
Renormalization of scalar  
Effective Field Theories  

from Geometry

Based on [2308.06315] and [2310.19883] 

in collaboration with Jenkins, Manohar and Naterop

ERG 2024 

Sep. 24

 Julie Pagès 

 UC San Diego



EFTs for New Physics



Julie Pagès — UCSD — Renormalization of EFTs from Geometry /353

The Standard Model of Particle Physics

ℒSM = − 1
4 F2

μν + ψ̄iiD/ ψi + (ψ̄LiYijH(†)ψRj + h.c.) + ℒHiggsSM

Extremely predictive theory, but still incomplete: 

- neutrino masses 
- matter-antimatter asymmetry 
- dark matter  

             …

Symmetries 
 

with gauge bosons
SU(3)c × SU(2)L × U(1)Y

Matter content 
        

  
qL ∼ (3,2)1/6 uR ∼ (3,1)2/3 dR ∼ (3,1)−1/3
ℓL ∼ (1,2)−1/2 eR ∼ (1,1)−1

Higgs mechanism 
electroweak symmetry breaking
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?
?

?

Bottom-up 
EFT 

Deform the SM to accommodate new effects observed in experiments 
‣ “model-independent” correlations between observables 
‣ indications on where to find the new physics scales where a new 

fundamental theory has to be formulated, e.g.  
Fermi theory        SM → mW →

SMEFTSM

8

The pivotal role of (SM)EFT

 SMEFT = Extension of the SM⇒

Energy [eV]vH ΛUVmb

For exploration:

exp. 
 reach
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The EFT description

 ℒSMEFT = ℒSM +
dmax

∑
d=5

1
Λd−4

nd

∑
i=1

C[d]
i O[d]

i

Starting from the SM, we can construct the SMEFT:

‣ The operator basis  is defined by all operators   

‣ made from the SM particle content 
‣ respecting the symmetries: Lorentz, gauge, (global) 
‣ up to the truncation order  (  precision required) 

‣ The Wilson coefficients  can be fitted to data   encode the strength of the New Physics

{O[d]
i }

dmax ↔

{C[d]
i } ↔

power counting parameter

number of operators at dimension d
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UVSMEFTSM

Starting from specific UV theory, the heavy modes can be integrated out providing: 
‣ resummation of large logs (through RGE) 
‣ a universal framework to compare with data (SMEFT)

The pivotal role of (SM)EFT

8

Energy [eV]vH ΛUVmb

Top-down 
EFT

exp. 
 reach

For universality:

 SMEFT = UV theory approximation⇒
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ℒUV [ϕH, ϕL]

 ℒSMEFT [ϕL] = ℒSM [ϕL] +
dmax

∑
d=5

1
Λd−4

nd

∑
i=1

C[d]
i O[d]

i [ϕL]

7

Matching and running

E

ΛUV

vH

mb
ℒLEFT

RGE (running)    Ci(E)exp. 
 reach

Matching

Λ

Matching = connect the UV theory to 
the EFT by deriving the relation 
between Wilson coefficients  
and UV couplings  such that  

   

Automated at one-loop in: 

 

Two-loop running in the SMEFT is 
needed.

{Ci}
{λi}

ℒUV [ϕH, ϕL] ℒEFT [ϕL]

[Fuentes-Martín, König, JP,  
Thomsen, Wilsch, 2211.09144]

E ≪ ΛUV



Geometry of EFTs
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A scalar field theory can be written as:                   [Alonso, Jenkins, Manohar, 1605.03602] 

 higher-derivative terms 

where 

• field values                =    coordinates on a Riemannian manifold  

•                          =    inner-product on the tangent space  
                 of the field manifold: metric 

   

• potential            =    function on the field manifold 

• field redefinitions      =    coordinate transformations 
(without derivatives) 

ℒEFT = 1
2 gIJ(ϕ) (∂μϕ)I(∂μϕ)J − V(ϕ) +

gIJ(ϕ)

ds2 ≡ gIJ(ϕ) dϕI dϕJ

V(ϕ)

ϕI → φI(ϕ)

9

Geometric interpretation

ϕ1

ϕ2

SM scalar manifold is flat
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Under a coordinate transformation, 
 

• the derivative of the scalar transforms as a vector 

 

• the metric transforms as a tensor 

 

so  is invariant.

ϕI → φI(ϕ)

∂μϕI → ( ∂φI

∂ϕJ ) ∂μϕJ

gIJ → ( ∂ϕK

∂φI ) ( ∂ϕL

∂φJ ) gKL

ℒkin = 1
2 gIJ(ϕ) (∂μϕ)I(∂μϕ)J

10

Scalar geometry

From the metric we can define, 

• Christoffel symbols 

 

• Covariant derivatives 

 

• Riemann curvature tensor 
 

 and  will appear in scattering amplitudes  
making them covariant.

ΓI
JK = 1

2 gIL (gLJ,K + gLK,J − gJK,L)

TJ;I ≡ ∇ITJ = ∂TJ

∂ϕI − ΓK
IJ TK

RI
JKL = ∂KΓI

JL + ΓI
KNΓN

JL − (K ↔ L)

R ∇

field redefinition in-/covariance    =    coordinate in-/covariance⇒



Algebraic RGE formulae

for renormalizable models
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RGE from background field method

In MS schemes, renormalization group equations are given by the counterterms required to remove the 
divergences in loop graphs.  

Compute the divergences with the background field method:  

Split the field into background configuration  and quantum fluctuation  where                               
and expand the Lagrangian in  (loops contain only quantum fields). 

To which order in  for one-/two- loop graphs?   topological identity 

for connected graphs                                     and                               

   

No external quantum field: . 

For L=1: only quadratic vertices  , 

For L=2:  2 cubic vertices or 1 quartic vertex + any number of quadratic vertices  . 

̂ϕ η
δℒ[ϕ]

δϕ
ϕ= ̂ϕ

= 0
η

η →

V − I + L = 1 F =
V

∑
i=1

Fi − 2I

⇒ (F − 2) + 2L =
V

∑
i=1

(Fi − 2)

F = 0
→ 𝒪(η2)

→ 𝒪(η4)

# vertices

# internal lines

# loops

Euler character 

# external fields

# fields at each vertex
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One-loop RGE — scalar

Scalar theory at ,  

  

where  is antisymmetric without loss of generality and  is symmetric.  

With the covariant derivative  and redefining  we have 

 

Using naive dimensional analysis, the ’t Hooft formula for one-loop counterterms is   [’t Hooft, Nucl.Phys.B 62 (1973)] 

with  

𝒪(η2) ϕ → ̂ϕ + η

δ2ℒ = 1
2 (∂μη)T(∂μη) + (∂μη)TNμ( ̂ϕ)η + 1

2 ηT X( ̂ϕ)η
Nμ X

Dμη ≡ ∂μη + Nμη X

δ2ℒ = 1
2 (Dμη)T(Dμη) + 1

2 ηT Xη

Yμν = [Dμ, Dν]
ℒ(1)

c.t. = 1
16π2ϵ

Tr [− 1
4 X2 − 1

24 Y2
μν]Mass dimension:  

 [X] = 2
[Yμν] = 2
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Two-loop RGE — scalar

For two-loop: 

:                                        

:                                        

where  and  are symmetric and the completely symmetric parts of  and  vanish.  

The graphs to compute to derive the two-loop algebraic formula are 

𝒪(η3) δ3ℒ = Aabcηaηbηc + Aμ
a|bc(Dμη)aηbηc + Aμν

ab|c(Dμη)a(Dνη)bηc

𝒪(η4) δ4ℒ = Babcdηaηbηcηd + Bμ
a|bcd(Dμη)aηbηcηd + Bμν

ab|cd(Dμη)a(Dνη)bηcηd

A B Aμ Bμ

with 0, 1 or 2 insertions of  / X Yμν

with 2 or 3 insertions of  / X Yμν

Mass dimension:  
          
        

  

[A] = 1 [B] = 0
[Aμ] = 0 [Bμ] = − 1
[Aμν] = − 1 [Bμν] = − 2
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Structures from NDA and symmetries

A-type counterterms

B-type counterterms

Some graph vanish by symmetry (Lorentz, flavor). 
Compute all the remaining graphs + subtract one-loop subdivergences 
Full computation steps in [Jenkins, Manohar, Naterop, JP, 2308.06315]

Mass dimension:  
          
        

  

[A] = 1 [B] = 0
[Aμ] = 0 [Bμ] = − 1
[Aμν] = − 1 [Bμν] = − 2
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A-type counterterms

50 graphs
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B-type counterterms

Notice: there is not  B-type counterterm    factorizable topology
1
ϵ

→

15 graphs
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Factorizable topology

+ +1 2 1 2

In MS schemes:

 =              +                  +         

     =         +     

Itot [ I1∞
ϵ

+ I1f][ I2∞
ϵ

+ I2f] [ I1∞
ϵ

+ I1f][− I2∞
ϵ ] [− I1∞

ϵ ][ I2∞
ϵ

+ I2f]
− I1∞I2∞

ϵ2 I1f I2f

finite part

divergence

Generalizable to higher-loop graphs, lowest pole =  where  is the number of non-factorizable parts. 

 Only fully non-factorizable graphs contribute to the RGE.

1
ϵnnf

nnf

⇒ *

 There is a subtlety with evanescent operators. Still true, but requires additional finite subtraction beyond MS.  *



RGE from Geometry

for EFTs
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RGE from Geometry

What do we have? 

• Algebraic RGE formulae for renormalizable theories  flat field space. 

• Geometric Lagrangians for bosonic EFTs with non-trivial metric on field space. 

Next steps: 

(1) Expand geometric Lagrangians to desired order in quantum fluctuation  use geodesic coordinates. 

(2) Generalize our flat field space formulae to curved field space  use local orthonormal frame. 

(3) Identify our covariant building blocks in the geometric Lagrangian expansions (match). 

  a) at one loop: , ,          + b) at two loop: , , , , ,  

(4) Apply the generalized formulae to obtain covariant RGE results.  

↔

→

→

Yμν X A Aμ Aμν B Bμ Bμν
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(1) Expand geometric Lagrangians to desired order in quantum fluctuation  use geodesic coordinates.  
Using cartesian coordinates, we find that Lagrangian expansions are not covariant.  

 Reason:  is a coordinate  and not a tensor… but tangent vectors are: .  

Solution: use Riemann normal / geodesic coordinates (local coordinates obtained by applying the exponential map 
to the tangent space at ) for the quantum fluctuation. 

                                

 expand Lagrangian in

→

↪ ϕ ϕi → ϕ′ i ηi ≡ dϕi

dλ
→ ( ∂ϕ′ i

∂ϕj ) η j

𝒫0

gIJ(𝒫0) = δIJ ΓI
JK(𝒫0) = 0 gIJ(ϕ) = δIJ − 1

3 RIKJL(𝒫0)ϕKϕL + 𝒪(ϕ3)
⇒

21

Geodesic coordinates

 ϕI → ϕI + ηI − 1
2 ΓI

JKηJηK − 1
3! ΓI

JKLηIηJηK − 1
4! ΓI

JKLMηIηJηKηM + 𝒪(η5)

𝒫0

𝒫

η

geodesic starting at  
with tangent vector  
ending at  in unit time

𝒫0
η(λ)

𝒫

geodesic equation: 
d2ϕI

dλ2 + ΓI
JK(ϕ) dϕJ

dλ
dϕK

dλ
= 0
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Geodesic coordinates

(1) Expand geometric Lagrangians to desired order in quantum fluctuation  use geodesic coordinates.  
The second variation of the scalar geometric Lagrangian 

 

‣ With the shift  

 

with equation of motion   

‣ With the shift  

→

ℒ = 1
2 gIJ(ϕ) (∂μϕ)I(∂μϕ)J − V(ϕ)

ϕI → ϕI + ηI

δ2ℒ = 1
2 [gIJ(𝒟μη)I(𝒟μη)J − RIJKL(Dμϕ)J(Dμϕ)L ηIηK − EJΓJ

KLηKηL − ∇J ∇IV ηIηJ]
δℒ = − (gIJ(𝒟μ(Dμϕ))I + ∇JV

EJ

)ηJ

ϕI → ϕI + ηI − 1
2 ΓI

JKηJηK + 𝒪(η3)

δ2ℒ = 1
2 [gIJ(𝒟μη)I(𝒟μη)J − RIJKL(Dμϕ)J(Dμϕ)L ηIηK − ∇J ∇IV ηIηJ]

non-covariant
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(2) Generalize our flat field space formulae to curved field space  use local orthonormal frame.  

Algebraic counterterm formulae were derived for renormalizable theories  for a flat field-space manifold. 
They do not directly apply on the curved field-space manifold.  

Solution: go to local orthonormal frames using vielbeins and apply formulae there. 

                                              

 Since every indices are contracted, formulae are unchanged apart from uppercase  lowercase indices.

→

⇔

gIJ(ϕ) = ea
I(ϕ)eb

J(ϕ)δab (𝒟μη)I = eI
a(Dμη)a RIJKL = ea

Ieb
Jec

Ked
LRabcd

⇒ ↔
23

Local orthonormal frame
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Local orthonormal frame

(2) Generalize our flat field space formulae to curved field space  use local orthonormal frame. 
For renormalizable theory, indices raised with   

 

                             with  

For the geometric Lagrangian, indices raised with   

 

                              

with      
                 

                  

→
δab

δ2ℒ = 1
2 (Dμη)T(Dμη) + 1

2 ηT Xη

ℒ(1)
c.t. = 1

16π2ϵ [− 1
4 XabXab − 1

24 Yμν
ab Yab

μν] Yμν = [Dμ, Dν]

gIJ

δ2ℒ = 1
2 [gIJ(𝒟μη)I(𝒟μη)J − RIJKL(Dμϕ)J(Dμϕ)L ηIηK − ∇J ∇IV ηIηJ]

ℒ(1)
c.t. = 1

16π2ϵ [− 1
4 XIJXIJ − 1

24 Yμν
IJ YIJ

μν]
XIJ = − RIKJL(Dμϕ)K(Dμϕ)L − ∇J ∇IV
Yμν

IJ = [𝒟μ, 𝒟ν]IJ = RIJKL(Dμϕ)K(Dνϕ)L + Fμν
A ∇JtA

I

                    

                 

           

gIJ = eI
aeJ

bδab

(𝒟μη)I = eI
a(Dμη)a

RIJKL = ea
Ieb

Jec
Ked

LRabcd

𝒪(η2)
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RGE at one loop — fermion

(3) Identify our covariant building blocks in the geometric Lagrangian expansions (match). 

  a) at one loop: ,  Yμν X

Linear expansion: 

 

Geodesic expansion: 

 

                            
Match to obtain 
   

 

                       

δ2ℒ = 1
2 (Dμη)T(Dμη) + 1

2 ηT Xη

δ2ℒ = 1
2 [gIJ(𝒟μη)I(𝒟μη)J − RIJKL(Dμϕ)J(Dμϕ)L ηIηK − ∇J ∇IV ηIηJ]

XIJ = − RIKJL(Dμϕ)K(Dμϕ)L − ∇J ∇IV

Yμν
IJ = [𝒟μ, 𝒟ν]IJ = RIJKL(Dμϕ)K(Dνϕ)L + Fμν

A ∇JtA
I
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RGE at two loop — scalar

(3) Identify our covariant building blocks in the geometric Lagrangian expansions (match). 

  b) at two loop: , , , , , A Aμ Aμν B Bμ Bμν

 

 

 

      sym(bcd) 

      sym(bcd) 

Aabc = − 1
6 ∇(a ∇b ∇c)V − 1

18 (∇aRbdce + ∇bRcdae + ∇cRadbe)(Dμϕ)d(Dμϕ)e

Aμ
a|bc = 1

3 (Rabcd + Racbd)(Dμϕ)d

Aμν
ab|c = 0

Babcd = − 1
24 ∇a ∇b ∇c ∇dV − 1

24 ∇a ∇d Rbecf(Dμϕ)e(Dμϕ) f + 1
6 Reabf Recdg(Dμϕ) f(Dμϕ)g

Bμ
a|bcd = 1

4 (∇d Rabce)(Dμϕ)e

Bμν
ab|cd = − 1

12 ημν(Racbd + Radbc)

𝒪(η3)

𝒪(η4)

(4) Apply the generalized formulae to obtain covariant RGE results.  



Application
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Starting from the O(N) EFT in the basis 

 

where ,  , 

identify the geometric objects 
  

                            

and the potential 

 

which define the building blocks         ,      and       , ,   , ,  

                                             lowest order:                                     

ℒ = 1
2 (∂μϕ ⋅ ∂μϕ) − m2

2 (ϕ ⋅ ϕ) − λ
4 (ϕ ⋅ ϕ)2 + C1(ϕ ⋅ ϕ)3 + CE(ϕ ⋅ ϕ)(∂μϕ ⋅ ∂μϕ)

C1 CE ∼ 𝒪 (Λ−2)

gij = δij (1 + 2CE(ϕ ⋅ ϕ))
Γi

jk = 2CE (δi
kϕj + δi

jϕk − δjkϕi) Rijkl = 4CE (δilδjk − δikδjl)

V = m2

2 (ϕ ⋅ ϕ) + λ
4 (ϕ ⋅ ϕ)2 − C1(ϕ ⋅ ϕ)3

Yμν X A Aμ B Bμ Bμν

Λ−2 Λ2 1 Λ−2 1 Λ−4 Λ−2

28

Example: O(N) EFT
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Example: O(N) EFT

To derive the counterterms 

 

at  we can simply apply 

 

         

                 

ℒ = 1
2 Zϕ(∂μϕ ⋅ ∂μϕ) − 1

2 (m2 + m2
c.t.)(ϕ ⋅ ϕ) − 1

4 μ2ϵZ2
ϕ (λ + λc.t.)(ϕ ⋅ ϕ)2

+μ4ϵZ3
ϕ (C1 + C1c.t.)(ϕ ⋅ ϕ)3 + μ2ϵZ2

ϕ (CE + CEc.t.)(ϕ ⋅ ϕ)(∂μϕ ⋅ ∂μϕ)

𝒪(Λ−2)

ℒc.t. = {− 1
4ϵ

Tr[X2]}
1

+{ − 3
4ϵ

𝒟μAijk𝒟μAijk + ( 9
2ϵ2 − 9

2ϵ ) AijkXk
lAijl + ( 3

2ϵ2 − 15
4ϵ ) 𝒟μAμ

i|jkXk
lAijl + ( 9

2ϵ2 − 9
4ϵ ) Aμ

i|jkXk
l𝒟μAijl

+ 3
ϵ2 BijklXijXkl + 1

8ϵ2 Bμμ
ij|kl(𝒟

2X)ijXkl − 1
4ϵ2 Bμμ

ij|klX
i
mXmjXkl + 1

2ϵ2 Bmuν
ij|kl (𝒟μX)ik(𝒟νX) jl}2
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Example: O(N) EFT

The anomalous dimension is defined by 

 

The counterterm can be organized into  
order of the pole  and power of loops  

·Ci = − ϵ(Fi − 2)Ci + γi

k L

Cbare
i μ−(Fi−2)ϵ = Ci +

∞

∑
k=1

∑
L

a(k,L)
i ({Cj})

ϵk

Combining the two give the definition 

 

Only  pole define the RGE.

γi = 2∑
L

La(1,L)
i

1/ϵ

·m2 = {2(n + 2)λm2 − 8nm4CE}1 + {−10(n + 2)λ2m2 + 80
3 (n + 2)λm4CE}

2
·λ = {2(n + 8)λ2 − 16(n + 3)λm2CE − 24(n + 4)m2C1}1

+{−12(3n + 14)λ3 + 32
3 (22n + 113)λ2m2CE + 480(n + 4)λm2C1}

2
·CE = {4(n + 2)λCE}1 + {−34(n + 2)λ2CE}2

·C1 = {20λ2CE + 6(n + 14)λC1}1 + {− 8
3 (23n + 259)λ3CE − 42(7n + 54)λ2C1}

2

 RGE at two loop:O(N)



Julie Pagès — UCSD — Renormalization of EFTs from Geometry /3531

RGE obtained from geometry

Using this technique RGE were computed for: 

up to one-loop order 

• SMEFT bosonic sector to dim 8 [Helset, Jenkins, Manohar, 2212.03253] 

• SMEFT bosonic operators from a fermion loop to dim 8 [Assi, Helset, Manohar, JP, Shen, 2307.03187] 

up to two-loop order [Jenkins, Manohar, Naterop, JP, 2310.19883] 

•  scalar EFT to dim 6          agree with [Cao, Herzog, Melia, Nepveu, 2105.12742] 

• SMEFT scalar sector to dim 6    new! 

• PT to                              agree with [Bijnens, Colangelo, Ecker, hep-ph/9907333] 

 directly usable for dim 8

O(N) →
→

χ 𝒪(p6) →

↪

 agree with [Chala, Guedes, Ramos, Santiago, 2106.05291]  
  [Das Bakshi, Chala, Díaz-Carmona, Guedes, 2205.03301] 

→
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Towards a complete geometric picture

More RGEs 

• full one-loop RGE for SMEFT at dim 8 
‣ mixed scalar-fermion loops 

‣ four-fermion operators 

‣ contributions to fermionic operators 
‣ mixed vector-fermion loops 

• two-loop counterterm formula including fermions and gauge bosons 

More derivatives 

• operators with more than one derivative on each field 
‣ Lagrange spaces? [Craig, Lee, Lu, Sutherland, 2305.09722] 
‣ jet bundle geometry? [Alminawi, Brivio, Davighi, 2308.00017] [Craig, Lee, 2307.15742] 

• derivative field redefinition 
‣ on-shell covariance of amplitudes?  [Cohen, Craig, Lu, Sutherland, 2202.06965] [Cohen, Lu, Sutherland, 2312.06748] 

‣ geometry-kinematics duality?  [Cheung, Helset, and Parra-Martinez, 2202.06972] 

[Assi, Helset, JP, Shen, w.i.p]



Conclusion
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Conclusion

• EFTs have a pivotal position between New Physics models and data interpretation. 

• Field-space geometry offer an alternative, more basis-independent, description of EFTs. 

• Algebraic formulae can be used to compute the Renormalization Group Equations. 
 done at one loop for any spin, at two loop for scalars. 

• RGE calculations with geometry become a pure algebraic exercise. 
 applicable to any EFT order

↪

↪


