Central Limit Theorems, Large Deviations and the Renormalization Group

Adam Rançon

Laboratoire PhLAM – Université de Lille

ERG 2024 23/09/2024

with Ivan Balog, Bertrand Delamotte, Félix Rose and Sankarshan Sahu

I. Balog, AR, B. Delamotte, PRL 129, 210602 (2022) I. Balog, B. Delamotte, AR, arXiv:2409.01250 , arXiv:??????? S. Sahu, B. Delamotte, AR, arXiv:2407.12603 F. Rose, I. Balog, AR, arXiv????????

Université

Introduction

Statistics/probability needed for complex systems (many degrees of freedom, correlations, etc.)

Ex: biology, demographics, engineering, finance, statistical physics, ...

When d.o.f independent or weak correlations: Central Limit Theorem (CLT) and generalization (Levy distribution)

Central Limit Theorem

Take N random i.i.d variables $\hat{s}_i = \pm 1$ (coin flips, spins, Brownian motion, Ising at T= ∞)

Distribution of the sum for large N, $\hat{S} = \sum_{i} \hat{s}_{i}$

Law of large number

Central Limit Theorem (CLT)

CLT from RG (block spins)

For independent variables

 $i \in I$

CLT from RG (block spins)

For independent variables

For independent variables

RG and CLT

Koralov & Sinai, "Theory of Probability and Random Processes"

- Gaussian distribution is the fixed point of a "coarse-graining" transformation

- Gaussian FP has: 2 relevant perturbations (normalisation and mean)
 1 marignal perturbation (variance aka normalisation of variable)
 ∞-many irrelevant perturbations

- Eigenperturbations are hermite functions
- Very large bassin of attraction (all finite variance probabilities)

What about rare events ?

Large deviations = rare events beyond the CLT

Rate function

Large Deviation Principle (LDP)
$$P_N(\hat{S} = Ns) \simeq \sqrt{\frac{NI''(s)}{2\pi}} \exp(-NI(s))$$

Recovering the CLT from the LDP
$$P(\hat{S} = \sqrt{N}\tilde{s}) \simeq \frac{e^{-I''(0)\tilde{s}^2/2}}{\sqrt{2\pi/I''(0)}}$$
 for $\tilde{s} = O(N^0)$

Universal (gaussian) law with one non-universal amplitude

"Finite size corrections"

$$P(\hat{S} = \sqrt{N}\tilde{s}) \simeq \frac{e^{-I''(0)\tilde{s}^2/2}}{\sqrt{2\pi I''(0)}} e^{\frac{\tilde{s}^3}{\sqrt{N}}\lambda(\tilde{s}/\sqrt{N})} \qquad \tilde{s} = o(\sqrt{N})$$

Carmer's series
$$\lambda(z) = \sum_{k=0}^{\infty} a_k z^k$$

Universal power of system size

Rate function and Legendre transform (Cramer's theorem)

Effective potential
$$U(m) = \sup_{h \in \mathbb{R}} (hm - w(h))$$

Always convex

$$I(s) = U(m = s)$$

Valid in regions where rate function convex !

Generalization of CLT, LDP and Cramer's series

from

(Functional) Renormalization Group

NB: connection between RG and CLT undertood already in the 70's (Jona-Lasino)

Correlations: $\langle s_i s_j \rangle = G(|i-j|)$

Weak correlations: $\langle \tilde{s}^2
angle \propto N^0$ Similar to i.i.d.'s: standard CLT

Strong correlations:
$$\lim_{N \to \infty} \langle \tilde{s}^2 \rangle = \infty$$

Example: Second order phase transitions

Standard model of statistical physics: Ising model

 $P(\{s_i\}) \propto e^{-H/T}$

Energy of configuration: $H = -J \sum_{\langle i,j \rangle} s_i s_j$ Number of spins: $N = L^d$

$$\tilde{s} = \frac{1}{\sqrt{N}} \sum_{i} s_i$$

Basics of the Ising model

Phase transition from paramagnet at high T ($\langle s_i \rangle = 0$) to a ferromagnet at low T ($\langle s_i \rangle \neq 0$)

High temperature (T>>T_c): finite correlation length $\langle s_i s_j \rangle \propto e^{-|i-j|/\xi}$

Close to T_c, many emergent phenomena:

- scale invariance at $T_c \quad \langle s_i s_j \rangle \propto rac{1}{|i-j|^{d-2+\eta}}$

- scaling $\xi \propto |T_c - T|^{-\nu}$ $\langle s_i \rangle \propto (T_c - T)^{\beta}$ $\qquad \qquad \frac{\beta}{\nu} = \frac{d - 2 + \eta}{2}$

- universality (e.g. liquid-gas critical point, many ferromagnets)

- conformal invariance, fractal dimension of domains,...

Distribution of the magnetization

High temperature phase: many independent blocks Weak correlations and gaussian distribution $\langle \tilde{s}^2 \rangle \propto \chi$

Exactly at T_c: $\langle \tilde{s}^2 \rangle \propto L^{2-\eta}$ Strong correlations and non-Gaussian distribution $\langle s^2 \rangle \propto L^{-(d-2+\eta)} = L^{-2\beta/\nu}$

Stable law for strongly correlated variables

$$P_L(s) \sim e^{-L^d I(s)} = e^{-\tilde{I}(sL^{\beta/\nu})}$$

standard CLT $\ P_N(s) \sim e^{-rac{s^2}{2s^2}}$

 $s = \frac{1}{N} \sum_{i} s_i$

Understanding the scaling of typical magnetization fluctuations

$$\langle s^2 \rangle \propto L^{-(d-2+\eta)} = L^{-2\beta/\nu}$$

Number of "truly correlated" spins with a spin at position *i*: $N_{cor} \sim \sum_j \langle s_i s_j \rangle \sim L^{2-\eta}$

Assume that these correlated spins behave as a block-spin $S_I = \sum_{i \in I} s_i$

Number of block spins
$$N_{BS} \sim \frac{L^d}{N_{cor}} \sim L^{d-2+\eta}$$

Total magnetization
$$S = \frac{1}{L^d} \sum_i s_i = \frac{1}{N_{BS}} \sum_I S_I$$

is thus expected to have fluctuations of order $\frac{1}{\sqrt{N_{BS}}} = L^{-\beta/\nu}$

Understanding the scaling of typical magnetization fluctuations

Block-spins are not independent, or we would recover the standard CLT

We can't glue systems of size L/2 to get a system of size L because of long-range correlations

Can we still compute the stable law?

Renormalization group and CLT (bis)

Blocking procedure, again

At criticality, $\, H_n
ightarrow H_* \,$ fixed point Hamiltonian for block-spin variables

Remark: explicit rigorous calculations of non-trivial critical PDF for hierarchical model (Sinai, Bleher, etc '70s and '80s)

Generalized CLT from blocking?

Expectation $P_* \propto e^{-H_*}$ computed at 1-loop Bruce '81, Domb and Chen '96, Rudnik et al. '98, Sahu et al. '24

Problems: - H_* depends on blocking procedure (RG scheme)

- family of probability depending on $\,\zeta=L/\xi\,$, $\ \ L,\xi\to\infty$

Functional RG

Functional for the rate function

Define a "flowing" probability distribution and rate function

$$P_k(\boldsymbol{S}) = \exp(-L^d I_k(\boldsymbol{S})) = \int D\varphi \,\delta\left(\boldsymbol{S} - L^{-d} \int_x \varphi\right) \exp(-H(\varphi) - 1/2\varphi \cdot R_k \cdot \varphi)$$

Problem: flow of the rate function is not closed

Define a (scale-dependent) "constraint effective action"

$$\exp(-\hat{\Gamma}_{k}[\phi]) = \int D\varphi \exp\left(-H(\varphi) - 1/2(\phi - \varphi).\hat{R}_{k}.(\phi - \varphi) + \frac{\delta\hat{\Gamma}_{k}}{\delta\phi}.(\varphi - \phi)\right)$$

with $\hat{R}_{k}(q) = \begin{cases} \infty, & \text{if } q = 0, \\ R_{k}(q), & \text{if } q > 0. \end{cases}$

Flow equation of $\hat{\Gamma}_k[\phi]$ closed and $I_k(\mathbf{S}) = \hat{\Gamma}_k[\phi = \mathbf{S}]$

see Felix Rose's talk at 3:30, Parallel session B

Balog et al '22

Simple approximation: "Local Potential Approximation"

Error bar estimated following Balog et al '19 & De Polsi et al '20

Rose et al '24

Shape of rate function at LPA correct
 for all ζ up to global constant
 (true also at 1-loop Sahu et al '24)

Balog et al '22

Tail of distribution given by tail of rate function $\,I(s)\sim U(m=s)\sim s^{\delta+1}$

$$P_N(\hat{S} = Ns) \simeq \sqrt{\frac{NI''(s)}{2\pi}} \exp(-NI(s))$$
 $P_L(s) \sim s^{\frac{\delta-1}{2}} e^{-L^d a s^{\delta+1}}$

Fisher '66, Tsypin '94, Bruce '95

Universal Large Deviations in the regime
$$L^{-\beta/\nu} \ll s \ll 1$$

Can be generalized to
$$O(n)$$
 model $P_L(\mathbf{s}) \sim |\mathbf{s}|^\psi e^{-L^d a \, |\mathbf{s}|^{\delta+1}} \qquad \psi = n \frac{\delta-1}{2}$

Power law prefactor observed: MC Ising 3D, hierarchical model, large n, FRG LPA (n=1,2,3)

Balog et al '24

For $s \sim 1$, proba has to be non-universal: transition from universal to non-universal rare events?

Correction to scaling induced by finite size (established explicitely in large n)

$$I(s) = L^{-d}\tilde{I}\left(sL^{\beta/\nu}\right) + \sum_{k} a_{k}L^{-d-\omega_{k}}\delta\tilde{I}_{k}\left(sL^{\beta/\nu}\right)$$

$$\underset{\text{amplitudes}}{\text{non-universal}} universal$$

$$\underset{\text{(irrelevant)}}{\text{universal}}$$

Finite-size corrections-to-scaling generalizes Cramer's series!

Perspectives: low-temperature phase, effects of domain walls, instantons, etc (cf Ivan Balog's talk at 3:00, parallel session B)

Template

Universality of critical PDF: rate function

Choose $T(L)
ightarrow T_c$, such that $\zeta = L/\xi(T(L))$ is constant.

Direct connection between the probability distribution and RG fixed point quantities we compute?

$$H(\varphi) = \int d^d x \left((\nabla \varphi)^2 + r \varphi^2 + g \varphi^4 \right)$$

Wilson's RG
$$H^*(\varphi) = \int d^d x \left((\nabla \varphi)^2 + r^* \varphi^2 + g^* \varphi^4 + \cdots \right)$$

Fixed point coupling constants

Link between Wilson's RG and probability distribution: Bruce '81, Domb and Chen '96, Rudnik et al. '98,...

$$P(s) \propto e^{-H^*(s)}$$
 ???

Based on perturbative RG, inclusion of finite size ad hoc... and fixed point couplings are scheme dependent!?!

Comparison fixed point vs rate function

