

STRUCTURES CLUSTER OF EXCELLENCE

Towards quantitative precision in QCD

Towards the phase diagram of QCD and its critical endpoint

Based on [arXiv:2408.08413]

Franz R. Sattler

In Collaboration with Friederike Ihssen, Jan M. Pawlowski, Nicolas Wink

ERG2024,

Les Diablerets

September 23, 2024

Fu, Pawlowski, Rennecke [Phys. Rev. D 101 (2020), 054032] Gao, Pawlowski [Phys.Lett.B820(2021) 136584] Gunkel, Fischer [Phys.Rev.D 104 (2021) 5, 054022] Bellwied et al. (WB) [Phys.Lett.B 751 (2015) 559-564] Bazavov et al. (HotQCD) [Phys.Lett.B 795 (2019) 15-21] Phase diagram shows **Chiral symmetry breaking** i.e. condensation of $\langle \bar{q}q \rangle$

Fu, Pawlowski, Rennecke [Phys. Rev. D 101 (2020), 054032] Gao, Pawlowski [Phys.Lett.B820(2021) 136584] Gunkel, Fischer [Phys.Rev.D 104 (2021) 5, 054022] Bellwied et al. (WB) [Phys.Lett.B 751 (2015) 559-564] Bazavov et al. (HotQCD) [Phys.Lett.B 795 (2019) 15-21] Phase diagram shows **Chiral symmetry breaking** i.e. condensation of $\langle \bar{q}q \rangle$

Fu, Pawlowski, Rennecke [Phys. Rev. D 101 (2020), 054032] Gao, Pawlowski [Phys.Lett.B820(2021) 136584] Gunkel, Fischer [Phys.Rev.D 104 (2021) 5, 054022] Bellwied et al. (WB) [Phys.Lett.B 751 (2015) 559-564] Bazavov et al. (HotQCD) [Phys.Lett.B 795 (2019) 15-21] Phase diagram shows **Chiral symmetry breaking** i.e. condensation of $\langle \bar{q}q \rangle$

Phase Diagram for intermediate μ not know

The QCD phase diagram

Fu, Pawlowski, Rennecke [Phys. Rev. D 101 (2020), 054032] Gao, Pawlowski [Phys.Lett.B820(2021) 136584] Gunkel, Fischer [Phys.Rev.D 104 (2021) 5, 054022] Bellwied et al. (WB) [Phys.Lett.B 751 (2015) 559-564] Bazavov et al. (HotQCD) [Phys.Lett.B 795 (2019) 15-21]

Fu, Pawlowski, Rennecke [Phys. Rev. D 101 (2020), 054032] Gao, Pawlowski [Phys.Lett.B820(2021) 136584] Gunkel, Fischer [Phys.Rev.D 104 (2021) 5, 054022] Bellwied et al. (WB) [Phys.Lett.B 751 (2015) 559-564] Bazavov et al. (HotQCD) [Phys.Lett.B 795 (2019) 15-21] Direct access to phase structure using the

functional Renormalization Group

Nnon-perturbative, with direct access to finite μ .

Fu, Pawlowski, Rennecke [Phys. Rev. D 101 (2020), 054032] Gao, Pawlowski [Phys.Lett.B820(2021) 136584] Gunkel, Fischer [Phys.Rev.D 104 (2021) 5, 054022] Bellwied et al. (WB) [Phys.Lett.B 751 (2015) 559-564] Bazavov et al. (HotQCD) [Phys.Lett.B 795 (2019) 15-21] Direct access to phase structure using the

functional Renormalization Group

Nnon-perturbative, with **direct access to finite** μ .

Here, first step:

- Setup
- Systematics

Vacuum

Ihssen, Pawlowski, Sattler, Wink [arXiv:2408.08413]

Current vertex expansion

Truncation

Current vertex expansion

Towards quantitative precision in QCD

Truncation

Franz R. Sattler

Current vertex expansion

TensorBases Mathematica package

With J. Braun, J. Pawlowski, A. Geißel, N. Wink

• Automatically derived projectors

• Library of tensor bases, extendable by everyone

Needs["TensorBases`"]

In[2]:= TBGetProjector["transAqbq", 1, {p1, mu, a}, {p2, d2, A2, F2}, {p3, d3, A3, F3}]
TBGetInnerProduct["transAqbq"][TBGetProjector, 1, TBGetBasisElement, 1] // FormTrace // Simplify
TBGetInnerProduct["transAqbq"][TBGetProjector, 1, TBGetBasisElement, 8] // FormTrace // Simplify

Out[2]= $\frac{1}{6 \text{ Nf} - 6 \text{ Nc}^2 \text{ Nf}}$ i deltaFundFlav[F2, F3] × gamma[nu\$20834, d2, d3] × TCol[a, A2, A3] × transProj[p1, mu, nu\$20834]

Out[3]= 1

Out[4]= 0

TensorBases Mathematica package

With J. Braun, J. Pawlowski, A. Geißel, N. Wink

DiFfRG framework

Towards quantitative precision in QCD

• Automatically derived projectors

• Library of tensor bases, extendable by everyone

Needs["TensorBases`"]

In[2]:= TBGetProjector["transAqbq", 1, {p1, mu, a}, {p2, d2, A2, F2}, {p3, d3, A3, F3}]
TBGetInnerProduct["transAqbq"][TBGetProjector, 1, TBGetBasisElement, 1] // FormTrace // Simplify
TBGetInnerProduct["transAqbq"][TBGetProjector, 1, TBGetBasisElement, 8] // FormTrace // Simplify

Out[2]= $\frac{1}{6 \text{ Nf} - 6 \text{ Nc}^2 \text{ Nf}}$ i deltaFundFlav[F2, F3] × gamma[nu\$20834, d2, d3] × TCol[a, A2, A3] × transProj[p1, mu, nu\$20834]

Out[3]= 1

Out[4]= 0

- Automatic derivation and code generation for large fRG systems
- Hydrodynamic methods for full field dependences
- GPU accelerated

Numerics

TensorBases Mathematica package

With J. Braun, J. Pawlowski, A. Geißel, N. Wink

DiFfRG framework

Towards quantitative precision in QCD

• Automatically derived projectors

• Library of tensor bases, extendable by everyone

Needs["TensorBases`"]

In[2]:= TBGetProjector["transAqbq", 1, {p1, mu, a}, {p2, d2, A2, F2}, {p3, d3, A3, F3}]
TBGetInnerProduct["transAqbq"][TBGetProjector, 1, TBGetBasisElement, 1] // FormTrace // Simplify
TBGetInnerProduct["transAqbq"][TBGetProjector, 1, TBGetBasisElement, 8] // FormTrace // Simplify

Out[2]= $\frac{1}{6 \text{ Nf} - 6 \text{ Nc}^2 \text{ Nf}}$ i deltaFundFlav[F2, F3] × gamma[nu\$20834, d2, d3] × TCol[a, A2, A3] × transProj[p1, mu, nu\$20834]

Out[3]= 1

Out[4]= 0

Open Source available around November

- Automatic derivation and code generation for large fRG systems
- Hydrodynamic methods for full field dependences
- GPU accelerated

Numerics

Dynamical Hadronisation in fRG

Dynamical Hadronisation in fRG

Dynamical Hadronisation in fRG

 $\sigma - \pi$ – four-quark flow

 $\sigma - \pi -$ four-quark flow

(Resonant)

Fu, Huang, Pawlowski, Tan [SciPost Phys. 14 (2023) 4, 069] [arxiv:2401.07638 (2024)] $\sigma - \pi -$ four-quark flow

Fu, Huang, Pawlowski, Tan [SciPost Phys. 14 (2023) 4, 069] [arxiv:2401.07638 (2024)]

 $\sigma - \pi$ – four-quark flow Remainder (Resonant) Mesons Fu, Huang, Pawlowski, Tan [SciPost Phys. 14 (2023) 4, 069] [arxiv:2401.07638 (2024)] **BS WF** $h_{\phi}(p,q)$ $\cdot h_{\phi}(p,q)$ $-m_{\perp}^{2}$) Z_{ϕ} **Meson propagator Full scattering potential** All orders of $\left(\frac{\sigma^2+\pi^2}{2}\right)$ n-meson Vscatterings

Full mesonic potential of QCD

Field space: Finite element method

Image source: wikipedia.org

> Grossi, Wink [SciPost Phys.Core 6 (2023) 071] Grossi, Ihssen, Pawlowski, Wink [Phys.Rev.D 104 (2021) 1, 016028] Ihssen, Pawlowski, Sattler, Wink [arXiv:2309.07335], [Comput.Phys.Commun. 300 (2024) 109182]

+ sensible RG-scale integration

Full mesonic potential

Full mesonic potential of QCD

Ihssen, Pawlowski, Sattler, Wink [arXiv:2309.07335]

Hydro methods allow to access the full Potential. *Important for phase transitions at high* μ Quantitative access to chiral limit!

Systematic errors I: Regulator dependence

Sattler et al. (in preperation)

Systematic errors in fQCD

Systematic errors in fQCD

Systematic errors II: The LEGO[®] principle

Separate LEGO[®] blocks:

- Glue subsystem
- Matter subsystem
- Interface blocks

$$\{\lambda_{\text{mat}}\} = \{h_{\phi}(\rho_0), \lambda_{\phi,n}(\rho_0)\}$$
$$\{\lambda_{\text{inter}}\} = \{\alpha_{l\bar{l}A}\}$$

 $\{\lambda_{\text{glue}}\} = \{\alpha_{A^3}, \alpha_{A^4}, \alpha_{c\bar{c}A}\}$

- Systematic error estimates from subsystems; preliminary estimate 10%.
- → Low-energy effective theories.

propagators

Lattice data: Cheng et al [Phys. Rev. D 104 (2021), 094509] DSE data: Gao, Papavassiliou, Pawlowski [Phys.Rev.D 103 (2021), 094013]

propagators 10 FTT 0.8 $1/Z_s$ $1/Z_l$ 0.6---- M_s [GeV] $M_l \,[{\rm GeV}]$ 0.4 $\dots M_{l,\text{DSE}}$ [GeV] $M_{l,\text{lattice}}$ [GeV] 0.20.0 10^{-2} 10^{-1} 10^{0} 10^{1} $p \,[{\rm GeV}]$

Full momentum resolution of

Lattice data: Cheng et al [Phys. Rev. D 104 (2021), 094509] DSE data: Gao, Papavassiliou, Pawlowski [Phys.Rev.D 103 (2021), 094013]

Access to pole masses:

 $m_{\pi,\text{vacuum}}^{(N_f=2)} = 139(12) \text{ MeV}$ $m_{\pi,\text{vacuum}}^{(N_f=2+1)} = 138(9) \text{ MeV}$

Towards quantitative precision in QCD

Full propagators

Conclusions

• Motivation: Direct access to phase structure of QCD through fRG

• Quantitative Vacuum results in agreement with Lattice & other functional approaches

• Systematic error estimates

• Easily extendable setup

Towards quantitative precision in QCD

Outlook

- Results at finite (T,µ) (in progress)
- More momentum dependences (done in vacuum)
- Rebosonisation of **further channels** *(in progress)*
- Increase number of tensor structures (done in vacuum)

Conclusions

 Motivation: Direct access to phase structure of QCD through fRG

• Quantitative Vacuum results in agreement with Lattice & other functional approaches

• Systematic error estimates

• Easily extendable setup

Outlook

- Results at **finite (T,µ)** (in progress)
- More momentum dependences (done in vacuum)
- Rebosonisation of **further channels** *(in progress)*
- Increase number of tensor structures (done in vacuum)

fQCD Collaboration:

Chen Fu Gao Geissel Huang Ihssen I uPawlowski Rennecke Sattler Schallmo Stoll Tan Töpfel Turnwald Wen Wessely Wink Yin Zorbach

Braun

Thank you for your attention!

Backup slides

Fu, Pawlowski, Rennecke (Phys. Rev. D 101 (2020), 054032) Gao, Pawlowski (Phys.Lett.B820(2021) 136584) Gunkel, Fischer (Phys.Rev.D 104 (2021) 5, 054022) Bellwied et al. (WB) (Phys.Lett.B 751 (2015) 559-564) Bazavov et al. (HotQCD) (Phys.Lett.B 795 (2019) 15-21) Sattler et al. (in preperation)

Fu, Pawlowski, Rennecke (Phys. Rev. D 101 (2020), 054032) Gao, Pawlowski (Phys.Lett.B820(2021) 136584) Gunkel, Fischer (Phys.Rev.D 104 (2021) 5, 054022) Bellwied et al. (WB) (Phys.Lett.B 751 (2015) 559-564) Bazavov et al. (HotQCD) (Phys.Lett.B 795 (2019) 15-21) Sattler et al. (in preperation)

Fu, Pawlowski, Rennecke (Phys. Rev. D 101 (2020), 054032) Gao, Pawlowski (Phys.Lett.B820(2021) 136584) Gunkel, Fischer (Phys.Rev.D 104 (2021) 5, 054022) Bellwied et al. (WB) (Phys.Lett.B 751 (2015) 559-564) Bazavov et al. (HotQCD) (Phys.Lett.B 795 (2019) 15-21) Sattler et al. (in preperation) Braun, Leonhardt, Pospiech (Phys.Rev.D 101 (2020) 3, 036004)

Fu, Pawlowski, Rennecke (Phys. Rev. D 101 (2020), 054032) Gao, Pawlowski (Phys.Lett.B820(2021) 136584) Gunkel, Fischer (Phys.Rev.D 104 (2021) 5, 054022) Bellwied et al. (WB) (Phys.Lett.B 751 (2015) 559-564) Bazavov et al. (HotQCD) (Phys.Lett.B 795 (2019) 15-21) Sattler et al. (in preperation) Braun, Leonhardt, Pospiech (Phys.Rev.D 101 (2020) 3, 036004)

Inclusion of Density mode $\langle \bar{q}\gamma_0 q \rangle$ and Diquarks

Ihssen, Hendricks, Pawlowski, Sattler (in preparation)

Inclusion of Density mode $\langle \bar{q}\gamma_0 q \rangle$ and Diquarks

Ihssen, Hendricks, Pawlowski, Sattler (in preparation)

Full Nf = 2+1

Pawlowski, Sattler, Steck (in preparation)

Figure from Owe Philipsen (arXiv:2111.03590)

Observables	Value	Parameter in $\Gamma_{\Lambda_{\rm UV}}$
$m_{\pi,\mathrm{pol}} \; [\mathrm{MeV}]$	138(9)	$c_{\sigma_l} = 4.67 \mathrm{GeV}^3$
f_K/f_π	1.1914	Δm_{sl} = 134.2 MeV
$lpha_{lar{l}A,\Lambda_{ m UV}}$		$\alpha_{l\bar{l}A,\Lambda_{\rm UV}}=0.227$
$m_l \; [{ m MeV}]$	350	$a = 0.0251$ $b = 2 \mathrm{GeV}$
f_{π} [MeV]	$97.2^{+4.0}_{-2.2}$	
$m_s \; [{ m MeV}]$	$485.0^{+0.0}_{-0.3}$	
$m_{\pi,\mathrm{cur}} \mathrm{[MeV]}$	138	
$m_{\sigma} [{ m MeV}]$	$388.1^{+0.0}_{-1.1}$	
$\sigma_{0,l} \; [{ m MeV}]$	$69.^{+1.2}_{-0.2}$	

Results on physical point of QCD

Lattice data from Boucaud et al. [Phys.Rev.D 98 (2018) 11, 114515]

A comparison to lattice

Soft modes in hot QCD matter

Braun, Chen, Fu, Gao, Huang, Ihssen, Pawlowski, Rennecke, **Sattler**, Tan, Wen, Yin (arXiv:2310.19853)

Soft modes in hot QCD matter Braun, Chen, Fu, Gao, Huang, Ihssen, Pawlowski, Rennecke, Sattler, Tan, Wen, Yin (arXiv:2310.19853)

Columbia Plot

Figure from Owe Philipsen (arXiv:2111.03590)

Integrate out momentum shells

Integrate out momentum shells $\Gamma[\phi] \qquad \Gamma_k[\phi] \qquad S[\phi]$ $k \rightarrow 0$

IR

k-δk k

UV

 $Z_k[J] = \int [D\varphi]_k e^{-S[\varphi] + \int d^d x J^a(x)\varphi_a(x)}$

> Introduce mass-like "Regulator"

$$Z_{k}[J] = \int [D\varphi]_{k} e^{-S[\varphi] + \int d^{d}x J^{a}(x)\varphi_{a}(x)}$$
$$D\varphi]_{k} = [D\varphi]_{\text{ren}} e^{-\frac{1}{2}\int d^{d}x\varphi_{a}(x)} \frac{R_{k}^{ab}(x)\varphi_{b}(x)}{R_{k}^{ab}(x)\varphi_{b}(x)}$$

> Introduce mass-like "Regulator"

Obtain Flow equation

$$Z_{k}[J] = \int [D\varphi]_{k} e^{-S[\varphi] + \int d^{d}x J^{a}(x)\varphi_{a}(x)}$$
$$D\varphi]_{k} = [D\varphi]_{\text{ren}} e^{-\frac{1}{2}\int d^{d}x\varphi_{a}(x)} R_{k}^{ab}(x)\varphi_{b}(x)$$

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \sum_{\mathbf{a},\mathbf{b}} \int \frac{d^d p}{(2\pi)^d} G_{ab}^{(2)}[\phi](p) \partial_t R_k^{ab}(p)$$

Infinite Tower of Functional equations

$$\begin{split} \partial_t \Gamma[\bar{\phi}] &= \frac{1}{2} \mathrm{Tr} \, G_k \, \partial_t R_k \,, \\ \partial_t \Gamma^{(1)}[\bar{\phi}] &= -\frac{1}{2} \mathrm{Tr} \, \Gamma_k^{(3)} \left(G_k \, \partial_t R_k \, G_k \right) , \\ \partial_t \Gamma^{(2)}[\bar{\phi}] &= -\frac{1}{2} \mathrm{Tr} \left[\Gamma_k^{(4)} - 2 \, \Gamma_k^{(3)} \, G_k \, \Gamma_k^{(3)} \right] \left(G_k \, \partial_t R_k \, G_k \right) , \\ \partial_t \Gamma^{(3)}[\bar{\phi}] &= -\frac{1}{2} \mathrm{Tr} \left[\Gamma_k^{(5)} - 6 \, \Gamma_k^{(4)} \, G_k \, \Gamma_k^{(3)} + 6 \, \Gamma_k^{(3)} \, G_k \, \Gamma_k^{(3)} \, G_k \, \Gamma_k^{(3)} \right] \left(G_k \, \partial_t R_k \, G_k \right) , \\ \partial_t \Gamma^{(4)}[\bar{\phi}] &= -\frac{1}{2} \mathrm{Tr} \left[\Gamma_k^{(6)} - 8 \, \Gamma_k^{(5)} \, G_k \, \Gamma_k^{(3)} - 6 \, \Gamma_k^{(4)} \, G_k \, \Gamma_k^{(4)} + 18 \, \Gamma_k^{(4)} \, G_k \, \Gamma_k^{(3)} \, G_k \, \Gamma_k^{(3)} \right] \left(G_k \, \partial_t R_k \, G_k \right) , \\ &+ 12 \, \Gamma_k^{(3)} \, G_k \, \Gamma_k^{(4)} \, G_k \, \Gamma_k^{(3)} - 24 \, G_k \, \Gamma_k^{(3)} \, G_k \, \Gamma_k^{(3)} \, G_k \, \Gamma_k^{(3)} \right] \left(G_k \, \partial_t R_k \, G_k \right) , \end{split}$$

: :

Infinite Tower of Functional equations

Infinite Tower of Diagrams

$$\begin{split} \partial_t \Gamma[\bar{\phi}] &= \frac{1}{2} \mathrm{Tr} \, G_k \, \partial_t R_k \,, \\ \partial_t \Gamma^{(1)}[\bar{\phi}] &= -\frac{1}{2} \mathrm{Tr} \, \Gamma_k^{(3)} \left(G_k \, \partial_t R_k \, G_k \right) , \\ \partial_t \Gamma^{(2)}[\bar{\phi}] &= -\frac{1}{2} \mathrm{Tr} \left[\Gamma_k^{(4)} - 2 \, \Gamma_k^{(3)} \, G_k \, \Gamma_k^{(3)} \right] \left(G_k \, \partial_t R_k \, G_k \right) , \\ \partial_t \Gamma^{(3)}[\bar{\phi}] &= -\frac{1}{2} \mathrm{Tr} \left[\Gamma_k^{(5)} - 6 \, \Gamma_k^{(4)} \, G_k \, \Gamma_k^{(3)} + 6 \, \Gamma_k^{(3)} \, G_k \, \Gamma_k^{(3)} \, G_k \, \Gamma_k^{(3)} \right] \left(G_k \, \partial_t R_k \, G_k \right) , \\ \partial_t \Gamma^{(4)}[\bar{\phi}] &= -\frac{1}{2} \mathrm{Tr} \left[\Gamma_k^{(6)} - 8 \, \Gamma_k^{(5)} \, G_k \, \Gamma_k^{(3)} - 6 \, \Gamma_k^{(4)} \, G_k \, \Gamma_k^{(4)} + 18 \, \Gamma_k^{(4)} \, G_k \, \Gamma_k^{(3)} \, G_k \, \Gamma_k^{(3)} \right] \left(G_k \, \partial_t R_k \, G_k \right) , \end{split}$$

· · · · · · ·

: :

..... R. Sattler