc..
- Sometimes no sensor is used
 - Gas gain grid for gas detector readout
 - Micro channel plate
- Optimal signal to noise at high rates essential for clean pattern recognition in complicated high energy physics events

Noise hit rate for a discriminator

In a large bandwidth system (such as an HEP experiment) noise and threshold variation must be kept very far from the threshold to produce clean event information.

-5-

Hybrid pixels @ LHC - ATLAS

ATLAS Pixel Detector ~ 100M channels Half-shell of pixel layer 2 (interior):

The Alice Silicon Pixel Detector

2 layer barrel 10M pixels Total surface: ~0.24m² Power consumption ~1.5kW Evaporative cooling C₄F₁₀ Room temperature Material budget per layer ~1% X₀

The Alice Silicon Pixel Detector

Pixel block diagram

The Alice Silicon Pixel Detectorfinal checks of top half

The Alice Silicon Pixel Detector final installation

The Alice Silicon Pixel Detector – Detector Commissioning

SPD Online Event Display - Cosmic Run Self-triggered (FastOr) coincidence of top outer and bottom outer layer

ALICE Silicon Pixel Detector – first collisions

Detector triggered by pixel FAST-OR >=One hit per layer

Photon detector @ LHCb

 Hybrid Photon Detectors (HPD) developed in collaboration with industry Principal partner: DEP-Photonis for encapsulation of pixel anode in tube

8192-channel pixel chip $8 \times OR \rightarrow 1024$ pixels (500 \times 500 μm square)

5× demagnification from electron optics -> 2.5 mm at photocathode, as required

Fully equipped plane

Slide courtesy of R. Forty, T. Gys, K. Wyllie

LHCb RICH2 installation

 RICH2 constructed on surface, including alignment of optical elements
 Delicate transport (~ 1 km/h) to the LHCb cavern, 100 m underground

Slide courtesy of R. Forty, T. Gys, K. Wyllie

LHCb RICH – First rings

RICH2 HPD Panels with Pixels and CK Rings

Slide courtesy of R. Forty, T. Gys, K. Wyllie

Hybrid Pixels in High Energy Physics -Summary

- Hybrid pixels offer simultaneously:
 - Practically noise free images
 - Fast 'shutter' times
 - On pixel event selection
- Hybrid pixels have been used as vertex tracking detectors
 - Extremely good pattern recognition performance
 - Modest material budget
- Hybrid pixels have been used as photon RICH detectors
 - Very high pattern recognition performance

- Chip designed in same CMOS technology as Alice and LHCb
- Pixel shape now square 55μm pitch
- Matrix of 256 x 256 pixels
- In-pixel counter with 'camera' logic
 - Externally applied shutter
 - Window discriminator
 - 14-bit counter with stop at 12000
- Very high flux capability
 - $\geq 3 \text{ GHits/cm}^2$
- Frame-based readout

Two Collaborations

Medipix2

INFN and University of Cagliari CEA-LIST Saclav CERN Genève **University of Erlangen ESRE** Grenoble **University of Freiburg University of Glasgow IFAF** Barcelona **Mid Sweden University MRC-LMB** Cambridge **INFN and University of Napoli NIKHEF Amsterdam INFN and University of Pisa FZU CAS Prague IEAP CTU Prague SSL UC Berkeley University of Houston**

Medipix3

AMOLF Amsterdam Universidad de los Andes, Bogota **University of Bonn, Germany University of Canterbury NZ CEA-LIST Saclay CERN** Geneva **DESY Hamburg Diamond Light Source University of Erlangen ESRF** Grenoble **University of Freiburg University of Glasgow ITER Cadarache ISS University of Karlsruhe** Leiden University **Mid Sweden University NIKHEF Amsterdam IEAP CTU Praque SSL Berkeley VTT Microsystems**

Medipix2 Pixel Cell Schematic

Charge sensitive preamplifier with individual leakage current compensation 2 discriminators with globally adjustable threshold

3-bit local fine tuning of the threshold per discriminator

1 test and1 mask bit

External shutter activates the counter

13-bit pseudo-random counter

Medipix2 Cell Layout

High resolution X-ray imaging using a micro-focus X-ray source(1)

High resolution X-ray imaging using a micro-focus X-ray source(2)

-25-

MAXIPIX : a high frame rate pixel detector for SR experiments

noiseless (photon-counting)
high temporal resolution (fast readout)
high spatial resolution (small pixels)

Based on MEDIPIX2* photon-counting readout chip

•1280 x 256 pixels (5 readout chips)
•Pixel size 55 x 55 μm²
•6-20 keV range (500 μm Si sensor)
•> 10⁵ counts/pixel/s
•low and high energy thresholds
•0.20 ms readout dead time
•300 Hz frame rate (full frame)
•1500 Hz frame rate (256x256 pixels)

Main applications :

inelastic scattering
time-resolved XPCS
time-resolved SAXS, GISAXS
surface diffraction and scattering

Slide courtesy of C. Ponchut

Real high rate images

Application required development of a new fast readout system (ESRF Grenoble)

1 kHz frame rate imaging could be achieved turning chopper wheel

Slide courtesy of C. Ponchut

Low Energy Electron Microscopy

Medipix2 Images images

Graphene flakes

I. Sikharulidze, J-P Abrahams and co-workers 'Medipix2 applied to low energy electron microscopy', Ultramicroscopy 110 (2009) 33 - 35

-28-

TT to industry- PANalytical

Timepix chip

- Conserve dimensions and readout philosophy of Medipix2 (same CMOS technology)
- Requested by EUDet gas detector community
 - Add running clock during DAQ to obtain arrival time information wrt end of shutter
 - Added Time-over-Threshold capability

Timepix Schematic

Medipix2 vs Timepix Layout

Mpix2MXR20 layout

Timepix with 3-GEM detector

DESY testbeam in November 2006 (A.Bamberger, U. Renz, M.Titov)

Twin grid on Timepix

Developed by H. Van Der Graaf and co-workers

-34-

Developing a TimePix-Based Dosimeter for Space Radiation

- The University of Houston Medipix Group is working with NASA to develop a TimePix-based dosimeter for Space Radiation Applications...
- Such a device must be able to detect and measure all of the components of the Space Radiation Environment, which includes Energetic Heavy lons...
- Data have been taken with Heavy Ion beams at the HIMAC Facility in Japan...

Penetrating Heavy Ion Charge and Velocity Discrimination with a TimePix-based Si Detector

L. Pinsky and co-workers, Univ. Houston, USA

Tracks of 85 degree incident Si at 800 MeV/nuc moving from left to right

-36-

K-edge imaging

Univ. Canterbury, NZ Mars bio-imaging Small animal CT

Iodine: Pulmonary circulation
Barium: Lung
Bone: normal structure
4 energy CT and PCA

Spectral enhancement

Butler, A., et al., *Processing of spectral X-ray data with principal components Analysis*, IWORID 2009, Prague

CERN@school

Simon Langton School, Canterbury, England

Performance of Medipix2/Timepix

- Single photon counting provides excellent noise free images
- Ideal in photon starved situations
- Spectroscopic X-ray imaging possible
- Many different application both foreseen and otherwise!
 - Electron microscopy (TEM and LEEM/PEEM)
 - Neutron imaging
 - Nuclear power plant decommissioning
 - Mass spectrometry
 - Adaptive optics
 - Dosimetry in space
 - Gas detectors
 - Teaching science

Medipix2 – charge sharing

Simulated Data

Si 300mm, 55mm pixel

10keV monochromatic photon beam

Charge diffusion produces "charge sharing" tail

Threshold variations produce noise in image

Medipix3 – charge summing concept

Medipix3 Cell Schematic

Medipix3 Cell Layout

- 1. Preamplifier
- 2. Shaper
- 3. Two discriminators with 4-bit threshold adjustment
- 4. Configuration bits
- **5. Arbitration logic for charge allocation**
- 6. Control logic
- 7. Configurable counter.

Medipix3 - regular pixel structure

Medipix3 – spectroscopic performance

Fluorescence photons from various elements

Spectra taken by summing all counts in the chip at different thresholds and then differentiating wrt energy

Suppression of charge sharing tale is evident

Pixel scan with microfocused beam

SPM and CSM

Sum of counts recorded in all neighboring pixels as a function of beam position in x and y X-ray: 15keV; Threshlold: 7.5 keV

CSM; 50% threshold; 15 keV X-rays; SUM Beamy position [µm] Beam x position [µm]

In CSM every photon is counted

Courtesy Eva Gimenez-Navarro

Imaging with Medipix3

X-ray tube at 40kV, 40mA

0.5% pixels masked in equalization algorithm (~320)

Flat field corrected

Unexpectedly high pixel-to-pixel mismatch degrades hit allocation logic in CSM Effect being studies by design team

Imaging with Medipix3

Image of a leaf with Fe⁵⁵ source 930 e⁻ minimum threshold in SPM Very long exposure time

Moore's law - transistor feature size

Moore's Law - components per chip

SIA Roadmap 1999

- More and more functionality can be packed into a pixel
- Transistor matching for a fixed area and therefore pixel-to-pixel matching improves
- The cost/unit area of Si is more-or-less constant
- However, prototyping costs are increasing
- Power management becomes an issue

Future Challenges

In HEP :

Reduce material budget for inner layers Tracking input to trigger Data driven architectures - LHCb VELO upgrade

X-rays and other particle imaging : Improve sensor material uniformity/availability

In General :

Reduce cost per unit area – bump bonding Improve yield – single 4-side buttable tiles - TSV

Future Challenges – edgeless sensors 1

 $\begin{array}{l} 150 \ \mu m \ Si \\ 50 \ \mu m \ edge \end{array}$

J. Kaliopuska, VTT, Finland

ENIG UBM on Test Vehicle Chips

- SEM pictures of ENIG UBM pads on test vehicle chips are presented below.
 - UBM diameter ~ 27 μ m, height 4 μ m
- Picture on the left, a single ENIG UBM pad.
- Picture on the right taken with Angle-Selected Backscattered (AsB) mode.
 - Heavy elements (Ni UBM pads) are shown as brighter colours

ENEPIG UBM Tests with Timepix Wafers

- Test vehicle wafers were used for gathering statistics from FC assemblies.
- Real CMOS wafers processed with ENEPIG was feasibility test.
- ENEPIG UBM was grown on Timepix wafers with two different pitches
 - 55 μm without photoresist mask
 - 110 μm with photoresist masking. Chips were electrically measured after EN process no degradation in electrical performance.
- Electrical testing is not completed yet. Flip chip test are still needed!

PacTech Movie

Solder Ball Placement Test

First solder ball placement test on a Timepix chips

TSV development with VTT, Finland

TSVs etched by VTT on dummy wafer with 100 μm pitch

TSV development IMEC

TSVs etched IMEC in context of RelaxD project

Example of stacked chips

Flat panel X-ray

- Relaxd
- To develop a 4-side buttable tile for flat panel X-ray detectors
- Partners: PANalytical, Canberrra, IMEC, Nikhef

Future Challenges – edgeless sensors 2

J. Visser et al, Nikhef

Future Challenges – edgeless sensors 2

-64-

Carbon nano-fiber (CNF)

- Smoltek has delivered the first CERN test vehicle chips with CNF's
- We are looking into a common project for developing ultra-high-density (ultra low mass) flip chip process with CNF's.
- CNF's were deposited at 400 °C (a relatively low-temperature process)
- Test samples were analyzed and process issues were identified
 - \rightarrow new process tests with improved cycle coming in early summer
- Smoltek will make offer for work on test vehicle and real devices.

CNF forests on CERN test

Conclusions and Future Work

- Hybrid pixel detectors were developed to answer specific 'imaging' needs in HEP experiments:
 - Provide clean fast 'images' at LHC
- The Medipix Consortia have broken new ground in terms of pixel size and sophistication
- The device has been applied to many varied imaging applications
- Future challenges include:
 - Reduced material in HEP (sensor thickness, ASIC threshold
 - Reducing cost of bump bonding covering
 - Improving yield with 4 side buttable tiles
 - 3D stacking?large