A new universality class describes Vicsek's flocking phase in physical dimensions

P. Jentsch, C.F. Lee, Phys. Rev. Lett. 133, 128301 (2024)

Patrick Jentsch Chiu Fan Lee

ERG2024 23/09/2024

Flocking

https://www.youtube.com/watch?v=q6iXT4-Oc2Q

Video by Nitesh Kamboj licensed by Pexels GmbH

https://www.quantamagazine.org/cells-blaze-their-own-trails-tonavigate-through-the-body-20220328/

The Vicsek Model

The Vicsek Model

Update rule:

$$\mathbf{x}_{i}(t + \Delta t) = \mathbf{x}_{i}(t) + \begin{pmatrix} \cos(\theta_{i}(t)) \\ \sin(\theta_{i}(t)) \end{pmatrix} v_{m} \Delta t$$

The Vicsek Model

Update rule:

$$\mathbf{x}_{i}(t + \Delta t) = \mathbf{x}_{i}(t) + \begin{pmatrix} \cos(\theta_{i}(t)) \\ \sin(\theta_{i}(t)) \end{pmatrix} v_{m} \Delta t$$

$$\theta_{i}(t + \Delta t) = \langle \theta_{i}(t) \rangle_{R} + \xi_{i}(t)$$

Disorder

T. Vicsek, et al., PRL (1995).

Banding

H. Chaté, et al., PRE (2008).

Flocking

Disorder

T. Vicsek, et al., PRL (1995).

Banding

H. Chaté, et al., PRE (2008).

Flocking

Disorder

T. Vicsek, et al., PRL (1995).

Banding

H. Chaté, et al., PRE (2008).

Flocking

Two Key Results

Two Key Results

1. Nonequilibrium Continuous Order-Disorder T. Vicsek, et al., PRL (1995) Transition

T. Vicsek, et al., PRL (1995)

TAISIUU

2. Spontaneous Sym. Breaking in 2D

Two Key Results

G. Grégoire and H. Chaté, PRL (2004)

1. Nonequilibrium Continuous Order-Disorder T. Vicsek, et al., PRL (1995) Transition

2. Spontaneous Sym. Breaking in 2D

T. Vicsek, et al., PRL (1995)

3. Nonequilibrium Ordered Phase w/ nontrivial Toner, Tu PRL (1995) Exponents

1. Nonequilibrium Continuous Order-Disorder T. Vicsek, et al., PRL (1995) Transition

2. Spontaneous Sym. Breaking in 2D

T. Vicsek, et al., PRL (1995)

3. Nonequilibrium (2012) dered Phase w/ nontrivial Toner, Tu PRL (1995) Exponents

ullibrium Continuouo T. Vicsek, et al., PRL (1995) Tranaitian

2. Spontaneous Sym. Breaking in 2D

T. Vicsek, et al., PRL (1995)

Toner, PRE (2012) Oered Phase w/ nontrivial Mahault, Ginelli, Chaté, PRL (2019) 3. Nonequilibrium Toner, Tu PRL (1995) Exponent

Target: Scaling Exponents of Flocking Phase

$$\langle \delta \mathbf{g}(t, x, \mathbf{r}_{\perp}) \delta \mathbf{g}(0, 0, \mathbf{0}) \rangle = r_{\perp}^{2 \chi} S_g \left(\frac{t}{r_{\perp}^{\mathbf{Z}}}, \frac{x - v_0 t}{r_{\perp}^{\boldsymbol{\zeta}}} \right)$$

$$\langle \delta \rho(t, x, \mathbf{r}_{\perp}) \delta \rho(0, 0, \mathbf{0}) \rangle = r_{\perp}^{2 \chi} S_{\rho} \left(\frac{t}{r_{\perp}^{\mathbf{Z}}}, \frac{x - v_{0} t}{r_{\perp}^{\boldsymbol{\zeta}}} \right)$$

Target: Scaling Exponents of Flocking Phase

$$\langle \delta \mathbf{g}(t, x, \mathbf{r}_{\perp}) \delta \mathbf{g}(0, 0, \mathbf{0}) \rangle = r_{\perp}^{2 \chi} S_{g} \left(\frac{t}{r_{\perp}^{z}}, \frac{x - v_{0} t}{r_{\perp}^{\zeta}} \right)$$

$$\langle \delta \rho(t, x, \mathbf{r}_{\perp}) \delta \rho(0, 0, \mathbf{0}) \rangle = r_{\perp}^{2 \chi} S_{\rho} \left(\frac{t}{r_{\perp}^{\mathbf{Z}}}, \frac{x - v_{0} t}{r_{\perp}^{\boldsymbol{\zeta}}} \right)$$

$$2\chi = 2 - d - \eta$$

Target: Scaling Exponents of Flocking Phase

$$\langle \delta \mathbf{g}(t, x, \mathbf{r}_{\perp}) \delta \mathbf{g}(0, 0, \mathbf{0}) \rangle = r_{\perp}^{2 \chi} S_g \left(\frac{t}{r_{\perp}^{\mathbf{Z}}}, \frac{x - v_0 t}{r_{\perp}^{\boldsymbol{\zeta}}} \right)$$

$$\langle \delta \rho(t, x, \mathbf{r}_{\perp}) \delta \rho(0, 0, \mathbf{0}) \rangle = r_{\perp}^{2 \chi} S_{\rho} \left(\frac{t}{r_{\perp}^{\mathbf{Z}}}, \frac{x - v_{0} t}{r_{\perp}^{\boldsymbol{\zeta}}} \right)$$

$$2\chi = 2 - d - \eta$$

 $\eta > 0 \rightarrow$ Stable Ordered Phase in d = 2

Toner, Tu, Phys. Rev. Lett (1995)

Toner, Tu, Phys. Rev. Lett (1995)

Under assumptions of:

- Mass conservation
 - Translation sym.
 - Rotation sym.
 - Chiral sym.

Toner, Tu, Phys. Rev. Lett (1995)

Continuity equation for density

$$\partial_t \rho = -\boldsymbol{\nabla} \cdot \boldsymbol{g}$$

Under assumptions of:

- Mass conservation
 - Translation sym.
 - Rotation sym.
 - Chiral sym.

Toner, Tu, Phys. Rev. Lett (1995)

Continuity equation for density

 $\partial_t \rho = -\boldsymbol{\nabla} \cdot \boldsymbol{g}$

EOM for momentum density

Under assumptions of:

- Mass conservation
 - Translation sym.
 - Rotation sym.
 - Chiral sym.

$$\begin{split} \gamma \partial_t \boldsymbol{g} &+ \lambda_1 \boldsymbol{g} \cdot \boldsymbol{\nabla} \boldsymbol{g} + \lambda_2 \boldsymbol{g} \boldsymbol{\nabla} \cdot \boldsymbol{g} + \lambda_3 \boldsymbol{\nabla} (|\boldsymbol{g}|^2) \\ &= -U(\rho, g^2) \boldsymbol{g} - P_1(\rho, g^2) \boldsymbol{\nabla} \rho + \mu_1 \nabla^2 \boldsymbol{g} + \mu_2 \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{g}) \\ &+ \mu_3 (\boldsymbol{g} \cdot \boldsymbol{\nabla})^2 \boldsymbol{g} + P_2 \boldsymbol{g} (\boldsymbol{g} \cdot \boldsymbol{\nabla} \rho) + \dots + \boldsymbol{f} \end{split}$$

Continuity equation for density

$$\partial_t \rho = -\boldsymbol{\nabla} \cdot \boldsymbol{g}$$

EOM for **momentum** density

$$\begin{split} \gamma \partial_t \boldsymbol{g} &+ \lambda_1 \boldsymbol{g} \cdot \boldsymbol{\nabla} \boldsymbol{g} + \lambda_2 \boldsymbol{g} \boldsymbol{\nabla} \cdot \boldsymbol{g} + \lambda_3 \boldsymbol{\nabla} (|\boldsymbol{g}|^2) \\ &= -U(\rho, g^2) \boldsymbol{g} - P_1(\rho, g^2) \boldsymbol{\nabla} \rho + \mu_1 \nabla^2 \boldsymbol{g} + \mu_2 \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{g}) \\ &+ \mu_3 (\boldsymbol{g} \cdot \boldsymbol{\nabla})^2 \boldsymbol{g} + P_2 \boldsymbol{g} (\boldsymbol{g} \cdot \boldsymbol{\nabla} \rho) + \dots + \boldsymbol{f} \end{split}$$

Continuity equation for density

$$\partial_t \rho = - \boldsymbol{\nabla} \cdot \boldsymbol{g}$$

Simplification 1:

No fluctuations in flocking direction

$$\delta \boldsymbol{g}_{\chi} = 0$$

EOM for momentum density

$$\begin{split} \gamma \partial_t \boldsymbol{g} &+ \lambda_1 \boldsymbol{g} \cdot \boldsymbol{\nabla} \boldsymbol{g} + \lambda_2 \boldsymbol{g} \boldsymbol{\nabla} \cdot \boldsymbol{g} + \lambda_3 \boldsymbol{\nabla} (|\boldsymbol{g}|^2) \\ &= -U(\rho, g^2) \boldsymbol{g} - P_1(\rho, g^2) \boldsymbol{\nabla} \rho + \mu_1 \nabla^2 \boldsymbol{g} + \mu_2 \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{g}) \\ &+ \mu_3 (\boldsymbol{g} \cdot \boldsymbol{\nabla})^2 \boldsymbol{g} + P_2 \boldsymbol{g} (\boldsymbol{g} \cdot \boldsymbol{\nabla} \rho) + \dots + \boldsymbol{f} \end{split}$$

Continuity equation for density

$$\partial_t \rho = - \boldsymbol{\nabla} \cdot \boldsymbol{g}$$

Simplification 1:

No fluctuations in flocking direction

$$\delta \boldsymbol{g}_{\chi} = 0$$

EOM for momentum density

$$\gamma \partial_t \boldsymbol{g} + \lambda_1 \boldsymbol{g} \cdot \boldsymbol{\nabla} \boldsymbol{g} + \lambda_2 \boldsymbol{g} \boldsymbol{\nabla} \cdot \boldsymbol{g} + \lambda_3 \boldsymbol{\nabla} (|\boldsymbol{g}|^2)$$

= $-U(\rho, g^2) \boldsymbol{g} - P_1(\rho, g^2) \boldsymbol{\nabla} \rho + \mu_1 \boldsymbol{\nabla}^2 \boldsymbol{g} + \mu_2 \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{g})$
 $+ \mu_3 (\boldsymbol{g} \cdot \boldsymbol{\nabla})^2 \boldsymbol{g} + P_2 \boldsymbol{g} (\boldsymbol{g} \cdot \boldsymbol{\nabla} \rho) + \dots + \boldsymbol{f} + \boldsymbol{Q}$

Continuity equation for density

$$\partial_t \rho = - \boldsymbol{\nabla} \cdot \boldsymbol{g}$$

EOM for momentum density

$$\gamma \partial_t \boldsymbol{g} + \lambda_1 \boldsymbol{g} \cdot \boldsymbol{\nabla} \boldsymbol{g} + \lambda_2 \boldsymbol{g} \boldsymbol{\nabla} \cdot \boldsymbol{g} + \lambda_3 \boldsymbol{\nabla} (|\boldsymbol{g}|^2)$$

= $-U(\rho, g^2) \boldsymbol{g} - P_1(\rho, g^2) \boldsymbol{\nabla} \rho + \mu_1 \nabla^2 \boldsymbol{g} + \mu_2 \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{g})$
 $+ \mu_3 (\boldsymbol{g} \cdot \boldsymbol{\nabla})^2 \boldsymbol{g} + P_2 \boldsymbol{g} (\boldsymbol{g} \cdot \boldsymbol{\nabla} \rho) + \dots + \boldsymbol{f} + \boldsymbol{Q}$

Simplification 1:

No fluctuations in flocking direction

$$\delta \boldsymbol{g}_{\chi} = 0$$

Simplification 2:

Continuity equation for density

 $\partial_t \rho = - \boldsymbol{\nabla} \cdot \boldsymbol{g}$

EOM for momentum density

$$\begin{split} \gamma \partial_t \boldsymbol{g} &+ \lambda_1 \boldsymbol{g} \cdot \boldsymbol{\nabla} \boldsymbol{g} + \lambda_2 \boldsymbol{g} \boldsymbol{\nabla} \cdot \boldsymbol{g} + \lambda_3 \boldsymbol{\nabla} (|\boldsymbol{g}|^2) \\ &= -U(\boldsymbol{\chi}, \boldsymbol{g}^2) \boldsymbol{g} - P_1(\boldsymbol{\rho}, \boldsymbol{g}^2) \boldsymbol{\nabla} \boldsymbol{\rho} + \mu_1 \boldsymbol{\nabla}^2 \boldsymbol{g} + \mu_2 \boldsymbol{\nabla} (\boldsymbol{\nabla} \cdot \boldsymbol{g}) \\ &+ \mu_3 (\boldsymbol{g} \cdot \boldsymbol{\nabla})^2 \boldsymbol{g} + P_2 \boldsymbol{g} (\boldsymbol{g} - \boldsymbol{\nabla} \boldsymbol{\rho}) + \dots + \boldsymbol{f} + \boldsymbol{Q} \end{split}$$

Simplification 1:

No fluctuations in flocking direction

$$\delta \boldsymbol{g}_{\chi} = 0$$

Simplification 2:

Continuity equation for density

$$\partial_t \rho = -\boldsymbol{\nabla} \cdot \boldsymbol{g}$$

Simplification 1:

No fluctuations in flocking direction

$$\delta \boldsymbol{g}_{\chi} = 0$$

Simplification 2:

EOM for momentum density
$$(\boldsymbol{g} = g_0 \hat{\boldsymbol{x}} + \boldsymbol{g}_{\perp}, \boldsymbol{g}_{\perp} = \delta \boldsymbol{g}_L + \delta \boldsymbol{g}_T)$$

Continuity equation for density

$$\partial_t \rho = -\boldsymbol{\nabla} \cdot \boldsymbol{g}$$

Simplification 1:

No fluctuations in flocking direction

 $\delta \boldsymbol{g}_{\chi} = 0$

No nonlinear density terms

EOM for momentum density
$$(\boldsymbol{g} = g_0 \hat{\boldsymbol{x}} + \boldsymbol{g}_{\perp}, \boldsymbol{g}_{\perp} = \delta \boldsymbol{g}_L + \delta \boldsymbol{g}_T)$$

$$\begin{split} \gamma \partial_t \boldsymbol{g}_{\perp} + \lambda_1 g_0 \partial_x \boldsymbol{g}_{\perp} + \lambda_1 \boldsymbol{g}_{\perp} \cdot \boldsymbol{\nabla}_{\perp} \boldsymbol{g}_{\perp} + \lambda_2 \boldsymbol{g}_{\perp} \boldsymbol{\nabla}_{\perp} \cdot \boldsymbol{g}_{\perp} + \lambda_3 \boldsymbol{\nabla}_{\perp} (|\boldsymbol{g}_{\perp}|^2) \\ &= -\beta |\boldsymbol{g}_{\perp}|^2 \boldsymbol{g}_{\perp} - \kappa_1 \boldsymbol{\nabla} \rho + \mu_1 (\boldsymbol{\nabla}_{\perp}^2 + \partial_x^2) \boldsymbol{g}_{\perp} + \mu_2 \boldsymbol{\nabla}_{\perp} (\boldsymbol{\nabla}_{\perp} \cdot \boldsymbol{g}_{\perp}) \\ &+ \mu_3 g_0^2 \partial_x^2 \boldsymbol{g}_{\perp}^2 \boldsymbol{g}_{\perp} \boldsymbol{f} \end{split}$$

1

Continuity equation for density

$$\partial_t \rho = -\boldsymbol{\nabla} \cdot \boldsymbol{g}$$

Simplification 1:

No fluctuations in flocking direction

$$\delta \boldsymbol{g}_{\chi} = 0$$

Simplification 2:

EOM for momentum density
$$(\boldsymbol{g} = g_0 \hat{\boldsymbol{x}} + \boldsymbol{g}_{\perp}, \boldsymbol{g}_{\perp} = \delta \boldsymbol{g}_L + \delta \boldsymbol{g}_T)$$

$$\gamma \partial_t \boldsymbol{g}_{\perp} + \lambda_1 g_0 \partial_x \boldsymbol{g}_{\perp} + \lambda_1 \boldsymbol{g}_{\perp} \cdot \boldsymbol{\nabla}_{\perp} \boldsymbol{g}_{\perp} + \lambda_2 \boldsymbol{g}_{\perp} \boldsymbol{\nabla}_{\perp} \cdot \boldsymbol{g}_{\perp} + \lambda_3 \boldsymbol{\nabla}_{\perp} (|\boldsymbol{g}_{\perp}|^2)$$

= $-\beta |\boldsymbol{g}_{\perp}|^2 \boldsymbol{g}_{\perp} - \kappa_1 \boldsymbol{\nabla} \rho + \mu_1 (\boldsymbol{\nabla}_{\perp}^2 + \partial_x^2) \boldsymbol{g}_{\perp} + \mu_2 \boldsymbol{\nabla}_{\perp} (\boldsymbol{\nabla}_{\perp} \cdot \boldsymbol{g}_{\perp})$
 $+ \mu_3 g_0^2 \partial_x^2 \boldsymbol{g}_{\perp} + \boldsymbol{f}$

 Martin-Siggia-Rose-de Dominicis-Janssen → Ansatz for effective action

- Martin-Siggia-Rose-de Dominicis-Janssen → Ansatz for effective action
- Same couplings as in microscopic action

- Martin-Siggia-Rose-de Dominicis-Janssen → Ansatz for effective action
- Same couplings as in microscopic action
- Keep only nonlinearities relevant in $d = 4 \epsilon$

- Martin-Siggia-Rose-de Dominicis-Janssen → Ansatz for effective action
- Same couplings as in microscopic action
- Keep only nonlinearities relevant in $d = 4 \epsilon$

$$\Gamma_{k}\left[\overline{\boldsymbol{g}}_{\perp},\boldsymbol{g}_{\perp},\overline{\rho},\rho\right] = \int \{\overline{\rho}[\partial_{t}\rho + \boldsymbol{\nabla}_{\perp}\cdot\boldsymbol{g}_{\perp}] - D|\overline{\boldsymbol{g}}_{\perp}|^{2} + \overline{\boldsymbol{g}}_{\perp}\cdot[\gamma\partial_{t}\boldsymbol{g}_{\perp} + \lambda_{1}g_{0}\partial_{x}\boldsymbol{g}_{\perp}] \}$$

$$+\lambda_1 \boldsymbol{g}_{\perp} \cdot \boldsymbol{\nabla}_{\perp} \boldsymbol{g}_{\perp} + \lambda_2 \boldsymbol{g}_{\perp} \boldsymbol{\nabla}_{\perp} \cdot \boldsymbol{g}_{\perp} + \lambda_3 \boldsymbol{\nabla}_{\perp} (|\boldsymbol{g}_{\perp}|^2) + \beta |\boldsymbol{g}_{\perp}|^2 \boldsymbol{g}_{\perp} + \kappa_1 \boldsymbol{\nabla} \rho$$
$$-\mu_1 (\boldsymbol{\nabla}_{\perp}^2 + \partial_x^2) \boldsymbol{g}_{\perp} - \mu_2 \boldsymbol{\nabla}_{\perp} (\boldsymbol{\nabla}_{\perp} \cdot \boldsymbol{g}_{\perp}) - \mu_3 g_0^2 \partial_x^2 \boldsymbol{g}_{\parallel} \}$$

Regulator

Regulator

• Sharp regulator for q_{\perp} only

$$R_k(\boldsymbol{q}_{\perp}, \boldsymbol{q}_x, \omega) = \Gamma_k^{(2)}(\boldsymbol{q}_{\perp}, \boldsymbol{q}_x, \omega) \left(\frac{1}{\Theta_{\epsilon}(|\boldsymbol{q}_{\perp}| - k)} - 1\right)$$

Regulator

• Sharp regulator for q_{\perp} only

$$R_k(\boldsymbol{q}_{\perp}, q_x, \omega) = \Gamma_k^{(2)}(\boldsymbol{q}_{\perp}, q_x, \omega) \left(\frac{1}{\Theta_{\epsilon}(|\boldsymbol{q}_{\perp}| - k)} - 1\right)$$

- q_x and ω remain unregulated
- $\rightarrow \omega$ and q_{\perp} Integrals can be performed analytically

Two possible fixed points

Two possible fixed points • $\frac{\overline{\kappa}_1^7}{\overline{\lambda}_g^{13}} = 0, \, \eta_{\chi} = 0 \rightarrow \text{TT95}$

Two possible fixed points • $\frac{\overline{\kappa}_1^7}{\overline{\lambda}_g^{13}} = 0, \eta_x = 0 \rightarrow \text{TT95}$ • $\partial_k \frac{\overline{\kappa}_1^7}{\overline{\lambda}_g^{13}} = 0, \eta_x > 0 \rightarrow \text{New Fixed point}$

Two possible fixed points

$$\frac{\overline{\kappa}_{1}^{7}}{\overline{\lambda}_{g}^{13}} = 0, \ \eta_{x} = 0 \rightarrow \text{TT95}$$

$$\partial_{k} \frac{\overline{\kappa}_{1}^{7}}{\overline{\lambda}_{g}^{13}} = 0 \quad \eta_{x} > 0 \rightarrow \text{New Fixed point}$$

$$\text{Nontrivial Scaling Relation}$$

$$7(2z - 2) = 13(z - \zeta)$$

 \rightarrow 3 scaling relations fix exponents

2 other vanishing loop corrections

 \rightarrow 3 scaling relations fix exponents

$$\chi = \frac{13(1-d)}{40}, \qquad z = \frac{27+13d}{40}, \qquad \zeta = \frac{41-d}{40}$$

Scaling Exponents

Scaling Exponents

Fixed points*

*Qualitative Flow: Flow lines are fictitious

Gauss.

• We used nonperturbative, functional RG to study a simplified TT model

- We used nonperturbative, functional RG to study a simplified TT model
- TT UC applies for

$$\frac{11}{3} (\approx 3.67) < d < 4$$

Gauss.

- We used nonperturbative, functional RG to study a simplified TT model
- TT UC applies for

 $\frac{11}{3} (\approx 3.67) < d < 4$

 Below d = 11/3, a new UC emerges, whose scaling exponents agree remarkably well with simulation in 2D & 3D

Thank you!

IMPERIAL

Andrew Killeen Sulaimaan Lim Sam Whitby Alastar Phelan John-Antonio Argyriadis Adam Kline

Chiu Fan Lee Léonie Canet Gunnar Pruessner

P. Jentsch, C.F. Lee, Phys. Rev. Lett. 133, 128301 (2024)