Indications for particle physics from asymptotic safety

Kamila Kowalska

National Centre for Nuclear Research (NCBJ) Warsaw, Poland

in collaboration with E. M. Sessolo and A. Chikkaballi, S. Pramanick, D. Rizzo, Y. Yamamoto

Mainly based on: Eur.Phys.J.C 81 (2021) 4, 272 (arXiv: 2007.03567) JHEP 08 (2022) 262 (arXiv: 2204.00866) JHEP 11 (2023) 224 (arXiv: 2308.06114)

12th International Conference on the Exact Renormalization Group

Les Diablerets, 23.09.2024

Outline

- Why do we need asymptotic safety in particle physics?
- Trans-Planckian asymptotic safety
- Predictions for BSM from trans-Planckian AS
- Small neutrino masses from trans-Planckian AS
- Conclusions

Where do we stand?

All particles discovered

1983: W and Z bosons (CERN) 1995: top quark (Fermilab) 2000: tau neutrino (Fermilab) 2012: Higgs boson (CERN)

Predictions perfectly agree with experiment

ex. electron magnetic dipole moment 1 part per 100 billion

An extremelly successful theory

Where do we stand?

Standard Model is an effective theory

Empirical puzzles Theoretical riddles

Where do we stand?

Standard Model is an effective theory

Empirical puzzles Theoretical riddles

Credit: Alison Mackey/Discover

Which New Physics?

adds extra IR d.o.f to explain observational phenomena

- (low-scale) supersymmetry
- vector-like fermions
- extra scalars
- axions
- long-lived particles
- feebly interacting particles
- any many others ...

BSM Physics UV completion

switches from an effective to a full theory

no Landau poles, renormalizable

 10^{37}

 10^{30}

Asymptotic safety

Known candidates in 4D:

- Gauge-Yukawa (Litim-Sannino) models (Litim, Sannino, JHEP 1412 (2014) 178)
	- Planck safety (Hiller, Hormigos-Feliu, Litim, Steudtner, '19,'20)
- quantum gravity **this talk** also talk by N.Ohta

talks by T.Steudtner, D.Rizzo, G. Costa, A.Mukhaeva

talk by G.Hiller

Bonus feature - predictivity

Asymptotic safety in quantum gravity

M. Reuter, PRD 57, 971 (1998)

Prototype example: **Einstein-Hilbert gravity**

$$
S_{\rm EH}[\tilde{g}_{\mu\nu}] = \frac{1}{16\pi G_N} \int d^4x \sqrt{\tilde{g}} (2\Lambda - R)
$$

Dimensionless couplings:

$$
g = G_N k^2 \qquad \lambda = \Lambda k^{-2}
$$

From the FRG (Wetterich equation):

$$
k\partial_k g = [2 + \eta_g(g, \lambda)] g
$$

$$
k\partial_k \lambda = -2\lambda + g\eta_\lambda(g, \lambda)
$$

 $\lambda^* = 0$ Gaussian: $q^* = 0$ Interactive: $q^* \neq 0$ $\lambda^* \neq 0$

FP persists when adding new interactions

[Litim '04, Codello, Percacci, Rahmede '06, Benedetti, Machado, Saueressig '09, Narain, Percacci '09, Manrique, Rechenberger, Saueressig '11, Falls, Litim, Nikolakopoulos '13, Dona', Eichhorn, Percacci '13, Daum, Harst, Reuter '09, Folkerst, Litim, Pawlowski '11, Harst, Reuter '11, Christiansen, Eichhorn '17, Eichhorn, Versteegen '17, Zanusso *et al.* '09, Oda, Yamada '15, Eichhorn, Held, Pawlowski '16, Pawlowski *et al.* '18 … many more]

Trans-Planckian fixed point

M. Reuter, F. Saueressig , PRD 65, 065016 (2002)

Critical surface has finite dimension

[Denz, Pawlowski, Reichert '16, Falls, Ohta, Percacci '20, Kluth. Litim '20, Knorr '21]

Asymptotic safety in QG with matter

[Robinson, Wilczek '06, Pietrykowski '07, Toms '08, Rodigast, Schuster '09, Zanusso et al. '09, Daum, Harst, Reuter '09, Folkerst, Litim, Pawlowski '11, Harst, Reuter '11, Christiansen, Eichhorn '17, Eichhorn, Versteegen '17, Zanusso *et al.* '09, Oda, Yamada '15, Eichhorn, Held, Pawlowski '16,Wetterich, Yamada '16, Hamada, Yamada '17, Pawlowski et al. '18, Eichhorn, Versteegen '17, Eichhorn, Held '17-'18 …]

Trans-Planckian corrections of matter RGEs $k > M_{\text{Pl}}$ (functional renormalization group)

Wetterich, Reuter, Saueressig, Percacci, Litim, Pawlowski, Eichhorn ...

$$
\frac{dg_Y}{dt} = \frac{g_Y^3}{16\pi^2} \frac{41}{6} - f_g \, \text{gy}
$$
\n
$$
\frac{dg_2}{dt} = -\frac{g_2^3}{16\pi^2} \frac{19}{6} - f_g \, \text{gz}
$$
\n
$$
\frac{dg_3}{dt} = -\frac{g_3^3}{16\pi^2} \, 7 - f_g \, \text{gz}
$$

universal corrections depend on gravity fixed points

$$
f_g = \tilde{G}^* \frac{1 - 4\tilde{\Lambda}^*}{4\pi \left(1 - 2\tilde{\Lambda}^*\right)^2}, \qquad f_y = -\tilde{G}^* \frac{96 + \tilde{\Lambda}^* \left(-235 + 103\tilde{\Lambda}^* + 56\tilde{\Lambda}^{*2}\right)}{12\pi \left(3 - 10\tilde{\Lambda}^* + 8\tilde{\Lambda}^{*2}\right)^2}
$$

e.g. A. Eichhorn, A. Held, 1707.01107 *A. Eichhorn, F. Versteegen,* 1709.07252

SM Yukawa couplings

SM gauge couplings

 Ω

$$
\frac{dy_t}{dt} = \frac{y_t}{16\pi^2} \left(\frac{9}{2} y_t^2 + \frac{3}{2} y_b^2 + 3y_s^2 + 3y_c^2 - \frac{9}{4} g_2^2 - 8g_3^2 - \frac{17}{12} g_Y^2 + y_e^2 + y_\mu^2 + y_\tau^2 \right) - f_y y_t
$$

$$
\frac{dy_b}{dt} = \frac{y_b}{16\pi^2} \left(\frac{9}{2} y_b^2 + \frac{3}{2} y_t^2 + 3y_s^2 + 3y_c^2 - \frac{9}{4} g_2^2 - 8g_3^2 - \frac{5}{12} g_Y^2 + y_e^2 + y_\mu^2 + y_\tau^2 \right) - f_y y_b
$$

... same for other quarks and leptons

Asymptotic safety in QG with matter

[Robinson, Wilczek '06, Pietrykowski '07, Toms '08, Rodigast, Schuster '09, Zanusso et al. '09, Daum, Harst, Reuter '09, Folkerst, Litim, Pawlowski '11, Harst, Reuter '11, Christiansen, Eichhorn '17, Eichhorn, Versteegen '17, Zanusso *et al.* '09, Oda, Yamada '15, Eichhorn, Held, Pawlowski '16,Wetterich, Yamada '16, Hamada, Yamada '17, Pawlowski et al. '18, Eichhorn, Versteegen '17, Eichhorn, Held '17-'18 …]

Trans-Planckian corrections of matter RGEs $k > M_{\text{Pl}}$ (functional renormalization group)

SM gauge couplings

$$
\frac{dg_Y}{dt} = \frac{g_Y^3}{16\pi^2} \frac{41}{6} - f_g gY = 0
$$

$$
\frac{dg_2}{dt} = -\frac{g_2^3}{16\pi^2} \frac{19}{6} - f_g gZ = 0
$$

$$
\frac{dg_3}{dt} = -\frac{g_3^3}{16\pi^2} 7 - f_g g3 = 0
$$

Wetterich, Reuter, Saueressig, Percacci, Litim, Pawlowski, Eichhorn ...

universal corrections depend on gravity fixed points

get fixed points for matter

$$
= \tilde{G}^* \frac{1 - 4\tilde{\Lambda}^*}{4\pi \left(1 - 2\tilde{\Lambda}^*\right)^2}, \qquad f_y = -\tilde{G}^* \frac{96 + \tilde{\Lambda}^* \left(-235 + 103\tilde{\Lambda}^* + 56\tilde{\Lambda}^{*2}\right)}{12\pi \left(3 - 10\tilde{\Lambda}^* + 8\tilde{\Lambda}^{*2}\right)^2}
$$

e.g. A. Eichhorn, A. Held, 1707.01107 *A. Eichhorn, F. Versteegen,* 1709.07252

SM Yukawa couplings

$$
\frac{dy_t}{dt} = \frac{y_t}{16\pi^2} \left(\frac{9}{2} y_t^2 + \frac{3}{2} y_b^2 + 3y_s^2 + 3y_c^2 - \frac{9}{4} g_2^2 - 8g_3^2 - \frac{17}{12} g_Y^2 + y_e^2 + y_\mu^2 + y_\tau^2 \right) - f_y y_t = 0
$$

$$
\frac{dy_b}{dt} = \frac{y_b}{16\pi^2} \left(\frac{9}{2} y_b^2 + \frac{3}{2} y_t^2 + 3y_s^2 + 3y_c^2 - \frac{9}{4} g_2^2 - 8g_3^2 - \frac{5}{12} g_Y^2 + y_e^2 + y_\mu^2 + y_\tau^2 \right) - f_y y_b = 0
$$

 f_a

... same for other quarks and leptons

Predictions – heuristic approach

Predictions – heuristic approach

Postdictions for the SM

Top/bottom mass splitting

A. Eichhorn, A. Held (Phys.Rev.Lett. 121 (2018) 15)

… *irrelevant* fixed points for top and bottom Yukawas feature a nice relation ...

 $y_t^{*2} - y_b^{*2} = \frac{1}{3} g_Y^{*2}$

… IR values can be matched to the SM if ...

$$
f_g = 9.7 \times 10^{-3}
$$
 $f_y \approx 1.2 \times 10^{-4}$

to be verified with the FRG (but not far off the existing caluclations)

The full hadronic sector (masses and mixings)

R. Alkofer, A. Eichhorn, A. Held, C. M. Nieto, R. Percacci (Annals Phys. 421 (2020) 168282)

- *Irrelevant* directions of the CKM matrix do not match the IR values
- Most predictive solution overshoots the top mass by 10% (because relevant Gaussian CKM matrix elements alter the top/bottom relation $y_t^*{}^2 - y_b^2 = 2/3g_Y^*{}^2$)
- $f_q = 9.7 \times 10^{-3}$ $f_y > -2.2 \times 10^{-4}$ • Asymptotically free Yukawa couplings are favored

Asymptotically safe SM

First self-consistent FRG approach

A. Pastor-Gutiérrez, J. M. Pawlowski, M. Reichert (SciPost Phys. 15 (2023) 3, 105)

all SM couplings are asymptotically free

Predictions for BSM

no precise prediction for the BSM mass

Example: leptoquark mass

also: complementary predictions in flavor: ex. D-meson decays

Example: leptoquark mass

KK, E.M.Sessolo, Y.Yamamoto, Eur.Phys.J.C 81 (2021) 4, 272 $SM + LQ + QG$

Some other works along this lines...

• **anomalies in** $b \rightarrow s$

A.Chikkaballi, W. Kotlarski, KK, D.Rizzo, E.M.Sessolo, JHEP 01 (2023) 164

• **anomalies in** $b \rightarrow c$

KK, E.M.Sessolo, Y.Yamamoto, Eur.Phys.J.C 81 (2021) 4, 272

● **muon** *g-2* KK, E.M.Sessolo, Phys. Rev. D 103, (2021)

Other AS predictions for BSM

Reichert, Smirnov, 1803.04027; Grabowski, Kwapisz, Meissner, 1810.08461; Hamada, Tsumura, Yamada, 2002.03666, Eichhorn, Pauly, 2005.03661; de Brito, Eichhorn, Lino dos Santos, 2112.08972, Boos, Carone, Donald, Musser, 2206.02686, 2209.14268, Eichhorn, dos Santos, Miqueleto, 2306.17718

mass predicted

$$
M_{S_3} \in (4.5, 7) \text{ TeV}
$$

In the reach of the FCC!

also: complementary predictions in flavor: ex. D-meson decays

Neutrino mass – how to make it small

either Dirac neutrino ...

$$
\mathcal{L}_D = -y_\nu^{ij} \nu_{R,i} \left(H^c \right)^{\dagger} L_j + \text{H.c.}
$$

$$
m_{\nu} = \frac{y_{\nu}v_H}{\sqrt{2}}
$$

- \cdot 10⁻¹³ Yukawa coupling
- Lepton number is conserved

Neutrino mass – how to make it small

Planck (2021) 1807.06209 $\sum m_i < 0.12 \,\mathrm{eV}$ $i=1,2,3$

 $\begin{array}{l} y_b\\ y_\tau\\ y_\mu \end{array}$ y_{ν} 10^{-3} y_e 10^{-6} large Yukawa 10^{-9} 10^{-12}

… or Majorana neutrino

e.g. Type 1 see-saw
\n
$$
\mathcal{L}_M = \mathcal{L}_D - \frac{1}{2} M_N^{ij} \nu_{R,i} \nu_{R,j} + \text{H.c.}
$$
\n
$$
m_{\nu} = \begin{pmatrix} 0 & m_D^T \\ m_D & M_N \end{pmatrix} \qquad m_{\nu} = y_{\nu}^2 v_h^2 / (\sqrt{2} M_N)
$$

- $O(1)$ Yukawa coupling
- Lepton number is violated

Neutrino – top system

KK, S.Pramanick, E.Sessolo, JHEP 08 (2022) 262

SM + RHN:

$$
\frac{dy_Y}{dt} = \frac{g_Y^3}{16\pi^2} \frac{41}{6} - f_g g_Y = \mathbf{0} \quad \text{get } f_g
$$
\n
$$
\frac{dy_t}{dt} = \frac{y_t}{16\pi^2} \left[\frac{9}{2} y_t^2 + y_\nu^2 - \frac{17}{12} g_Y^2 \right] - f_y y_t = \mathbf{0} \quad \text{get } f_y
$$
\n
$$
\frac{dy_\nu}{dt} = \frac{y_\nu}{16\pi^2} \left[3y_t^2 + \frac{5}{2} y_\nu^2 - \frac{3}{4} g_Y^2 \right] - f_y y_\nu = \mathbf{0} \quad \text{predict}
$$

$$
\beta_{\nu} \equiv \frac{dy_{\nu}}{dt} = 0 \rightarrow \text{ two IRR solutions for neutrino FP:}
$$

1.
$$
y_{\nu}^{*2} = \frac{32\pi^2}{5}f_y + \frac{3}{10}g_Y^{*2} - \frac{6}{5}y_t^{*2}
$$
 (interactive)

2. $y_{\nu}^* = 0$

(Gaussian)

Neutrino – top system

KK, S.Pramanick, E.Sessolo, JHEP 08 (2022) 262

SM + RHN:

 du

$$
\begin{aligned}\n\frac{dg_Y}{dt} &= \frac{g_Y^3}{16\pi^2} \frac{41}{6} - f_g g_Y \\
\frac{dy_t}{dt} &= \frac{y_t}{16\pi^2} \left[\frac{9}{2} y_t^2 + y_\nu^2 - \frac{17}{12} g_Y^2 \right] - f_y y_t \\
\frac{dy_\nu}{dt} &= \frac{y_\nu}{16\pi^2} \left[3y_t^2 + \frac{5}{2} y_\nu^2 - \frac{3}{4} g_Y^2 \right] - f_y y_\nu\n\end{aligned}
$$

$$
\implies g_Y^*, y_t^* \sim \mathcal{O}(1)
$$

$$
\beta_{\nu} \equiv \frac{dy_{\nu}}{dt} = 0 \rightarrow \text{ two IRR solutions for neutrino FP:} \quad \text{y}_{\nu}(M_{N})
$$
\n
$$
y_{\nu}^{*2} = \frac{32\pi^{2}}{5}f_{y} + \frac{3}{10}g_{Y}^{*2} - \frac{6}{5}y_{t}^{*2} \quad \text{(interactive)}
$$
\n
$$
\text{large fine tuning of } f_{Y} \text{ to get small Yukawa}
$$
\n
$$
m_{\nu} = y_{\nu}^{2}v_{h}^{2}/(\sqrt{2}M_{N})
$$
\n
$$
m_{\nu} = \frac{y_{\nu}^{2}v_{h}^{2}}{v_{h}^{2}v_{h}^{2}v_{h}^{2}}
$$
\n
$$
m_{\
$$

AS prediction for the Majorana mass

 M_N (GeV)

Neutrino – top system

KK, S.Pramanick, E.Sessolo, JHEP 08 (2022) 262

SM + RHN:

$$
\begin{aligned}\n\frac{dg_Y}{dt} &= \frac{g_Y^3}{16\pi^2} \frac{41}{6} - f_g g_Y \\
\frac{dy_t}{dt} &= \frac{y_t}{16\pi^2} \left[\frac{9}{2} y_t^2 + y_\nu^2 - \frac{17}{12} g_Y^2 \right] - f_y y_t \\
\frac{dy_\nu}{dt} &= \frac{y_\nu}{16\pi^2} \left[3y_t^2 + \frac{5}{2} y_\nu^2 - \frac{3}{4} g_Y^2 \right] - f_y y_\nu\n\end{aligned}
$$

$$
\implies g_Y^*, y_t^* \sim \mathcal{O}(1)
$$

$$
\beta_{\nu} \equiv \frac{dy_{\nu}}{dt} = 0 \rightarrow \text{ two IRR solutions for neutrino FP:}
$$

2.
$$
y^*_{\nu} = 0
$$
 (Gaussian)

Irrelevant if *fy* is small enough! $UV_{0.3}$

$$
f_y < f_{\nu, tY}^{\text{crit}} \approx 0.0008
$$

small Yukawa coupling→ Dirac neutrino

Relevant FPs provide a UV completion

Kamila Kowalska **National Centre for Nuclear Research, Warsaw** The Mational Centre for Nuclear Research, Warsaw

A dynamical mechanism!

Integrated curve in blue :

$$
y_{\nu}(t; \kappa) \approx \left(\frac{16\pi^2 f_y}{e^{f_y(\kappa - t)} + 5/2}\right)^{1/2}
$$

K = "distance" in e-folds

No fine tuning:

Smallness of the neutrino Yukawa due to the "distance" of the Planck scale from infinity

Neutrinos can be Dirac naturally

Alternative to the see-saw mechanism

The mechanism is more generic...

In pairs of Yukawa interactions one can use the "large" *YL* to drive down the "small" *YS*...

$$
\mathcal{L} \supset Y_S \chi_R \Phi \chi_L + Y_L \psi_R \Phi \psi_L + \text{H.c.}
$$

Recall that... 10 g_D $\frac{dy_X}{dt} = \frac{y_X}{16\pi^2} \left[\alpha_X y_X^2 + \alpha_Z y_Z^2 - \alpha_Y g_Y^2 \right] - f_y y_X$ 0.1 $\frac{dy_Z}{dt} = \frac{yz}{16\pi^2} \left[\alpha'_X y_X^2 + \alpha'_Z y_Z^2 - \alpha'_Y g_Y^2 \right] - f_y y_Z$ 0.001 10^{-5} … thus we want ... 10^{-7} $f_{Z,XY}^{\text{crit}} = \frac{g_Y^{*2}}{16\pi^2} \frac{\alpha'_X \alpha_Y - \alpha'_Y \alpha_X}{\alpha_X - \alpha'_Y} > f_y \text{ (from UV)}$ 10^{-3} 200 400 600 800 1000 $Log[k/GeV]$

... it happens often (but not always) if $Q_{\psi} \gg Q_{\psi}$ (gauge charge)

Can use it to justify freeze-in, feebly interacting models, etc...

Connections to FRG

SM + QG:

FRG calculation following A.Eichhorn, F.Versteegen, 1709.07252

FRG calculation should eventually match the blue line

Connections to FRG

SM + gauged U(1)B-L + QG: extended gauge sector $\mathcal{L} \quad \supset \quad -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\epsilon}{2} B_{\mu\nu} X^{\mu\nu}$ $g_Y = 0$... $+i\bar{f} \left(\partial^{\mu} -ig_Y Q_Y \tilde{B}^{\mu} -ig_{B-L} Q_{B-L} \tilde{X}^{\mu}\right) \gamma_{\mu} f$ … but its role played by $g_X = \frac{g_{B-L}}{\sqrt{1-\epsilon^2}}$, $g_{\epsilon} = -\frac{\epsilon g_Y}{\sqrt{1-\epsilon^2}}$ A. Chikkaballi, KK, E. Sessolo, 2308.06114 $f_q = \text{any}$ y_t 0.1 $= 0.00$ 3 0.01 \mathcal{O}^* 0.001 $f_{0} = 0.003$ $v_{\rm t}$ 10^{-} $f_s \approx 0.01$ easier to make consistent **dynamical** 10^{-5} with the FRG calculations $f_v = 0.001$ **mechanism still works!** 10^{-6} 2000 4000 6000 8000 10000 -2 0 -10 θ -8 $Log_{10}[\mu/M_{PL}]$ $\tilde{\Lambda}^*$ FRG calculation following

Extra info: FP analysis provides predictions for *gX***,** *gε* A.Eichhorn, F.Versteegen, 1709.07252

Predictions for B-L model

SM + gauged U(1)_{B-L} + QG: extended scalar sector

 $\mathcal{L}_M = -y_N^{ij} S \nu_{R,i} \nu_{R,j} + \text{H.c.}$

Majorana mass term

fg, fy lead to *predictive* (irrel.) fixed points for *gX, gε, yN* :

(all BPs have $y^*_{\nu} = 0$ irrel.)

Note: large kinetic mixing strong LHC bounds on Z' production implies *vS >> v^H*

Predictions for B-L model

SM + gauged U(1)_{B-L} + QG: extended scalar sector

 $\mathcal{L}_M = -y_N^{ij} S \nu_{R,i} \nu_{R,j} + \text{H.c.}$ –

Majorana mass term

fg, fy lead to *predictive* (irrel.) fixed points for *gX, gε, yN* :

(all BPs have $y^*_{\nu} = 0$ irrel.)

Majorana Majorana

Note: large kinetic mixing strong LHC bounds on Z' production

Gravitational waves from FOPT?

Gravitational waves

Signal is now visible...

A. Chikkaballi, KK, E. Sessolo, 2308.06114

… but discriminating features washed-out by the scalar masses

Conclusions

- AS based on quantum gravity offers a **predictive UV completion**
- Via UV irr. fixed point, AS can lead to **specific and testable predictions** for BSM
- AS can be used to make the neutrino (or other) Yukawa coupling **arbitrarily small dynamically**
- Mechanism relies on an **irrelevant Gaussian fixed point** of the trans-Planckian RG flow of Yukawa coupling
- In the SM + QG some tension between the FRG results and phenomenology, but perhaps not so in gauged *B-L*

Backup slides

Predictions for NP - assumptions

W.Kotlarski, KK, D.Rizzo, E.M.Sessolo EPJC '23, arXiv: 2304.08959

- 1-loop matter RGEs • Planck scale set at 10^{19} GeV
	-
- Gravity parameters *f* are constant
-

But in FRG:

eg. EH truncation, α=0, β=1 g.f A. Eichhorn, F. Versteegen, JHEP 01 (2018) 030

$$
f_g(t) = \tilde{G}(t) \frac{1 - 4\tilde{\Lambda}(t)}{4\pi \left(1 - 2\tilde{\Lambda}(t)\right)^2}
$$

Let's drop the assumptions... $M = \frac{40}{300} \frac{40}{\text{GeV}}$

Uncertainties – gauge sector

 α et f_a

0.55

0.50

0.45

0.40

0.35

 0.30

0.25

0.20

0.50

20

40

 $M_{\rm PI}$

 g_V

 $-g_{\epsilon}$

60

 $Log_{10}[\mu/GeV]$

preditct

100 120

80

 g_d

W.Kotlarski, KK, D.Rizzo, E.M.Sessolo EPJC '23, arXiv: 2304.08959

The coupling ratios do not depend on *f^g*

Uncertainties – Yukawa sector

Does it work in the full SM?

PMNS parametrization KK, S.Pramanick, E.Sessolo, JHEP 08 (2022) 262

PMNS parametrization
\n
$$
U_2 = |U_{\alpha i}|^2 = \begin{bmatrix} X & Y & 1-X-Y \\ Z & W & 1-Z-W \\ 1-X-Z & 1-Y-W & X+Y+Z+W-1 \end{bmatrix}
$$
\n
$$
\delta = \arccos \frac{(X+Y)^2Z - Y(X+Y+Z+W-1) - X(1-W-Z)(1-X-Y)}{2\sqrt{XY(1-X-Y)(1-Z-W)(X+Y+Z+W-1)}}
$$

 $X \in [0.64 - 0.71]$ $Y \in [0.26 - 0.34]$ $Z \in [0.05 - 0.26]$ $W \in [0.21 - 0.48]$ PMNS fit

Normal ordering works! (no solution found with IO)

Details of BP1 and BP2

 -6
BP2₂m²₅<0
-8
 $v_5=10^5$ Ge V $\log_{10}(h^2\ \Omega_{\rm GW})$ -10 -12 -14 **DECTOR** -16 -18 -6 -4 -2 θ $\overline{2}$ $Log_{10}(f/[Hz])$

BP₂

 $T_p = 14.6 \text{ GeV}$

 $m_S = 1 \text{ GeV}$: $\alpha = 10^{10}$, $\beta = 49.8$ $m_S = 1 \text{ GeV}$: $\alpha = 10^{11}$, $\beta = 78.9$

 $T_p = 8 \text{ GeV}$

 $m_S = 1$ TeV : $\alpha = 0.27$, $\beta = 185$ $m_S = 1 \text{ TeV}$: $\alpha = 0.88$, $\beta = 187$ $T_p \sim 10$ TeV $T_p \sim 10$ TeV

Details of BP3 and BP4

BP₃

 $BP4$ ₃ m ₅ < 0 $v_S = 10^5$ Ge V -8 TIES $\log_{10}(h^2\ \Omega_{\rm GW})$ -10 -12 -14 **DECIG** -16 -18 – 6 -2 $\overline{2}$ -4 Ω $Log_{10}(f/[Hz])$

BP4

 $m_S = 1 \text{ GeV} : \alpha = 10^9$, $\beta = 189$ $T_p = 10.04 \text{ GeV}$

$$
m_S = 1 \; \text{GeV} : \alpha = 10^8 \, , \, \beta = 20 \text{.}
$$

 $T_p = 11.5 \text{ GeV}$

$$
m_S = 1 \text{ TeV} : \alpha = 0.02 \text{ , } \beta = 227
$$

$$
T_p \sim 10 \text{ TeV}
$$

 $m_S = 1$ TeV : $\alpha = 0.01$, $\beta = 229$ $T_p = ~\sim$ 10 TeV

How robust are low-scale predictions?

W.Kotlarski, KK, D.Rizzo, E.M.Sessolo Eur. Phys. J. C, 83 (2023) 644

assumptions:

- 1-loop matter RGEs
- Planck scale set at 10^{19} GeV
- Gravity parameters *f* are constant
- Gravity decouples instantaneously

The gauge coupling ratios do not depend on *f^g*

(due to the universality of QG)

Invariant under the RGE flow

PREDICTIONS VERY STABLE $\delta g \lesssim 0.1\%$

5 10 15 20 25 30

 $Log_{10}[\mu/GeV]$

How robust are low-scale predictions?

W.Kotlarski, KK, D.Rizzo, E.M.Sessolo Eur. Phys. J. C, 83 (2023) 644

assumptions:

- 1-loop matter RGEs
- Planck scale set at 10^{19} GeV
- Gravity parameters *f* are constant
- Gravity decouples instantaneously

The Yukawa ratios depend on the other FPs

$y_2^* \ll y_1^*$ **PREDICTIONS UNSTABLE**

$$
y_2^* \approx y_1^* \quad \boxed{\delta y \lesssim 20\%}
$$

+ fousing, realistic UV running

Is neutrino special?

KK, S.Pramanick, E.Sessolo JHEP 08 (2022) 262

… and there's an *f*crit for each fermion ...

$$
\frac{dy_X}{dt} = \frac{y_X}{16\pi^2} \left[\alpha_X y_X^2 + \alpha_Z y_Z^2 - \alpha_Y g_Y^2 \right] - f_y y_X
$$

$$
\frac{dy_Z}{dt} = \frac{y_Z}{16\pi^2} \left[\alpha'_X y_X^2 + \alpha'_Z y_Z^2 - \alpha'_Y g_Y^2 \right] - f_y y_Z
$$

$$
f_{Z,XY}^{\text{crit}} = \frac{g_Y^{*2}}{16\pi^2} \frac{\alpha'_X \alpha_Y - \alpha'_Y \alpha_X}{\alpha_X - \alpha'_X}
$$

... but top mass is good only if... $-1 \times 10^{-4} \lesssim f_y \lesssim 1 \times 10^{-3}$

Is neutrino special?

KK, S.Pramanick, E.Sessolo JHEP 08 (2022) 262

… running CKM makes *f***crit smaller**

No CKM: No CKM:

$$
16\pi^2 \theta_{d,s} \approx 16\pi^2 f_y - 3y_t^{*2} + \frac{5}{12} g_Y^{*2} \quad \Rightarrow \quad 16\pi^2 \theta_{d,s} \approx 16\pi^2 f_y - \frac{3}{2} \left(1 + |V_{tb}|^2\right) y_t^{*2} + \frac{5}{12} g_Y^{*2}
$$
\n
$$
\text{FP} = 0
$$
\nR. Alkofer et al. (2003.08401)

... but top mass is good only if... $-1 \times 10^{-4} \lesssim f_y \lesssim 1 \times 10^{-3}$

… perhaps the neutrino is special after all