

Tape Discussion CERN 24/1/2023

Shigeki Misawa US ATLAS Tier 1/SDCC

January 24, 2023

@BrookhavenLab

Tape Discussion CERN 24/1/2023

Shigeki Misawa
US ATLAS Tier 1/SDCC

Purpose for Meeting

- Share information on tape system optimization techniques used at different sites with tape
- Stimulate discussion on potential techniques that may improve utilization of tape systems
- Enumerate the prerequisites for implementing each optimization technique (site dependent)
- Develop a formal proposal to find and evaluate new optimization techniques

Tape/Tape System Limitations

- Quantized access bandwidth
 - ~400 MB/sec per tape drive
 - ~400 MB/sec per tape
- Small single tape access bandwidth to capacity ratio
 - ~14 hours to read/write tape from end to end
- Sequential access media
 - Non trivial tape head seek time measured in seconds to tens of seconds
- Serpentine media
 - Logically close on tape may not translate to physically close on media
- Long tape cartridge mount/initial seek/dismount time
 - 1 to 2 minutes
- Limited storage stack data buffering capacity

Detailed discussion of these limitations are in presentations made at multiple venues.

Simple Tape Ingest Service

- Ingested files treated as independent, opaque blobs
- FIFO algorithm used to send files to tape
- Write tape from end to end in one pass
- Multiple tapes written in parallel to achieve aggregate bandwidth requirements
- Mechanism for writing data to multiple tapes at the discretion of the tape system. Possibilities include
 - Stripe a file over multiple tapes
 - One tape per file
- On tape format of data depends on tape system capabilities and configuration

Simple File Staging Service

- Data consumers are oblivious to how data is stored on tape
- Requests for files from data consumers treated as uncorrelated
 - A consequence of a simplistic FIFO file staging system
- Without further information, correlation among file requests must be inferred from the stream of file requests
- Ability to correlate file requests dependent the local storage stack

Writes are significantly easier to optimize compared to reads.

Optimizing the Tape System

- Efficient use of tape resources is necessary for the success of ATLAS
- Increased ATLAS demand for data on tape makes optimization more important than ever.
- Optimization requires the participation of multiple parties
 - ATLAS Provide information about data and change behavior (if possible)
 - "Middleware" providers Alter "middleware " to enable optimization
 - Facilities Identify and enumerate optimization opportunities and implement optimizations
- Coordination between tape facilities needed to maintain clear communication with ATLAS and the middleware teams

No "Lingua Franca"

- Communication among tape sites requires a base set of shared concepts
 - Tier 1 tape drives sits at the "bottom" of a complex storage stack
 - Tape drives are typical front-end by one <u>or more</u> disk layers
 - Different sites use different software in the storage stack
 - Software differ in capabilities and limitations.
 - Even if software is the same, version and configuration differences can result in dramatically different system capabilities and limitations
- Discussion can rapidly devolve into conversations that require a detailed understanding of the tape system(s) involved
- First focus on the optimization, then how it can be achieved.

- For a given tape system, a specific optimization technique may or may not improve system performance
- Some optimizations may already be in place at some sites
- Implementing an optimization may require changes by ATLAS, middleware or site storage stacks
 - o All necessary modifications may not be possible in all cases or at all sites
 - Modifications at each level may differ by site for the same optimization
- Not all optimizations may be viable, allowable or improve performance
- Optimization to improve one aspect of system performance may degrade other aspects of system performance

Example: Write fewer but bigger files

- Goals :
 - Improve read performance by reducing tape head seeks
 - Improve write performance by reducing "cost" of writing tape marks
- Requires changes by ATLAS that may not be viable for all classes of data
- No effects with certain types of tape systems
 - Those that utilize buffered tape marks
 - Those that support and are configured for small file aggregation
 - Those that don't utilize files as a unit of data storage
- Characteristics of optimization may change over time
 - Criteria for "bigger" changes as tape drives get faster

Optimization requires information

- ATLAS file requests are mostly by dataset
 - But only files not found on disk are requested from tape
- Snapshot of distribution of dataset sizes are known
- Time to receive all files in a dataset at a tape site varies
 - Time window distributions are known with some granularity
- Rucio contains detailed information on all files in a dataset that a tape site may receive
 - e.g. # files, file sizes, file names
 - All datasets are closed before any files they contain are transferred to a tape site [1]

Optimizing Reads vs Writes

- End to end writing of data to tapes with a FIFO algorithm using multiple tape drives is optimal
- Techniques used to optimize reads need to minimize their impact on writes
- Optimizing reads require information about read patterns
- Read performance is dependent on how data is written in addition to how data is read
 - Write data as it will be read back, read data as it was written

Possibilities

- Enumeration of some possible optimization techniques
 - Some may be in use by sites
 - Efficacy of some methods open to debate
 - Other techniques are likely to be found
- Investigations to find other optimizations
 - ATLAS data generators/consumers may be a source
 - ATLAS data management system may also be a source
 - Analysis of site storage stacks including tape systems are another source
 - Analysis of data itself is another source

- Sort file requests by tape
 - Minimizes tape mounts
 - Chances for optimization increases with # queued stage requests
 - Storage system must be able to handle volume of queued requests
 - Access latency increases with queue depth. Upstream ramifications?
 - Long tails may be a problem
 - Any time ordering of requests will be scrambled
- Sort request for files on a tape by tape order
 - Minimizes distance tape head move to read all requested data
 - Require RAO/oRAO capable drives or similar mechanisms

- Write files in dataset contiguously on tape
 - Reduces tape head seeks when reading back dataset
 - Must be able to identify files in a dataset
 - Must be accompanied by file read requests by physical or logical tape order
- Write files in dataset to as few tapes as possible
 - Reduces tape mounts when reading
 - Increases amount of data read per tape mount
 - Potentially reduces demand for tape drives
 - But max read and write bandwidth is limited by # tapes used
 - May need to articulate access bandwidth requirements

- Write dataset to tape only after all files in dataset have been received
 - Reduces tape mounts when reading
 - Requires sufficient staging space to hold all "inflight" datasets
 - May not be possible for all datasets
- Prefetch all files in dataset
 - Assumes access is by full dataset
 - Effects on disk staging area unclear

- Effectiveness of data placement techniques
 - Use simulations of writing into storage system to determine following:
 - Effectiveness of different data placement strategies on achieving desired layout
 - Determine impact on overall write throughput to tape
 - Determine impact on system requirements
 - Impact on disk buffer capacity/performance
 - Impact on effective write throughput to tape
 - "Re-play" write logs into storage system since the start of Run 3 to get an accurate simulation of the ingest environment. (Utilization of trace log replay techniques used by file system developers to analyze performance of files systems)

- Estimate impact of data placement on reads
 - Assume data is laid out on tape as desired
 - Or use results of write placement simulation
 - Use simulations of reading from storage system to determine if "optimal" data placement has the desired impact
 - "Re-play" read logs into storage system since the start of Run 3 to get an accurate simulation of the read environment
- Use above read and write simulations to gauge impact of ATLAS changing dataset write profiles (e.g., measure effects on reducing transfer window length)

- Use historical file staging logs to analyze impact of full dataset prefetching
 - Determine ratio of "hits" vs "misses"
 - Probe effectiveness of different prefetch decision algorithms
 - Investigate impact on cache to hold prefetched files
- Investigate segregation of classes of datasets onto separate media
 - e.g. Put main stream RAW data onto a dedicated set of tape cartridges
 - Examine ramifications of fine grained segregation

- More detailed/continuous dataset characteristic analysis
 - Transfer window distributions (by "class" and over time)
 - File size distributions within datasets (by "class" and over time)
 - Dataset size distributions (by "class" and over time)
 - Verify datasets are really "closed" or if they might get "reopened"
- Dataset correlation analysis
 - Examine dataset request logs to determine if groups of datasets ("retrieval group") are retrieved together
 - Determine if datasets in a retrieval group can be co-located on tape(s) and if there is a benefit of co-location

- Dataset segregation
 - Investigate segregation of classes of dataset onto dedicated media
 - Identify candidate classes of data (e.g. main stream RAW data)
 - Determine impact of class granularity on both read and write performance

0

Summary

- Several optimization techniques are known
 - More are likely to be discovered
- Additional information about the environment and the data are needed to configure possible optimizations and to discover more
- Information sharing and coordination of investigations among sites can help reduce the effort needed to identify, develop, and deploy new optimizations
- Once useful optimizations identified coordination with ATLAS and middleware developers is needed to make it possible to implement the optimizations

