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Higgs mass fine-tuning
• The puzzle: take the Standard Model and consider radiative corrections to 

the Higgs mass. Quadratically divergent diagrams  


lead to the term ,    - top quark Yukawa coupling,   -  the 
ultraviolet cutoff of the theory, i.e. the place where the Standard Model is 
substituted by the more fundamental theory of Nature.  Since , one 
has to fine-tune the tree Higgs mass  to cancel the radiative 
correction(s). The amount of fine-tuning:
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The similar logic can be applied to vacuum energy : 


The radiative corrections are proportional to the fourth power of the 
cutoff scale,  leading to even higher degree of fine-tuning
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Two problems
1.  Why the physical values of the Higgs mass and 

of the cosmological constant are much smaller 
than the scale of new physics (cutoff ) ?


2.  Why the tree values of these parameters are so 
fine-tuned to the radiative corrections? 


Λ
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Naturalness

 -  These fine tunings must be avoided at any price!  


-   The cutoff  must be of the order of the Fermi 
scale to screen the influence of high energy domain 
from low energy domain (SUSY, composite Higgs 
boson, large extra dimensions) ?


Λ
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• SUSY: cancellation of quadratic divergences between bosons and 
fermions


• Composite Higgs boson: no fundamental scalars


• Large extra dimensions: fundamental constant of gravity - Planck 
scale - is of the order of electroweak scale


• Cosmological evolution leading to  ?


• Environmental selection leading to  ?


 Generically, all these proposals lead to some kind of new physics 
right above the Fermi scale.

mH ≪ Λ

mH ≪ Λ

Natural theories
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The number of articles which mention 

“hierarchy problem” or 

“fine-tuning” or 

“naturalness”

is very large:

Credit: Oleg Ruchayskiy
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This problem attracted a lot of attention

Susskind ’84: 

The Gauge Hierarchy Problem 

muon g-2?


flavour 

non-universality?Technicolor?

https://www.prophy.science


The core of the problem: quadratic (or quartic, if we talk about the 
cosmological constant) divergences, inevitably appearing in 
Feynman diagrams with loops in theories with fundamental scalar 
fields 


Renormalisation:

• Regularise UV divergent expressions (cutoff, Pauli-Villars, 

dimreg,…)


• Subtract divergences (this is exactly where fine-tunings show up)


• Get finite values for physical observables

Origin of the fine-tunings
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Renormalisable theory

Input:

several finite parameters

of the theory

Non-renormalisable theory

Input:

infinite number of finite 

parameters of the theory

Output:

Infinite number of

physical observables:

finite values

Multiplicative renormalisation:

infinities, regularisation, 

counter-terms, lattice,

fine-tuned cancellations
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Renormalisable theory

Input:

several finite parameters

of the theory

Non-renormalisable theory

Input:

infinite number of finite 

parameters of the theory

Output:

Infinite number of

physical observables:

finite values

Finite formulation of QFT
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Hierarchy problem in finite 
formulations of QFT?

No  infinities (quartic, quadratic, log)  in finite QFT - perhaps, 
no fine-tunings? Indeed, if all expressions are finite, the 
computation of low energy observables should not require the 
knowledge of the UV domain of the theory.


 The existence of such a formalism without large cancellations 
would challenge the “naturalness” paradigm. 


If just one particular formalism of computations in QFT without 
necessity of fine-tunings is found, it will provide a strong 
argument that the problem of quantum stability of the 
electroweak scale against radiative corrections is formalism 
dependent and thus unphysical.
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Finite formulations of QFT

Bogolubov-Parasuk-Hepp-Zimmermann 
(BPHZ)


A certain procedure, called “R-operation” 

is applied to any Feynman graph 

 before performing integrations over internal 
momenta) changing the integrand prescribed 
by the Feynman rules  to another one. The 
resulting expression is then integrated, with no 
infinities encountered. The R-operation can be 
used in both renormalisable and non-
renormalisable field theories. 
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Finite formulations of QFT

Callan-Symanzik - inspired finite 
renormalisation equations 


Usually, CS equations are represented as a tool 
for the renormalisation group investigation of 
the high energy behaviour of the renormalised 
amplitudes. However, the same equations can 
be used for the construction of the divergence-
free and thus completely finite perturbation 
theory.
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Finite formulations of QFT
t’Hooft: Exact equations for  irreducible two-, 
three -, and four-point vertices which do not 
contain any ultraviolet infinities. The idea is that 
any divergent n-point function can be rendered 
finite by subtracting the same n-point function 
evaluated at different values for the external 
momenta. This difference can be interpreted as 
a new irreducible Feynman diagram with n+1 
external lines. Integrating these “difference 
diagrams” with respect to the external 
momenta yields renormalisation group 
equations. Potentially, these equations may 
result in a completely non-perturbative and 
divergence-free definition of the theory.


Lehmann, Symanzik and Zimmermann 


Nishijima
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Callan-Symanzik method as a 
finite approach to QFT
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Idea of the method:  -operation, 





• Graphically: cut propagator in two





• Result: θ-operation renders diagrams more convergent (it reduces degree 
of divergence by two)

θ
<latexit sha1_base64="bSPycMmGnbpiF5TMf8RRpaaOn5g="></latexit>
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Callan-Symanzik method as a 
finite approach to QFT

Ingredients for the simplest scalar theory:


• Lagrangian: 





• Equations for vertices with n legs  and new, -type vertices:


 


L =
1
2

∂μϕ∂μϕ −
m2

2
ϕ2 −

λ
4!

ϕ4

Γ̄(n) θ

2im2 (1 + γ) ⋅ Γ̄(n)
θ = [(m

∂
∂m

+ β
∂
∂λ ) + n ⋅ γ] Γ̄(n)

2im2 (1 + γ) ⋅ Γ̄(n)
θθ = [(m

∂
∂m

+ β
∂
∂λ ) + n ⋅ γ + γθ] Γ̄(n)

θ

Everything is finite!
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Callan-Symanzik method as a 
finite approach to QFT

Boundary conditions, valid in all orders of :





First order, tree approximations for 2 and 4 point functions, computed:





One-loop finite expressions, computed:





 


The unknown quantities  , and the vertices are to be out by iterative procedure from these 
equations and boundary conditions. No infinities appear at any step of computation at any loop order.

λ

[ d
dk2

Γ̄(2)(k2)]
k2=0

= i, Γ̄(2) (k2 = 0) = im2, Γ̄(4) (k2 = 0) = − iλ .

[Γ̄(2)]λ0
= i (k2 + m2) , [Γ̄(4)]λ

= − iλ

[Γ̄(4)
θ ]λ2

= −
λ2

32π2 ∑
3 opt

∫
1

0
dx

1
x(1 − x)κ2

1 + m2

[Γ̄(2)
θθ ]λ

= −
iλ

32π2

1
m2

β, γ, γθ

-operation: cuts the 

propagator in two
θ
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Fine-tunings with two mass scales 
in multiplicative renormalisation

 Theory with two well separated physical mass scales, 





Standard approach, multiplicative renormalisation MS bar scheme, need to highly 
fine-tune the Lagrangian parameters m and M:


Mphys ≫ mphys

L =
1
2

∂μϕ∂μϕ +
1
2

∂μΦ∂μΦ −
m2

2
ϕ2 −

M2

2
Φ2 −

λϕ

4!
ϕ4 −

λϕΦ

4
ϕ2Φ2 −

λΦ

4!
Φ4

Γ̄(2ϕ) = i(k2 + m2) −
iλϕm2

32π2 (1 + ln
μ2

m2 ) −
iλϕΦM2

32π2 (1 + ln
μ2

M2 )
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Absence of fine-tunings  
in finite QFT

• The same Lagrangian


• Equations for vertices   and new, -type 
vertices: 


Γ̄(n) θ

Γ̄(n)
θ,m , Γ̄(n)

θ,M , Γ̄(n)
θθ,mm , Γ̄(n)

θθ,MM , and Γ̄(n)
θθ,mM
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First CS equation: 2x1 matrix equation
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Second CS equation: 2x2 matrix equation



Absence of fine-tunings  
in finite QFT

• Boundary conditions, valid in all orders of : 
λ

[ d
dk2

Γ̄(2ϕ)(k2)]
k2=0

= i , Γ̄(2ϕ) (k2 = 0) = im2

[ d
dk2

Γ̄(2Φ)(k2)]
k2=0

= i , Γ̄(2Φ) (k2 = 0) = iM2
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Absence of fine-tunings  
in finite QFT

• First order, tree approximations for 2 point functions, 
computed:


• 


• One-loop finite expressions, computed:





• Result, valid in all orders: no fine-tunings are needed, m and 
 are small, M and  are large. 

[Γ̄(2ϕ)]λ0
= i (k2 + m2) , [Γ̄(2Φ)]λ0

= i (k2 + M2) .

[Γ̄(2ϕ)
θθ,mm]λ

= −
iλϕ

32π2

1
m2

, [Γ̄(2ϕ)
θθ,mM]λ

= 0 , [Γ̄(2ϕ)
θθ,MM]λ

= −
iλϕΦ

32π2

1
M2

mphys Mphys
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Cosmological constant
 The same consideration applies to the cosmological constant  , related to 
the zero point function  (Casimir effect, effective potential, etc). New object:





Equations for :











lead to finite and tuning free computation of physical observables, such as the 
Casimir energy or effective potential.

ϵvac ≡ Λ
Γ̄(0)

Γ̄(0)
θθθ = 2 ×

1
2

× (−1)3 ∫
d4l

(2π)4 ( −i
l2 + m2 )

3

=
1

32π2

1
m2

Γ̄(0)

i ⋅ Γ̄(0)
θ = ( ∂

∂m2
+ β

∂
∂λ

+
γΛ

2m2

∂
∂Λ ) Γ̄(0)

i ⋅ Γ̄(0)
θθ = ( ∂

∂m2
+ β

∂
∂λ

+
γΛ

2m2

∂
∂Λ ) Γ̄(0)

θ

i ⋅ Γ̄(0)
θθθ = ( ∂

∂m2
+ β

∂
∂λ

+
γΛ

2m2

∂
∂Λ ) Γ̄(0)

θθ
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No problem in finite formulation of QFT!


Construct effective potential  out of . Use 
equations CS equations for effective potential with boundary 
conditions   with . No fine-tunings 
between tree values and radiative corrections!

V(ϕ, Φ) Γ̄, Γ̄θ, Γ̄θθ, and Γ̄θθθ

dV/dϕ = v, dV/dΦ = V V ≫ v



Equation for effective action
From equations for the Greens functions,  theory:





one can get equations for effective action


, namely








Effective potential: consider space-time independent fields.

ϕ4

2im2 (1 + γ) ⋅ Γ̄(n)
θ = [(m

∂
∂m

+ β
∂
∂λ ) + n ⋅ γ] Γ̄(n)

2im2 (1 + γ) ⋅ Γ̄(n)
θθ = [(m

∂
∂m

+ β
∂
∂λ ) + n ⋅ γ + γθ] Γ̄(n)

θ

Γeff ...θ... = ∑
n

1
n! ∫ d4x1…d4xn Γ(n)

...θ...(x1…xn)ϕ(x1)…ϕ(xn)

2im2 (1 + γ) ⋅ Γeff,θ = [(m
∂

∂m
+ β

∂
∂λ ) + γ

δ
δϕ ] Γeff

2im2 (1 + γ) ⋅ Γeff,θθ = [(m
∂

∂m
+ β

∂
∂λ ) + γθ + γ

δ
δϕ ] Γeff,θ
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Solution in one loop, 𝒪(ℏ)
• Feed in finite expression for 





• Solve second order differential equation for .


•  Find anomalous dimensions from requirement of regularity of  for :




• Potential is determined up to two arbitrary constants, to be fixed by the physical 
mass and coupling constant.


 All computations are explicitly finite, no fine-tunings are needed. The same is true for 
the theory with two scalar fields with hierarchical vevs.

Γeff,θθ = −
1

32π2
log [1 +

λϕ2

2m2 ]
Γeff[ϕ/m]

Γeff[ϕ/m] ϕ → 0

γθ =
λ

16π2
, βλ =

3λ2

16π2
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Non-renormalisable theories
Most general action for scalar field,  is the full set of operators with mass dimension n,  
is the set of dimensionless constants:





Relevant diagrams can be made finite by acting on it  by -operation several times. 
Equations for effective actions:








,    

On λn

L =
1
2

∂μϕ∂μϕ −
m2

2
ϕ2 −

∞

∑
n=4

λnOn

Mn−4

θ

2im2 (1 + γ) ⋅ Γeff,θ = [(m
∂

∂m
+ ∑

i

βi
∂

∂λi ) + γ
δ

δϕ ] Γeff

2im2 (1 + γ) ⋅ Γeff,θθ = [(m
∂

∂m
+ ∑

i

βi
∂

∂λi ) + γθ + γ
δ

δϕ ] Γeff,θ

…θθθ… = …θθ …θθθθ… = …θθθ, …
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Non-renormalisable theories

All equations can be combined in one by 
introducing a -dependent functional:





Here


 

θ

[2m2( ∂
∂m2

− i(1 + γ)
∂
∂θ ) + γθ θ

∂
∂θ

+ γ ϕ
δ

δϕ
+ ∑

i

βi
∂

∂λi
]Γeff[θ, ϕ] = 0

Γeff[θ, ϕ] =
∞

∑
n=0

Γeff,nθ[ϕ]
θn

n!
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Solution in one loop, 
𝒪(ℏ), 𝒪(1/M2)

 Example of computation with 6-dimensional operators:





Reparametrisation freedom: 





allows to remove terms , the only relevant operator is 

ℒ =
1
2

∂μϕ∂μϕ −
m2

2
ϕ2 −

λ
4!

ϕ4 −
g

6!M2
ϕ6 +

ξ
M2

ϕ(□2ϕ) +
f

3!M2
ϕ3 □ ϕ

ϕ → ϕ + C1
ϕ3

M2
+

C2 □ ϕ
M2

∝ ξ and f
∝ ϕ6
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Solution in one loop, 
𝒪(ℏ), 𝒪(1/M2)

• Feed in finite expression for 





• Solve second order differential equation for .


• Find anomalous dimensions from requirement of regularity of  for 

:  


• Potential is determined up to two arbitrary constants, to be fixed by the physical 
mass and coupling constant.


 All computations are explicitly finite, no fine-tunings are needed. The procedure 
can be repeated in higher orders of , 

Γθθ = −
1

32π2
ln[1 +

λϕ2

2m2
+

g
4!M2

ϕ4

m2 ]
Γeff[ϕ/m]

Γeff[ϕ/m]

ϕ → 0 γθ =
λ

16π2
, βλ =

3λ2

16π2
+

gm2

16π2M2
, βg =

15gλ
16π2

ℏ and 1/M2 O8,1 = ϕ8, O8,2 = [(∂μϕ)2]2
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Conclusions
• Finite QFT formulation based on Callan-Symanzik equations  does not 
require any fine-tunings in the theories with well separated mass scales, 
both in renormalisable and non-renormalisable QFTs.


• The so-called hierarchy problem (the sensitivity of low energy physics to 
high energy physics) depends on the formulation of quantum field theory, 
and is absent in finite formulation of QFT. 


• The conclusions drawn about new physics in finite QFT approach are 
very different from those of the standard one: “naturalness” leads to the 
conjecture about the existence of new physics right above the Fermi 
scale, whereas the use of a finite formulation of QFT says that no such a 
conclusion can be made on physical grounds.


• Though the problem of the quantum stability of the Higgs mass and of 
cosmological constant can be resolved by finite QFT, the question about 
the origin of widely separated scales in Nature (such as vacuum energy, 
Fermi, GUT or Planck scale) remains. 
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Remarks

• At the technical side, the CS method as it stands cannot 
work for massless particles, such as gauge bosons or 
gravitons. However, this problem occurs in the infrared rather 
than in the UV. Therefore, we expect that a “gauge symmetry 
preserving generalisation” of the CS method does not change 
the hierarchy discussion. The ’t Hooft method does not seem 
to have this problem.


• The CS method is rooted to perturbation theory. Does it 
incorporate non-perturbative effects, such as instantons, etc? 


• Relation of CS equations for effective action/potential to 
ERG?
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