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Higgs mass fine-tuning

e The puzzle: take the Standard Model and consider radiative corrections to
the Higgs mass. Quadratically divergent diagrams
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lead to the term 5mfl ocftzAz, f, - top quark Yukawa coupling, A - the
ultraviolet cutoff of the theory, i.e. the place where the Standard Model is

substituted by the more fundamental theory of Nature. Since m; << /A, one

has to fine-tune the tree Higgs mass My to cancel the radiative
correction(s). The amount of fine-tuning:
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Cosmological constant
fine-tuning
The similar logic can be applied to vacuum energy €,5¢:
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The radiative corrections are proportional to the fourth power of the
cutoff scale, 0€y5c A? leading to even higher degree of fine-tuning
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Two problems

1. Why the physical values of the Higgs mass and
of the cosmological constant are much smaller

than the scale of new physics (cutoff A) ?

2. Why the tree values of these parameters are so
fine-tuned to the radiative corrections?



Naturalness

- These fine tunings must be avoided at any price!

- The cutoff A must be of the order of the Fermi

scale to screen the influence of high energy domain
from low energy domain (SUSY, composite Higgs
boson, large extra dimensions) ?



Natural theories

e SUSY: cancellation of quadratic divergences between bosons and
fermions

e Composite Higgs boson: no fundamental scalars

e Large extra dimensions: fundamental constant of gravity - Planck
scale - is of the order of electroweak scale

« Cosmological evolution leading to my; < A ?

 Environmental selection leading to my,; < A ?

Generically, all these proposals lead to some kind of new physics
right above the Fermi scale.



“Natural” spectrum versus “Unnatural” spectrum
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This problem attracted a lot of attention

The number of articles which mention

“hierarchy problem” or Credit: Oleg Ruchayskiy
“fine-tuning” or https://www.prophy.science
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Gauge symmetry hierarchies
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Origin of the fine-tunings

The core of the problem: quadratic (or quartic, if we talk about the
cosmological constant) divergences, inevitably appearing in

Feynman diagrams with loops in theories with fundamental scalar
fields

Renormalisation:

e Regularise UV divergent expressions (cutoff, Pauli-Villars,
dimreg,...)

e Subtract divergences (this is exactly where fine-tunings show up)

e Get finite values for physical observables
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Renormalisable theory

Input:
several finite parameters
of the theory
Multiplicative renormalisation: Output:
infinities, regularisation, Infinite number of
counter-terms, lattice, # physical observables:
fine-tuned cancellations finite values
The presence of ultra-violet divergences, even though they are cancelled
by renormalization counterterms, means that in any process there are
Non-renormalisable theory contributions from quantum fluctuations on ¢very distance scale.
Input: page 1

Infinite number of finite

parameters of the theory RENORMALIZATION

Anintroduction to renormalization, the renormalization group, and the
operator-product expansion

JOHN C.COLLINS

Illinois Institute of Technology



Renormalisable theory
Input:

several finite parameters
of the theory

Output:

Infinite number of
physical observables:
finite values

Finite formulation of QFT

Non-renormalisable theory
Input:

infinite number of finite
parameters of the theory



Hierarchy problem in finite
formulations of QFT?

No infinities (quartic, quadratic, log) in finite QFT - perhaps,
no fine-tunings? Indeed, if all expressions are finite, the
computation of low energy observables should not require the
knowledge of the UV domain of the theory.

The existence of such a formalism without large cancellations
would challenge the “naturalness” paradigm.

If just one particular formalism of computations in QFT without
necessity of fine-tunings is found, it will provide a strong
argument that the problem of quantum stability of the
electroweak scale against radiative corrections is formalism
dependent and thus unphysical.
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Finite formulations of QFT

Bogolubov-Parasuk-Hepp-Zimmermann TO THe T on
(B P H Z) QUANTIZED FIELDS
THIRD EDITION
A certain procedure, called “R-operation” N N BOGOLIVBOY Aohe oy ¢
i : D. V. SHIRKOV = o ‘
Is applied to any Feynman graph A R LT
before performing integrations over internal PP —

momenta) changing the integrand prescribed
by the Feynman rules to another one. The
resulting expression is then integrated, with no
infinities encountered. The R-operation can be
used in both renormalisable and non-
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Finite formulations of QFT

Callan-Symanzik - inspired finite
renormalisation equations

Usually, CS equations are represented as a tool
for the renormalisation group investigation of
the high energy behaviour of the renormalised
amplitudes. However, the same equations can
be used for the construction of the divergence-
free and thus completely finite perturbation
theory.

FIELD THEORY RENORMALIZATION
USING THE CALLAN-SYMANZIK EQUATION

A.S. BLAER
Physics Department, Princeton University, Princeton, N.J. 08540, USA

K. YOUNG
Physics Department, The Chinese University of Hong Kong, Hong Kong

Received 18 June 1974
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Broken Scale Invariance in Scalar Field Theory*

Curtis G. CaLLAN, JR.T

California Institute of Technology, Pasadena, California 91109
and
Institute for Advanced Study, Princeton, New Jersey 08540

(Received 4 June 1970)
We use scalar-field perturbation theory as a laboratory to study broken scale invariance. We pay particular
attention to scaling laws (Ward identities for the scale current) and find that they have unusual anomalies
whose presence might have been guessed from renormalization-group arguments. The scaling laws also

appear to provide a relatively simple way of computing the renormalized amplitudes of the theory, which
sidesteps the overlapping-divergence problem.

Commun. math. Phys. 18, 227246 (1970)
© by Springer-Verlag 1970

Small Distance Behaviour in Field Theory
and Power Counting

K. Symanzik
Deutsches Elektronen-Synchrotron DESY, Hamburg

Received May 12, 1970

INTRODUCTION TO RENORMALIZATION THEORY

Curtis G. CALLAN, Jr.

Department of Physics, Joseph Henry Laboratories,
Princeton Unliversity, Jadwin Hall, PO Box 708,
Princeton, NJ 08540



Finite formulations of QFT

t’Hooft: Exact equations for irreducible two-,
three -, and four-point vertices which do not
contain any ultraviolet infinities. The idea is that
any divergent n-point function can be rendered
finite by subtracting the same n-point function
evaluated at different values for the external
momenta. This difference can be interpreted as
a new irreducible Feynman diagram with n+1
external lines. Integrating these “difference
diagrams” with respect to the external
momenta yields renormalisation group
equations. Potentially, these equations may
result in a completely non-perturbative and
divergence-free definition of the theory.

Lehmann, Symanzik and Zimmermann
Nishijima
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RENORMALIZATION WITHOUT INFINITIES *

Gerard 't Hooft
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Callan-Symanzik method as a
finite approach to QFT

ldea of the method: @-operation,

Fé )(k'Q) — —171 X W F( )(k'Q)
0

e Graphically: cut propagator in two
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e Result: 0-operation renders diagrams more convergent (it reduces degree
of divergence by two)
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Callan-Symanzik method as a
finite approach to QFT

Ingredients for the simplest scalar theory:

e Lagrangian:
Everything is finite!

L= Lo g Ly
2 2 4
e Equations for vertices with n legs '™ and new, O-type vertices:

) = _ | 0 0 | g
2im~(1+y)- )P =|\m —+f — | +n-y| TV

2im2(1+ ).f*(n)__ m 0 lﬁi +n-v+ _1"(”)
4 00 ! Y T 7o 0
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Callan-Symanzik method as a
finite approach to QFT

Boundary conditions, valid in all orders of A:

[i f(2)(k2)] — i @ (k2 — 0) = im?, ' (k* = O) = —il.
dk? =0

First order, tree approximations for 2 and 4 point functions, computed:
0-operation: cuts the

(2 N ) 2 (4] — :
In )],10 =i(k*+m?) , |If )h = —il propagator in two
One-loop finite expressions, computed:

(P g XX+ XX
0 1) 3272 x(1 = x)x? + m?

3 opt 0

[f(Z)] _ 41
00|, 3272 m2 n

The unknown quantities f3, v, 7, , and the vertices are to be out by iterative procedure from these
equations and boundary conditions. No infinities appear at any step of computation at any loop order.

19



Fine-tunings with two mass scales
In multiplicative renormalisation

Theory with two well separated physical mass scales, M, ¢ > 1

1 1 m? M? /145 Apd A
L=—0¢0"¢+— acbacb—— 2_ -2 2902 - 2ot
2 0P+ 50, P 4!¢ o 7 4

Standard approach, multiplicative renormalisation MS bar scheme, need to highly
fine-tune the Lagrangian parameters m and M:

Qo

_ id,m? 2 il oM? 2
F(2¢)=i(k2+mz)—3§ (1+1 . >— ;”q’ (1+1n”—>

T2 m2
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Absence of fine-tunings
in finite QFT

* The same Lagrangian

e Equations for vertices T'"? and new, O-type
vertices:

(1) (1) (1) (1) (n)
Fé’,m ’ F@,M ’ F@Q,mm ’ 1—1(919,MM ’ and F@H,mM
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First CS equation: 2x1 matrix equation

=(n,N) i 2 !
| Fe,m B 0/0m 5 25)\1’,77@ 4
-G ( p(n,N) ) — ( 0/OM? ) +ZL:( %5/\@1\4 ) OA;

n({ L~ N ([ L e, ]
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Second CS equation: 2x2 matrix equation

M? I I
7
Trvesm 1+ vaM Loo,mm  Too,mm

_|( 9/om? Bam/2m2 \ 0 nf Ay /m? N [ ~vom/m? i i
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Absence of fine-tunings
in finite QFT

e Boundary conditions, valid in all orders of A:

lﬁ F(2¢)(k2)] [P (k* =0) = im?
k2=0

[ﬁ F<2‘D><k2>] =1, [ (k2 = 0) = iM”
k>=0
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Absence of fine-tunings
in finite QFT

* First order, tree approximations for 2 point functions,
computed:

TP =i (R4 m?) L [TOP] =i (K24 M2)
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* One-loop finite expressions, computed:

[f(qu) ] __ " 1 [f(qu) ] _0. [f(2¢) ] __ e 1
60,mm P 3271-2 m2 ’ 60,mM P 00.MM 2 3271-2 M2

» Result, valid in all orders: no fine-tunings are needed, m and

Mypys @re small, M and M, ¢ are large.
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Cosmological constant

The same consideration applies to the cosmological constant €¢,,,. = A , related to
the zero point function O (Casimir effect, effective potential, etc). New object:

) Q¢ \2+m2) 32722 m2
Equations for .

i.f(00)=< 0 IB_ YA a>1:,(0)

om? 2m? oA
cpo _ 9 ﬂ 9 . 9 \ro
00 om2 2m2 oA )

0 0 YA 0 —
i-TO = —+ + )
000 <0m2 P 0L 2m?2 oA ) %

lead to finite and tuning free computation of physical observables, such as the
Casimir energy or effective potential.
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PHYSICAL REVIEW D VOLUME 14, NUMBER 6 1S SEPTEMBER 1976

Gauge-symmetry hierarchies™

Eldad Gildener
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 15 June 1976)

It is shown that one cannot artifically establish a gauge hierarchy of any desired magnitude by arbitrarily
adjusting the scalar-field parameters in the Lagrangian and using the tree approximation to the potential;
radiative corrections will set an upper bound on such a hierarchy. If the gauge coupling constant is
approximately equal to the electromagnetic coupling constant, the upper bound on the ratio of vector-meson
masses is of the order of a~'’?, independent of the sclar-field masses and their self-couplings. In particular, the
usual assumption that large scalar-field mass ratios in the Lagrangian can induce large vector-meson mass
ratios is false. A thus far unsuccessful search for natural gauge hierarchies is briefly discussed. It is shown
that if such a hierarchy occurred, it would have an upper bound of the order of a™~'/%,

No problem in finite formulation of QFT!

Construct effective potential V(¢h, @) out of I', T, Ty, and 'y, Use
equations CS equations for effective potential with boundary

conditions dV/d¢g = v, dV/d® = V with V > v. No fine-tunings
between tree values and radiative corrections!



Equation for effective action

From equations for the Greens functions, qb4 theory:

i 2 (1) _ J J (1)
2im° (1+y) 17 = m—+ﬁa— +n-y| T

_ om A
2im2(1+y)-f(”)= miq_ﬂi +n-y+y, f‘(”)
% 1 om oA 0
one can get equations for effective action
1
| = Z de4x1...d4xn F.(_’%m(xl...xn)gb(xl)...qﬁ(xn), namely

n

0 0 )

| o 0
21m2 (1 +}/) . Feff,@@ — [<m - +1B _> +}/(9+}/_] Feff,@

Effective potential: consider space-time independent fields.
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Solution in one loop, O(h)

* Feed in finite expression for

S
1420

2m?

Ietr00 = 3072 log

» Solve second order differential equation for I' [ ¢p/m].

e Find anomalous dimensions from requirement of regularity of I' x[¢/m] for ¢p — O:

A 5 — 347
T 16x2” "t 16a2

Yo

* Potential is determined up to two arbitrary constants, to be fixed by the physical
mass and coupling constant.

All computations are explicitly finite, no fine-tunings are needed. The same is true for
the theory with two scalar fields with hierarchical vevs.
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Non-renormalisable theories

Most general action for scalar field, O, is the full set of operators with mass dimension n, 4,
is the set of dimensionless constants:

1 m? — 1.0
L=—aaﬂ———2—§:””
2 P 2‘¢ e =

Relevant diagrams can be made finite by acting on it by @-operation several times.
Equations for effective actions:

] l

i d d 5
’ om  &"o) 5

I 0 0 5 |
2im2 (1 +}/) 'Feﬂ?g(g: m + ﬂi TYtV Feff@
’ 2 ol sp | ot

l

...000...=...00, ...0000...=...000,...
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Non-renormalisable theories

All equations can be combined in one by
introducing a #-dependent functional:

[2m <%—l(1+}’)i>+}’e 90%+7¢— Zﬁaﬂ] [efil0, @] =

Here

o0 Hn
I'effl0, p] = Z Feﬁ,ne[Cb]g
n=0 '

31



Solution in one loop,

O(h), O(1/M?)

Example of computation with 6-dimensional operators:

1 m? o A g ; f
P =0 oD — —p? — —p* — 6 4 24) + 3
2 u$9"P 2 % 4!¢ 6!M2¢ M2¢( ?) 3!M2¢
Reparametrisation freedom:
> GO
A F VIRV

allows to remove terms « & and f, the only relevant operator is
x ¢h°
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Solution in one loop,

O(h), O(1/M?)

* Feed in finite expression for

1 Ap? g ¢°
)= ——— [1 + 22 ]
00 3272 " 2m?2  4'M? m? Q

» Solve second order differential equation for I' [/ m].

e Find anomalous dimensions from requirement of regularity of I' .«[¢/m] for
A 3)° gm? - 15g4

) — + ) -
1672 P 1672 1672M? Pe 1672

$—0: y=

e Potential is determined up to two arbitrary constants, to be fixed by the physical
mass and coupling constant.

All computations are explicitly finite, no fine-tunings are needed. The procedure
can be repeated in higher orders of 2 and 1/M?, Og 1 = $°, Og, = [(dﬂgb)z]2
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Conclusions

* Finite QFT formulation based on Callan-Symanzik equations does not
require any fine-tunings in the theories with well separated mass scales,
both in renormalisable and non-renormalisable QFTs.

* The so-called hierarchy problem (the sensitivity of low energy physics to
high energy physics) depends on the formulation of quantum field theory,
and is absent in finite formulation of QFT.

* The conclusions drawn about new physics in finite QFT approach are
very different from those of the standard one: “naturalness” leads to the
conjecture about the existence of new physics right above the Fermi
scale, whereas the use of a finite formulation of QFT says that no such a
conclusion can be made on physical grounds.

* Though the problem of the quantum stability of the Higgs mass and of
cosmological constant can be resolved by finite QFT, the question about
the origin of widely separated scales in Nature (such as vacuum energy,
Fermi, GUT or Planck scale) remains.
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Remarks

At the technical side, the CS method as it stands cannot
work for massless particles, such as gauge bosons or
gravitons. However, this problem occurs in the infrared rather
than in the UV. Therefore, we expect that a “gauge symmetry
preserving generalisation” of the CS method does not change
the hierarchy discussion. The 't Hooft method does not seem
to have this problem.

* The CS method is rooted to perturbation theory. Does it
incorporate non-perturbative effects, such as instantons, etc?

* Relation of CS equations for effective action/potential to
ERG?

35



