
Characterization of the MCP-PMT

The aim of the exercise is to study the timing properties of the MCP-PMT and to observe effects of photoelectron backscattering and charge sharing.

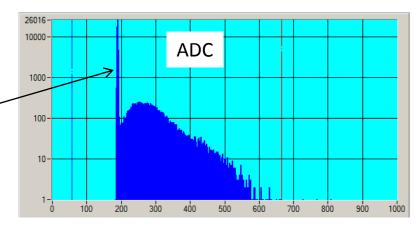
- First check the connections in the set-up
- Apply the height voltage (-2400V) and setup the oscilloscope to observe the PiLas trigger signal and signals from two lower channels of the MCP-PMT.
 Adjust the light intensity to single photon level.
- Set-up the charge and delay measurement (leading edge and constant fraction) on one of the MCP-PMT signals with respect to the PiLas trigger signal.
- Estimate the gain and single photon timing resolution.
- From the measured timing distribution determine the distance between the photocathode and MCP entrance surface.
- Observe the signals when you move from one channel to the other
- Measure the timing distribution for multiphoton pulses

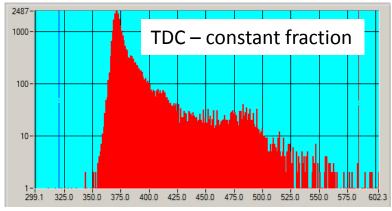
Set-up for MCP-PMT study:

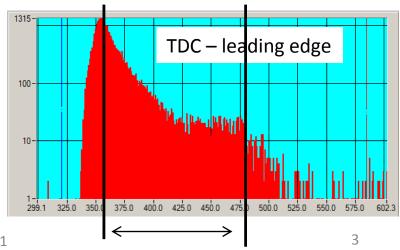
- MCP-PMT, Photonis(BURLE) 10 um, 4 channel prototype
- HV power supply CAEN
- Amplifier ORTEC FTA820A: gain 200, bandwidth 350MHz, neg./neg.
- LeCroy WawePro 7300A oscilloscope
- PiLas laser with 630 nm laser head
- 2D stage with focusing element

Single photon level – large fraction of single photoelectron signals

$$P(N) = \frac{\overline{N}^{N}}{N!} e^{-\overline{N}}$$
 Number of photoelectrons follows Poisson distribution


$$P(0) = e^{-\overline{N}}$$
 Fraction of pedestal events


Fraction of single photoelectron signals


$$\eta = \frac{P(1)}{1 - P(0)} = \frac{-\ln P(0) \bullet P(0)}{1 - P(0)}$$

P(0)	η
0.5	0.7
0.8	0.9
0.9	0.95

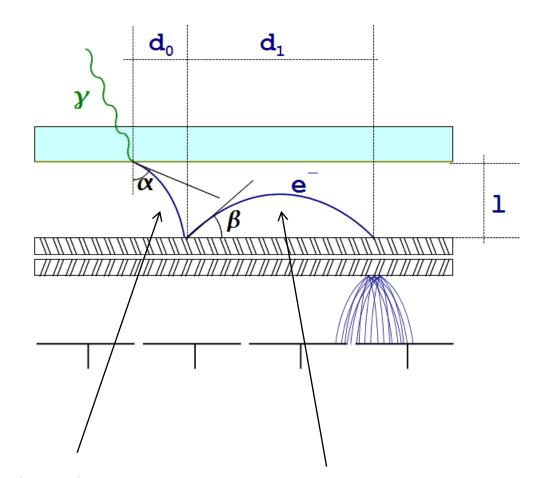
Maximal travel time of a backscattered photoelectron can be estimated from the timing distribution of single photoelectron signals.

Samo Korpar, EDIT 2011

Travel time and range of photoelectron

$$t_0 \approx \sqrt{\frac{2m_e l^2}{Ue_0}}$$

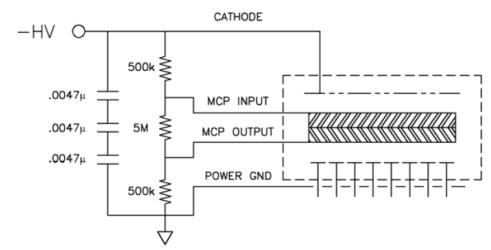
$$d_0 \approx 2l \sqrt{\frac{E_0}{Ue_0}} \sin(\alpha)$$


Delay and range of backscattered photoelectrons

$$t_1 \approx 2t_0 \sin(\beta)$$
 $d_1 \approx 2l \sin(2\beta)$

Parameters used:

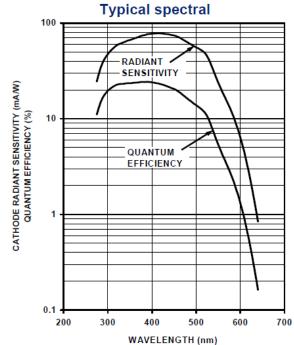
U = 200 V
I = 6 mm


$$E_0 = 1 \text{ eV}$$

 $m_e = 511 \text{ keV/c}^2$
 $e_0 = 1.6 \cdot 10^{-19} \text{ As}$

Photoelectron: $d_{0,max} \sim 0.8 \text{ mm}$ $t_0 \sim 1.4 \text{ ns}$ $\Delta t_0 \sim 100 \text{ ps}$ Backscattering: $d_{1,max} \sim 12 \text{ mm}$ $t_{1,max} \sim 2.8 \text{ ns}$

MCP-PMT characteristics:



GENERAL

Parameter		Value	Unit
Spectral Response		185 to 660	nm
Wavelength of Maximum Response		400	nm
Photocathode Material		Bialkali	
Window	Material	UV Grade Fused Silica	
	Thickness	2.0	mm
Multiplier	Structure	MCP (10 μm pore, 40:1 L:D)	
	Number of Stages	2	
Anodes	Number	4 (2×2)	
	Size / Pitch	24.4 / 25.4	mm
Voltage Divider Resis	tance	6	ΜΩ

Maximum Ratings (Absolute Maximum Values)

Parameter	Value	Unit
Supply Voltage	-2400	VDC
Average Anode Current, sum of all anodes	3	μΑ
Ambient Temperature	- 15 to + 50	С

