Asymptotic Safety and Vacuum Stability in the Litim-Sannino Model

Tom Steudtner

Technische Universität Dortmund

[Litim, Riyaz, Stamou, TS: 2307.08747] [Bednyakov, Mukhaeva: 2312.12128] [TS: 2402.16950] [Litim, Riyaz, Stamou, TS: 2xxx.xxxx]

ERG 2024, September 24th, 2024

Outline the contract of the co

- I. Motivation
- II. Litim-Sannino Model
- III. UV Conformal Window
- IV. Effective Potential

» Asymptotic Safety in d=4, renormalisable, perturbatively controlled → guaranteed UV fixed point [Litim, Sannino 2014]

» Asymptotic Safety in d=4, renormalisable, perturbatively controlled \rightarrow guaranteed UV fixed point [Litim, Sannino 2014]

» Fundamental Example? 4d weakly coupled UV FPs are variants/embeddings of LiSa (exception: N=4 SUSY) [Bond, Litim 2017] [TS 2020]

» Asymptotic Safety in d=4, renormalisable, perturbatively controlled \rightarrow guaranteed UV fixed point [Litim, Sannino 2014]

» Fundamental Example? 4d weakly coupled UV FPs are variants/embeddings of LiSa (exception: N=4 SUSY) [Bond, Litim 2017] [TS 2020]

 \rightarrow triality at large-N $SU(N_c)$ $SO(N_c)$ or $Sp(N_c)$ [Bond, Litim, TS 2019]

Dirac, (LiSa)

Majorana fermions

» Asymptotic Safety in d=4, renormalisable, perturbatively controlled \rightarrow guaranteed UV fixed point [Litim, Sannino 2014]

» Fundamental Example? 4d weakly coupled UV FPs are variants/embeddings of LiSa (exception: N=4 SUSY) [Bond, Litim 2017] [TS 2020]

 \rightarrow triality at large-N $SU(N_c)$ $SO(N_c)$ or $Sp(N_c)$ [Bond, Litim, TS 2019] Dirac, (LiSa) Majorana fermions

» UV conformal window in LiSa entirely accessible in perturbation theory – lessions for IR FP in QCD?

II. Litim-Sannino Model

II. Litim–Sannino Model (LiSa)

II. Litim–Sannino Model (LiSa)

$$
\mathcal{L} = -\frac{1}{4} F^{A\mu\nu} F^{A}_{\mu\nu} + \mathcal{L}_{gf} + \mathcal{L}_{gh}
$$

\n
$$
+ \text{Tr} \left[\overline{\psi} i \overline{\psi} \psi \right] - y \text{Tr} \left[\overline{\psi} \left(\phi \mathcal{P}_R + \phi^{\dagger} \mathcal{P}_L \right) \psi \right]
$$

\n
$$
+ \text{Tr} \left[\partial^{\mu} \phi^{\dagger} \partial_{\mu} \phi \right] - m^2 \text{Tr} \left[\phi^{\dagger} \phi \right] - u \text{Tr} \left[\phi^{\dagger} \phi \phi^{\dagger} \phi \right] - v \text{Tr} \left[\phi^{\dagger} \phi \right] \text{Tr} \left[\phi^{\dagger} \phi \right]
$$

\n
$$
+ \text{Tr} \left[\partial^{\mu} \phi^{\dagger} \partial_{\mu} \phi \right] - m^2 \text{Tr} \left[\phi^{\dagger} \phi \right] - u \text{Tr} \left[\phi^{\dagger} \phi \phi^{\dagger} \phi \right] - v \text{Tr} \left[\phi^{\dagger} \phi \right] \text{Tr} \left[\phi^{\dagger} \phi \right]
$$

\n
$$
= \text{single trace}
$$

\n
$$
= \text{double trace}
$$

II. Litim–Sannino Model (LiSa)

$$
\mathcal{L} = -\frac{1}{4} F^{A\mu\nu} F^{A}_{\mu\nu} + \mathcal{L}_{gf} + \mathcal{L}_{gh}
$$

\n+ Tr $[\overline{\psi} i \overline{\psi} \psi] - y$ Tr $[\overline{\psi} (\phi \mathcal{P}_R + \phi^\dagger \mathcal{P}_L) \psi]$
\n+ Tr $[\partial^\mu \phi^\dagger \partial_\mu \phi] - m^2$ Tr $[\phi^\dagger \phi] - u$ Tr $[\phi^\dagger \phi \phi^\dagger \phi] - v$ Tr $[\phi^\dagger \phi]$ Tr $[\phi^\dagger \phi]$ ϕ
\nsuble trace
\ndouble trace
\ndouble trace

 \rightarrow interacting fixed point $g^*, y^*, u^*, v^* \neq 0$

⁴ UV fixed point

1 relevant and 3 irrelevant directions

UV fixed point $\frac{4}{3}$

UV fixed point $\frac{4}{4}$

 \rightarrow fixed point is under perturbative control

» Veneziano limit: $N_{f,c} \to \infty$ but $N_f/N_c = \text{const.}$ » introduce 't Hooft couplings:

$$
\alpha_g = \frac{N_c g^2}{(4\pi)^2} \qquad \alpha_y = \frac{N_c y^2}{(4\pi)^2} \qquad \alpha_u = \frac{N_f u}{(4\pi)^2} \qquad \alpha_v = \frac{N_f^2 v}{(4\pi)^2}
$$

» Veneziano limit: $N_{f,c} \to \infty$ but $N_f/N_c = \text{const.}$ » introduce 't Hooft couplings:

$$
\alpha_g = \frac{N_c g^2}{(4\pi)^2} \qquad \alpha_y = \frac{N_c y^2}{(4\pi)^2}
$$

» small and tunable expansion parameter:

$$
\alpha_u = \frac{N_f u}{(4\pi)^2} \qquad \alpha_v = \frac{N_f^2 v}{(4\pi)^2}
$$

$$
\epsilon = \frac{N_f}{N_c} - \frac{11}{2} \qquad -\frac{11}{2} < \epsilon < \infty
$$

» Veneziano limit: $N_{f,c} \to \infty$ but $N_f/N_c = \text{const.}$ » introduce 't Hooft couplings:

$$
\alpha_g = \frac{N_c g^2}{(4\pi)^2} \qquad \alpha_y = \frac{N_c y^2}{(4\pi)^2}
$$

» small and tunable expansion parameter:

$$
\alpha_u = \frac{N_f u}{(4\pi)^2} \qquad \alpha_v = \frac{N_f^2 v}{(4\pi)^2}
$$

$$
\epsilon = \frac{N_f}{N_c} - \frac{11}{2} \qquad -\frac{11}{2} < \epsilon < \infty
$$

» 1-Loop part of gauge beta function: $\beta_q = \alpha_q^2 \left[\frac{4}{3} \epsilon + \mathcal{O}(\alpha^1) \right]$

» Veneziano limit: $N_{f,c} \to \infty$ but $N_f/N_c = \text{const.}$ » introduce 't Hooft couplings:

$$
\alpha_g = \frac{N_c g^2}{(4\pi)^2} \qquad \alpha_y = \frac{N_c y^2}{(4\pi)^2}
$$

» small and tunable expansion parameter:

$$
\alpha_u = \frac{N_f u}{(4\pi)^2} \qquad \alpha_v = \frac{N_f^2 v}{(4\pi)^2}
$$

$$
\epsilon = \frac{N_f}{N_c} - \frac{11}{2} \qquad -\frac{11}{2} < \epsilon < \infty
$$

» 1-Loop part of gauge beta function: $\beta_q = \alpha_q^2 \left[\frac{4}{3} \epsilon + \mathcal{O}(\alpha^1) \right]$

» conformal expansion: $\alpha^* = \epsilon a_{LO} + \epsilon^2 a_{NLO} + \epsilon^3 a_{NNLO} + ...$

Gaussian is UV FP

Gaussian is UV FP

III. UV Conformal Window

How to probe the UV conformal window

- » beta functions $\beta_{g,y,u,v}$ at 433: β_g @ 4L, β_y @ 3L, $\beta_{u,v}$ @ 3L [Litim, Riyaz, Stamou, TS, 2023]
	- \rightarrow fixed point values $\alpha_{g,y,u,v}^*(\epsilon)$ from $\beta_{g,y,u,v} = 0$ up to ϵ^3

From to probe the UV conformal window to be seen to be a set of \sim

- » beta functions $\beta_{g,y,u,v}$ at 433: β_g @ 4L, β_y @ 3L, $\beta_{u,v}$ @ 3L [Litim, Riyaz, Stamou, TS, 2023]
	- \rightarrow fixed point values $\alpha^*_{q,y,u,v}(\epsilon)$ from $\beta_{q,y,u,v} = 0$ up to ϵ^3
	- \rightarrow critical exponents ϑ_i as eigenvalues of stability matrix $M_{xx'} = \frac{\partial \beta_x}{\partial \alpha_{x'}}\Big|_{\alpha = \alpha^*}$
 $(\alpha_x \alpha_x^*) = c_{x,i} \left(\frac{\mu}{\mu_0}\right)^{\vartheta_i}$ $\vartheta_1 < 0 < \vartheta_{2,3,4}$

From to probe the UV conformal window

- » beta functions $\beta_{g,y,u,v}$ at 433: β_g @ 4L, β_y @ 3L, $\beta_{u,v}$ @ 3L [Litim, Riyaz, Stamou, TS, 2023]
	- \rightarrow fixed point values $\alpha^*_{a,y,u,v}(\epsilon)$ from $\beta_{g,y,u,v} = 0$ up to ϵ^3
	- \rightarrow critical exponents ϑ_i as eigenvalues of stability matrix $M_{xx'} = \frac{\partial \beta_x}{\partial \alpha} \Big|_{x=x'}$ $(\alpha_x - \alpha_x^*) = c_{x,i} \left(\frac{\mu}{\mu_0}\right)^{\nu}$ $\vartheta_1 < 0 < \vartheta_{2,3,4}$
- » typical shape (all loop orders)
	- $\beta_g = \alpha_g^2 \left[\frac{4}{3} \epsilon + b_g(\alpha_{g,y,u}, \epsilon) \right]$ $\beta_u = \alpha_u b_u(\alpha_{a,u,u}, \epsilon)$

 $\beta_u = b_u(\alpha_{g,y,u}, \epsilon)$

$$
\beta_v = f_0(\alpha_{g,y,u}, \epsilon) + f_1(\alpha_{g,y,u}, \epsilon) \alpha_v + f_2(\alpha_{g,y,u}, \epsilon) \alpha_v^2
$$

From to probe the UV conformal window

- » beta functions $\beta_{g,y,u,v}$ at 433: β_g @ 4L, β_y @ 3L, $\beta_{u,v}$ @ 3L [Litim, Riyaz, Stamou, TS, 2023]
	- \rightarrow fixed point values $\alpha^*_{q,y,u,v}(\epsilon)$ from $\beta_{g,y,u,v} = 0$ up to ϵ^3
	- \rightarrow critical exponents ϑ_i as eigenvalues of stability matrix $M_{xx'} = \frac{\partial \beta_x}{\partial \alpha_{x'}}\Big|_{\alpha = \alpha^*}$
 $(\alpha_x \alpha_x^*) = c_{x,i} \left(\frac{\mu}{\mu_0}\right)^{\vartheta_i}$ $\vartheta_1 < 0 < \vartheta_{2,3,4}$
- » typical shape (all loop orders)
	- $\beta_g = \alpha_g^2 \left[\frac{4}{3} \epsilon + b_g(\alpha_{g,y,u}, \epsilon) \right]$ $\beta_y = \alpha_y b_y(\alpha_{g,y,u}, \epsilon)$

$$
\beta_u=b_u(\alpha_{g,y,u},\epsilon)
$$

$$
\beta_v = f_0(\alpha_{g,y,u}, \epsilon) + f_1(\alpha_{g,y,u}, \epsilon) \alpha_v + f_2(\alpha_{g,y,u}, \epsilon) \alpha_v^2
$$

 $\mathcal{L} \supset -u \operatorname{Tr} \left[\phi^{\dagger} \phi \phi^{\dagger} \phi \right] - v \operatorname{Tr} \left[\phi^{\dagger} \phi \right] \operatorname{Tr} \left[\phi^{\dagger} \phi \right]$ "single trace"

"double trace"

From to probe the UV conformal window

- » beta functions $\beta_{g,y,u,v}$ at 433: β_g @ 4L, β_y @ 3L, $\beta_{u,v}$ @ 3L [Litim, Riyaz, Stamou, TS, 2023]
	- \rightarrow fixed point values $\alpha^*_{q,y,u,v}(\epsilon)$ from $\beta_{q,y,u,v} = 0$ up to ϵ^3
	- \rightarrow critical exponents ϑ_i as eigenvalues of stability matrix $M_{xx'} = \frac{\partial \beta_x}{\partial \alpha_{x'}}\Big|_{\alpha = \alpha^*}$
 $(\alpha_x \alpha_x^*) = c_{x,i} \left(\frac{\mu}{\mu_0}\right)^{\vartheta_i}$ $\vartheta_1 < 0 < \vartheta_{2,3,4}$
- » typical shape (all loop orders)
	- $\beta_q = \alpha_q^2 \left[\frac{4}{3} \epsilon + b_q(\alpha_{q,y,u}, \epsilon) \right]$ $\beta_y = \alpha_y b_y(\alpha_{g,y,u}, \epsilon)$

 $\beta_u = b_u(\alpha_{q,y,u}, \epsilon)$

$$
\mathcal{L} \supset -u \operatorname{Tr} \left[\phi^{\dagger} \phi \phi^{\dagger} \phi \right] - v \operatorname{Tr} \left[\phi^{\dagger} \phi \right] \operatorname{Tr} \left[\phi^{\dagger} \phi \right]
$$

$$
\Bigg\} \text{ "single trace"}
$$

$$
\beta_v = f_0(\alpha_{g,y,u}, \epsilon) + f_1(\alpha_{g,y,u}, \epsilon) \alpha_v + f_2(\alpha_{g,y,u}, \epsilon) \alpha_v^2
$$

\n
$$
\rightarrow \text{quadratic shape, up to two solutions } \alpha_v^{*\pm} \text{ for each } \alpha_{g,y,u}^*
$$

"double trace"

» strong coupling: $\alpha_x^* \gtrsim 1$

» strong coupling: α_x^* ≥ 1 → not the case, entire window weakly coupled

 \rightarrow strong coupling: $\alpha_x^* \gtrsim 1 \quad \rightarrow$ not the case, entire window weakly coupled » vacuum instability: FP potential needs to be bounded from below

classical potential: $\alpha_u^* > 0$ $\alpha_u^* + \alpha_v^* > 0$

 \rightarrow strong coupling: $\alpha_x^* \gtrsim 1 \quad \rightarrow$ not the case, entire window weakly coupled » vacuum instability: FP potential needs to be bounded from below

classical potential: $\alpha_u^* > 0$ $\alpha_u^* + \alpha_v^* > 0$

» FP merger: UV FP collides with another solution at $\epsilon_{\rm max}$, both become complex

 \rightarrow strong coupling: $\alpha_x^* \gtrsim 1 \quad \rightarrow$ not the case, entire window weakly coupled » vacuum instability: FP potential needs to be bounded from below

classical potential: $\alpha_u^* > 0$ $\alpha_u^* + \alpha_v^* > 0$

» FP merger: UV FP collides with another solution at ϵ_{max} , both become complex

 \rightarrow strong coupling: $\alpha_x^* \gtrsim 1 \quad \rightarrow$ not the case, entire window weakly coupled » vacuum instability: FP potential needs to be bounded from below

classical potential: $\alpha_u^* > 0$ $\alpha_u^* + \alpha_v^* > 0$

» FP merger: UV FP collides with another solution at ϵ_{max} , both become complex

Investigating the conformal window

- $\rightarrow \epsilon$ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$
	- \rightarrow series is exact up to third term
- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$
	- \rightarrow series is exact up to third term
	-

 \rightarrow hints for vacuum instability
 $\alpha_u^* + \alpha_v^{*+} \approx +0.0625 \epsilon - 0.192 \epsilon^2 - 1.62 \epsilon^3 + \dots$

 $\epsilon_{\rm vac} \approx 0.327$

- $\rightarrow \epsilon$ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$
	- \rightarrow series is exact up to third term
	- \rightarrow hints for vacuum instability
 $\alpha_u^* + \alpha_v^{*+} \approx +0.0625 \epsilon 0.192 \epsilon^2 1.62 \epsilon^3 + \dots$

 $\epsilon_{\rm vac} \approx 0.327$

 \rightarrow unstable second solution
 $\alpha_u^* + \alpha_v^{*-} \approx -0.673 \epsilon - 0.761 \epsilon^2 - 1.95 \epsilon^3 + \dots$

 $\rightarrow \epsilon$ – expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$ \rightarrow series is exact up to third term \rightarrow hints for vacuum instability
 $\alpha_n^* + \alpha_n^{*+} \approx +0.0625 \epsilon - 0.192 \epsilon^2 - 1.62 \epsilon^3 + \dots$ $\epsilon_{\rm vac} \approx 0.327$ \rightarrow unstable second solution
 $\alpha_u^* + \alpha_v^* \approx -0.673 \epsilon - 0.761 \epsilon^2 - 1.95 \epsilon^3 + \dots$ \rightarrow hints for single trace merger
 $\vartheta_1 \approx -0.608 \epsilon^2 + 0.707 \epsilon^3 + 6.947 \epsilon^4 + \dots$

 $\epsilon_{\rm mer1}\approx 0.249$

- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$ \rightarrow series is exact up to third term \rightarrow hints for vacuum instability
 $\alpha_n^* + \alpha_n^{*+} \approx +0.0625 \epsilon - 0.192 \epsilon^2 - 1.62 \epsilon^3 + \dots$ \rightarrow hints for single trace merger
 $\vartheta_1 \approx -0.608 \epsilon^2 + 0.707 \epsilon^3 + 6.947 \epsilon^4 + \dots$ \rightarrow unstable second solution
 $\alpha_n^* + \alpha_n^{*-} \approx -0.673 \epsilon - 0.761 \epsilon^2 - 1.95 \epsilon^3 + \dots$
	- \rightarrow no hint for double-trace merger
 $\vartheta_3 \approx +2.941 \epsilon + 1.041 \epsilon^2 + 5.137 \epsilon^3 + \dots$

 $\epsilon_{\rm vac} \approx 0.327$

 $\epsilon_{\text{mer1}} \approx 0.249$

- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$ \rightarrow series is exact up to third term \rightarrow hints for vacuum instability $\alpha_{u}^{*} + \alpha_{v}^{*+} \approx +0.0625 \epsilon - 0.192 \epsilon^{2} - 1.62 \epsilon^{3} + \ldots$ $\epsilon_{\rm vac} \approx 0.327$ \rightarrow unstable second solution $\alpha_{u}^{*} + \alpha_{v}^{* -} \approx -0.673 \epsilon - 0.761 \epsilon^{2} - 1.95 \epsilon^{3} + \ldots$ \rightarrow hints for single trace merger
 $\vartheta_1 \approx -0.608 \epsilon^2 + 0.707 \epsilon^3 + 6.947 \epsilon^4 + \dots$ $\epsilon_{\text{mer1}} \approx 0.249$
	- \rightarrow no hint for double-trace merger
 $\vartheta_3 \approx +2.941 \epsilon + 1.041 \epsilon^2 + 5.137 \epsilon^3 + \dots$
- $\rightarrow \epsilon$ expansion is short! Higher order estimates?

- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$ \rightarrow series is exact up to third term
	- \rightarrow hints for vacuum instability $\alpha_{u}^{*} + \alpha_{v}^{*+} \approx +0.0625 \epsilon - 0.192 \epsilon^{2} - 1.62 \epsilon^{3} + \ldots$
	- \rightarrow unstable second solution
 $\alpha_u^* + \alpha_v^* \approx -0.673 \epsilon 0.761 \epsilon^2 1.95 \epsilon^3 + \dots$
	- \rightarrow hints for single trace merger
 $\vartheta_1 \approx -0.608 \epsilon^2 + 0.707 \epsilon^3 + 6.947 \epsilon^4 + \dots$
	- \rightarrow no hint for double-trace merger
 $\vartheta_3 \approx +2.941 \epsilon + 1.041 \epsilon^2 + 5.137 \epsilon^3 + \dots$
- Í $\ast \epsilon$ – expansion is short! Higher order estimates:
	- \rightarrow Padè resummation of ϵ expansion

$$
\epsilon_{\text{vac}} \approx 0.327
$$

 $\frac{\text{Pade [2/1]}}{\epsilon_{\text{mer1}} \approx 0.249}$
 $\frac{\text{Pade [3/1]}}{\epsilon_{\text{mer1}}} \approx 0.249$
 $\frac{\text{Pade [3/1]}}{\epsilon_{\text{mer2}}} \approx 0.091$

- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$ \rightarrow series is exact up to third term \rightarrow hints for vacuum instability $\alpha_{\omega}^* + \alpha_{\omega}^{*+} \approx +0.0625 \epsilon - 0.192 \epsilon^2 - 1.62 \epsilon^3 + \dots$ → unstable second solution
 $\alpha_n^* + \alpha_n^{*-} \approx -0.673 \epsilon - 0.761 \epsilon^2 - 1.95 \epsilon^3 + \dots$ \rightarrow hints for single trace merger
 $\vartheta_1 \approx -0.608 \epsilon^2 + 0.707 \epsilon^3 + 6.947 \epsilon^4 + \dots$
	- \rightarrow no hint for double-trace merger
 $\vartheta_3 \approx +2.941 \epsilon + 1.041 \epsilon^2 + 5.137 \epsilon^3 + \dots$
- Í $\ast \epsilon$ – expansion is short! Higher order estimates:
	- \rightarrow Padè resummation of ϵ expansion
	- \rightarrow Numerical solution $\beta_{g,y,u,v} = 0$
	- \rightarrow Separatrix expansion $\beta_{\rm sep}(\alpha, \epsilon) = 0$ and resummations in α [\rightarrow Nahzaan Riyaz Poster]

 ϵ

 ϵ

 $[$ \longrightarrow Nahzaan Riyaz Poster]

» describe running along relevant separatrix

[→ Nahzaan Riyaz Poster]

» describe running along relevant separatrix $\rightarrow \ \beta_{\text{sep}} = \beta_g \ \ \text{with} \ \ \alpha \equiv \alpha_g, \ \alpha_{y,u,v} = \sum_{\ell=1}^r c_{y,u,v}^{(\ell)}(\epsilon) \alpha^{\ell}$

» Expansion in α around Gaussian (weak branch)

$$
\beta_{y,u,v}=\frac{\mathrm{d}\alpha_{y,u,v}(\alpha)}{\mathrm{d}\alpha}\beta_{g}
$$

 $\lceil \rightarrow \text{Nahzaan Riyaz Poster} \rceil$

» describe running along relevant separatrix $\rightarrow \ \beta_{\text{sep}} = \beta_g \ \ \text{with} \ \ \alpha \equiv \alpha_g, \ \ \alpha_{y,u,v} = \sum_{\ell=1}^{\infty} c_{y,u,v}^{(\ell)}(\epsilon) \alpha^{\ell}$

» Expansion in α around Gaussian (weak branch)

$$
\beta_{y,u,v}=\frac{\mathrm{d}\alpha_{y,u,v}(\alpha)}{\mathrm{d}\alpha}\beta_{g}
$$

» effective 4L beta function along separatrix, single coupling $\beta_{\rm sep} = \sum_{\ell=1}^{\infty} A_{\ell}(\epsilon) \, \alpha^{\ell+1}$

 \rightarrow complete ϵ dependence up to A_4

 $\lceil \rightarrow \text{Nahzaan Riyaz Poster} \rceil$

» describe running along relevant separatrix $\rightarrow \ \beta_{\text{sep}} = \beta_g \ \ \text{with} \ \ \alpha \equiv \alpha_g, \ \ \alpha_{y,u,v} = \sum_{\ell=1}^{\infty} c_{y,u,v}^{(\ell)}(\epsilon) \alpha^{\ell}$

» Expansion in α around Gaussian (weak branch)

$$
\beta_{y,u,v}=\frac{\mathrm{d}\alpha_{y,u,v}(\alpha)}{\mathrm{d}\alpha}\beta_{g}
$$

» effective 4L beta function along separatrix, single coupling $\beta_{\mathrm{sep}} = \sum_{\ell=1}^{\infty} A_{\ell}(\epsilon) \, \alpha^{\ell+1} \, .$

 \rightarrow complete ϵ dependence up to A_4 \rightarrow requires 432 RGEs

Relevant Separatrix – Padé resummation in α ¹³

 $\epsilon_{\rm max}$

 $0.078...0.081$

 $\beta_\mathrm{sep}^{[4/1]}$ $\beta_{\rm sep}$

 $\epsilon_{\rm max}$

 $0.078...0.081$

 $\beta_{\mathrm{sep}}^{[4/1]}$ β_{sep}

 $0.087...0.088$ $0.093...0.095$ $\beta_{\mathrm{sep}}^{[3/2]}$ 322 432 433 ϵ expansion

vacuum instability

compatible with ϵ - expansion

 $\epsilon_{\rm max}$

 $0.078...0.081$

 $\beta_{\mathrm{sep}}^{[4/1]}$ $\beta_{\rm sep}$

 $0.093...0.095$ $0.087...0.088$ $\beta_{\mathrm{sep}}^{[3/2]}$ 322 432 433 ϵ expansion

single-trace merger dominated: \rightarrow vacuum instability ?!

depart from ϵ -expansion

vacuum instability

compatible with ϵ - expansion

 $\epsilon_{\rm max}$

 $0.078...0.081$

 $\beta_{\rm sep}^{[4/1]}$ $\beta_{\rm sep}$

 $0.087...0.088$ $0.093...0.095$ $\beta_{\mathrm{sep}}^{[3/2]}$ 322 432 433 ϵ expansion

single-trace merger dominated: \rightarrow vacuum instability ?!

depart from ϵ - expansion

vacuum instability

compatible with ϵ - expansion

» Is the merger dominant?

» Is the problem β_{sep} vs. $\beta_{g,y,u,v}$? Higher loops?

 $\epsilon_{\rm max}$

 $\beta_{\rm sep}^{[4/1]}$ $\beta_{\rm sep}$

 $0.078...0.081$

 $0.087...0.088$ $0.093...0.095$ $\beta_{\text{sen}}^{[3/2]}$ 322 432 433 ϵ expansion

single-trace merger dominated: \rightarrow vacuum instability ?!

depart from ϵ - expansion

vacuum instability

compatible with ϵ - expansion

- » Is the merger dominant?
- » Is the problem β_{sep} vs. $\beta_{g,y,u,v}$? Higher loops?
- » Influence of quantum corrections to vacuum stability?

» Boundedness from below of classical potential \rightarrow quantum effective potential \rightarrow additional loop corrections for $\alpha_n^* + \alpha_n^* > 0$ [Litim, Mojaza, Sannino, 2015]

- » Boundedness from below of classical potential \rightarrow quantum effective potential \rightarrow additional loop corrections for $\alpha_n^* + \alpha_n^* > 0$ [Litim, Mojaza, Sannino, 2015]
- » Expansion of scalar around classical background field $\phi_{ij} = h \,\delta_{ij} + \hat{\phi}_{ij}$ and integrate out $\hat{\phi}_{ij}$

- » Boundedness from below of classical potential \rightarrow quantum effective potential \rightarrow additional loop corrections for $\alpha_n^* + \alpha_n^* > 0$ [Litim, Mojaza, Sannino, 2015]
- » Expansion of scalar around classical background field $\phi_{ij} = h \, \delta_{ij} + \hat{\phi}_{ij}$ and integrate out $\hat{\phi}_{ij}$ » effective potential along close to UV FP due to RG invariance

$$
\frac{V_{\text{eff}}}{(4\pi)^2} = \alpha_w^*(\epsilon, z_0) h^4 \left(\frac{z}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \qquad \text{with} \qquad z = \frac{(4\pi)^2}{N_f} \frac{h^2}{\mu^2}
$$

- » Boundedness from below of classical potential \rightarrow quantum effective potential \rightarrow additional loop corrections for $\alpha_n^* + \alpha_n^* > 0$ [Litim, Mojaza, Sannino, 2015]
- » Expansion of scalar around classical background field $\phi_{ij} = h \, \delta_{ij} + \hat{\phi}_{ij}$ and integrate out $\hat{\phi}_{ij}$
- » effective potential along close to UV FP due to RG invariance

field dependence
\n
$$
\frac{V_{\text{eff}}}{(4\pi)^2} = \alpha_w^*(\epsilon, z_0) h^4 \left(\frac{z}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)}
$$
\nwith\n
$$
z = \frac{(4\pi)^2 h^2}{N_f \mu^2}
$$
\n\nwith

- » Boundedness from below of classical potential \rightarrow quantum effective potential \rightarrow additional loop corrections for $\alpha_n^* + \alpha_n^* > 0$ [Litim, Mojaza, Sannino, 2015]
- » Expansion of scalar around classical background field $\phi_{ij} = h \, \delta_{ij} + \hat{\phi}_{ij}$ and integrate out $\hat{\phi}_{ij}$
- » effective potential along close to UV FP due to RG invariance

field dependence
\n
$$
\frac{V_{\text{eff}}}{(4\pi)^2} = \alpha_w^*(\epsilon, z_0) h^4 \left(\frac{z}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)}
$$
\nwith\n
$$
z = \frac{(4\pi)^2 h^2}{N_f \mu^2}
$$
\n
$$
z = \frac{(4\pi)^2 h^2}{N_f \mu^2}
$$
\n
$$
z = \frac{(4\pi)^2 h^2}{N_f \mu^2}
$$
\n
$$
z = \frac{(4\pi)^2 h^2}{N_f \mu^2}
$$

- » Boundedness from below of classical potential \rightarrow quantum effective potential \rightarrow additional loop corrections for $\alpha_n^* + \alpha_n^* > 0$ [Litim, Mojaza, Sannino, 2015]
- » Expansion of scalar around classical background field $\phi_{ij} = h \,\delta_{ij} + \hat{\phi}_{ij}$ and integrate out $\hat{\phi}_{ij}$
- » effective potential along close to UV FP due to RG invariance

field dependence
\n
$$
\frac{V_{\text{eff}}}{(4\pi)^2} = \alpha_w^*(\epsilon, z_0) h^4 \left(\frac{z}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)}
$$
\nwith\n
$$
z = \frac{(4\pi)^2 h^2}{N_f \mu^2}
$$
\n
$$
z = \frac{(4\pi)^2 h^2}{N_f \mu^2}
$$
\n
$$
z = \frac{(4\pi)^2 h^2}{N_f \mu^2}
$$

» determine α_w^* by matching fixed order computation at $z=z_0$ \rightarrow two loops for α_w^* up to ϵ^3

$$
\phi_{ij} = h \, \delta_{ij} + \frac{\delta_{ij}}{\sqrt{2N_f}} \left(S + i \tilde{S} \right) + t_{ij}^a \left(R^a + i I^a \right)
$$

» Expansion of scalar field around classical background field $U(N_f)_L \times U(N_f)_R \mapsto U(N_f)_V$

$$
\phi_{ij} = h \, \delta_{ij} + \frac{\delta_{ij}}{\sqrt{2N_f}} \left(S + i \tilde{S} \right) + t_{ij}^a \left(R^a + i I^a \right)
$$

classical field

$$
\phi_{ij} = h \, \delta_{ij} + \frac{\delta_{ij}}{\sqrt{2N_f}} \left(\frac{\partial f}{\partial x_i} + t_{ij}^a \left(R^a + iI^a \right) \right)
$$

classical field subleading in large-N

$$
\phi_{ij} = h \, \delta_{ij} + \underbrace{\overbrace{\mathcal{L} \mathcal{N}_f}}^{\overbrace{\mathcal{L} \mathcal{N}_f}} + t_{ij}^a \left(R^a + iI^a \right)
$$
\nclassical field subleading in large-N
adjoint quantum fields

$$
\phi_{ij} = h \, \delta_{ij} + \frac{\delta_{ij}}{\sqrt{2N_f}} \left(\frac{2 + i \tilde{S}}{N_f} \right) + t_{ij}^a \left(R^a + iI^a \right)
$$
\nclassical field subleading in large-N
\n
$$
\alpha_w^{(0)} = \alpha_u + \alpha_v \qquad \alpha_w^{(\ell)} \propto \alpha^{\ell+1}
$$
also logs: $\alpha_d^{\ell+1} \log^{\ell} \frac{\alpha_{F,R,I}}{z_0}$

$$
\phi_{ij} = h \, \delta_{ij} + \frac{\delta_{ij}}{\sqrt{2N_f}} + i \tilde{S} + i \tilde{S} + i \tilde{I}^a
$$
\nclassical field subleading in large-N
\n*two* loops matching:
\n
$$
\alpha_w^{(0)} = \alpha_u + \alpha_v \qquad \alpha_w^{(\ell)} \propto \alpha^{\ell+1}
$$
\nalso logs: $\alpha_a^{\ell+1} \log^\ell \frac{\alpha_{F,R,I}}{\sqrt{20}} = 0$ only here

$$
\phi_{ij} = h \, \delta_{ij} + \frac{\delta_{ij}}{\sqrt{2N_f}} \left(\frac{Q + i\tilde{S}}{Q}\right) + t_{ij}^a \left(R^a + iI^a \right)
$$
\nclassical field

\nsubleading in large-N

\nadjoint quantum fields

\ntwo loops matching:

\n
$$
\alpha_w^{(0)} = \alpha_u + \alpha_v \qquad \alpha_w^{(\ell)} \propto \alpha^{\ell+1} \qquad \text{also logs:} \qquad \alpha \alpha^{\ell+1} \log^{\ell} \frac{\alpha_{F,R,I}}{\boxed{z_0}} \text{only here}
$$
\n
$$
\rightarrow \alpha_F = \left(\frac{11}{2} + \epsilon \right) \alpha_y \qquad \alpha_R = 6 \, \alpha_u + 2 \, \alpha_v \qquad \alpha_I = 2 \, \alpha_u + 2 \, \alpha_v
$$
» Expansion of scalar field around classical background field $U(N_f)_L \times U(N_f)_R \mapsto U(N_f)_V$

$$
\phi_{ij} = h \, \delta_{ij} + \frac{\delta_{ij}}{\sqrt{2N_f}} \left(\frac{\partial f}{\partial x} + i \tilde{S} \right) + t_{ij}^a \left(R^a + iI^a \right)
$$
\nclassical field subleading in large-N
\n
$$
\alpha_w^{(0)} = \alpha_u + \alpha_v \qquad \alpha_w^{(\ell)} \propto \alpha^{\ell+1}
$$
\nalso logs: $\alpha_v^{(\ell+1)} = \frac{\alpha_v^{(\ell)} \alpha_v^{(\ell+1)}}{\alpha_v^{(\ell+1)}} = \alpha_v$ \n
$$
\alpha_F = \left(\frac{11}{2} + \epsilon \right) \alpha_y \qquad \alpha_R = 6 \alpha_u + 2 \alpha_v \qquad \alpha_I = 2 \alpha_u + 2 \alpha_v
$$

» classical instability: $\alpha_I < 0 \rightarrow$ imaginary α_w^*

$$
\phi_{ij} = h \, \delta_{ij} + \underbrace{\sqrt{\partial_i y}}_{\text{classical field}} + i \overbrace{\mathcal{S}}_{\text{subleading in large-N}} + t_{ij}^a \left(R^a + iI^a \right)
$$
\nclassical field subleading in large-N

\nadjoint quantum fields

\n
$$
\alpha_w^{(0)} = \alpha_u + \alpha_v \qquad \alpha_w^{(\ell)} \propto \alpha^{\ell+1} \qquad \text{also logs:} \qquad \alpha \alpha^{\ell+1} \log^\ell \frac{\alpha_{F,R,I}}{z_0} \text{only here}
$$
\n
$$
\rightarrow \alpha_F = \left(\frac{11}{2} + \epsilon \right) \alpha_y \qquad \alpha_R = 6 \, \alpha_u + 2 \, \alpha_v \qquad \alpha_I = 2 \, \alpha_u + 2 \, \alpha_v
$$
\nwasical instability: $\alpha_I < 0 \rightarrow \text{imaginary } \alpha_w^*$

$$
\left|\log \frac{\alpha_I}{z_0}\right| \quad \text{large for} \quad |\alpha_I| \to 0
$$

$$
\phi_{ij} = h \, \delta_{ij} + \frac{\delta_{ij}}{\sqrt{2N_f}} \left(\frac{2 + iS}{S} \right) + t_{ij}^a \left(R^a + iI^a \right)
$$
\nclassical field subleading in large-N adjoint quantum fields
\n
$$
\alpha_w^{(0)} = \alpha_u + \alpha_v \qquad \alpha_w^{(\ell)} \propto \alpha^{\ell+1} \qquad \text{also logs:} \qquad \alpha \alpha^{\ell+1} \log^{\ell} \frac{\alpha_{F,R,I}}{Z_0} \text{ only here}
$$
\n
$$
\rightarrow \alpha_F = \left(\frac{11}{2} + \epsilon \right) \alpha_y \qquad \alpha_R = 6 \, \alpha_u + 2 \, \alpha_v \qquad \alpha_I = 2 \, \alpha_u + 2 \, \alpha_v
$$
\n
$$
\gg \text{classical instability:} \quad \alpha_I < 0 \qquad \rightarrow \text{imaginary } \alpha_w^* \qquad \text{Goldstone catastrophe''}
$$
\n
$$
\left| \log \frac{\alpha_I}{z_0} \right| \quad \text{large for} \quad |\alpha_I| \rightarrow 0 \qquad \text{Simplstone} \qquad \text{Simplstone}
$$

$$
\phi_{ij} = h \, \delta_{ij} + \frac{\delta_{ij}}{\sqrt{2N_f}} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) + t_{ij}^a \left(R^a + i I^a \right)
$$
\nclassical field subleading in large-N adjoint quantum fields
\n
$$
\alpha_w^{(0)} = \alpha_u + \alpha_v \qquad \alpha_w^{(\ell)} \propto \alpha^{\ell+1} \qquad \text{also logs:} \qquad \alpha \alpha^{\ell+1} \log^{\ell} \frac{\alpha_{F,R,I}}{20} \text{ only here}
$$
\n
$$
\rightarrow \alpha_F = \left(\frac{11}{2} + \epsilon \right) \alpha_y \qquad \alpha_R = 6 \alpha_u + 2 \alpha_v \qquad \alpha_I = 2 \alpha_u + 2 \alpha_v
$$
\n
$$
\gg \text{classical instability:} \quad \alpha_I < 0 \qquad \rightarrow \text{imaginary } \alpha_w^* \qquad \text{Goldstone catastrophe}^*
$$
\n
$$
\begin{vmatrix}\n\log \frac{\alpha_I}{z_0}\n\end{vmatrix}\n\text{ large for } |\alpha_I| \rightarrow 0\n\qquad\n\delta_I = \alpha_I + \Delta_I
$$
\n
$$
\Delta_I = -\left(\sum_{i=1}^{\infty} \frac{1}{2} + \sum_{i=1
$$

$$
\phi_{ij} = h \, \delta_{ij} + \frac{\delta_{ij}}{\sqrt{2N_f}} \left(\frac{\epsilon}{2} + iS \right) + t_{ij}^a \left(R^a + iI^a \right)
$$
\nclassical field subleading in large-N adjoint quantum fields
\n
$$
\alpha_w^{(0)} = \alpha_u + \alpha_v \qquad \alpha_w^{(\ell)} \propto \alpha^{\ell+1} \qquad \text{also logs:} \qquad \alpha \alpha^{\ell+1} \log^{\ell} \frac{\alpha_{F,R,I}}{[z_0]} \text{ only here}
$$
\n
$$
\rightarrow \alpha_F = \left(\frac{11}{2} + \epsilon \right) \alpha_y \qquad \alpha_R = 6 \alpha_u + 2 \alpha_v \qquad \alpha_I = 2 \alpha_u + 2 \alpha_v
$$
\n
$$
\gg \text{classical instability:} \quad \alpha_I < 0 \qquad \rightarrow \text{imaginary } \alpha_w^* \qquad \text{Goldstone catastrophe}^*
$$
\n
$$
\log \frac{\alpha_I}{z_0} \qquad \text{large for } |\alpha_I| \rightarrow 0 \qquad \text{for } \alpha_I = 0 \
$$

» Logarithms $\log \frac{\alpha_{F,R}}{z_0}$ and $\log \frac{\tilde{\alpha}_I}{z_0}$ can be partially removed by choosing z_0 $\alpha_w^*(\epsilon,\,z_0')=\left(\frac{z_0'}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)}\alpha_w^*(\epsilon,\,z_0)$

» Logarithms $\log \frac{\alpha_{F,R}}{z_0}$ and $\log \frac{\tilde{\alpha}_I}{z_0}$ can be partially removed by choosing z_0 $\alpha_w^*(\epsilon,\,z_0')=\left(\frac{z_0'}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)}\alpha_w^*(\epsilon,\,z_0)$

» hierarchy at UV FP

 $0 < \tilde{\alpha}_I \ll \alpha_R \approx \epsilon < \alpha_F \ll 1$ 0.13ϵ 0.92ϵ 1.16ϵ

» Logarithms $\log \frac{\alpha_{F,R}}{z_0}$ and $\log \frac{\tilde{\alpha}_I}{z_0}$ can be partially removed by choosing z_0 $\alpha_w^*(\epsilon, z_0') = \left(\frac{z_0'}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \alpha_w^*(\epsilon, z_0)$

» hierarchy at UV FP

 $0 < \tilde{\alpha}_I \ll \alpha_R \approx \epsilon < \alpha_F \ll 1$ 0.13ϵ 0.92ϵ 1.16ϵ

» soft logs in potential :

$$
\alpha_I^2\log\frac{\tilde\alpha_I}{z_0}+\alpha_R^2\log\frac{\alpha_R}{z_0}
$$

» Logarithms $\log \frac{\alpha_{F,R}}{z_0}$ and $\log \frac{\tilde{\alpha}_I}{z_0}$ can be partially removed by choosing z_0 $\alpha_w^*(\epsilon, z_0') = \left(\frac{z_0'}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \alpha_w^*(\epsilon, z_0)$

» hierarchy at UV FP

 $0 < \tilde{\alpha}_I \ll \alpha_R \approx \epsilon < \alpha_F \ll 1$ 0.13ϵ 0.92ϵ 1.16ϵ

» soft logs in potential : α_I^2

$$
\log \frac{\tilde{\alpha}_I}{z_0} + \alpha_R^2 \log \frac{\alpha_R}{z_0} \qquad \longrightarrow \alpha_I^2 \log \frac{\tilde{\alpha}_I}{\alpha_R} \quad \text{better than} \quad \alpha_R^2 \log \frac{\alpha_R}{\tilde{\alpha}_I}
$$

» Logarithms $\log \frac{\alpha_{F,R}}{z_0}$ and $\log \frac{\tilde{\alpha}_I}{z_0}$ can be partially removed by choosing z_0 $\alpha_w^*(\epsilon, z_0') = \left(\frac{z_0'}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \alpha_w^*(\epsilon, z_0)$

 $0 < \tilde{\alpha}_I \ll \alpha_R \approx \epsilon < \alpha_F \ll 1$ » hierarchy at UV FP 0.13ϵ 0.92ϵ 1.16ϵ $\alpha_I^2 \log \frac{\tilde{\alpha}_I}{z_0} + \alpha_R^2 \log \frac{\alpha_R}{z_0}$ $\rightarrow \alpha_I^2 \log \frac{\alpha_I}{\alpha_B}$ better than $\alpha_R^2 \log \frac{\alpha_R}{\tilde{\alpha}_I}$ » soft logs in potential : $z_0 \neq \tilde{\alpha}_I$ $\alpha_R \leq z_0 \leq \alpha_F$ best choice:

» Logarithms $\log \frac{\alpha_{F,R}}{z_0}$ and $\log \frac{\tilde{\alpha}_I}{z_0}$ can be partially removed by choosing z_0 $\alpha_w^*(\epsilon,\,z_0')=\left(\frac{z_0'}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)}\alpha_w^*(\epsilon,\,z_0)$

where
$$
0 < \tilde{\alpha}_I \ll \alpha_R \approx \epsilon < \alpha_F \ll 1
$$
 and 0.13ϵ and 0.92ϵ and 0.13ϵ and $\alpha_R^2 \log \frac{\alpha_R}{\alpha_I}$ and $\alpha_R^2 \log \frac{\alpha_R}{\tilde{\alpha}_I}$ and $\alpha_R^2 \log \frac{\alpha_R}{\tilde{\alpha}_I}$ and $\alpha_R^2 \log \frac{\alpha_R}{\tilde{\alpha}_I}$ are the same as $z_0 \neq \tilde{\alpha}_I$ and $\alpha_R \leq z_0 \leq \alpha_F$.

 \rightarrow uncertainty estimate for higer loop corrections

» Logarithms $\log \frac{\alpha_{F,R}}{z_0}$ and $\log \frac{\tilde{\alpha}_I}{z_0}$ can be partially removed by choosing z_0 $\alpha_w^*(\epsilon, z_0') = \left(\frac{z_0'}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \alpha_w^*(\epsilon, z_0)$

$$
\text{where } \alpha \text{ is the same as } \alpha \text{
$$

» soft logs in potential : $\alpha_I^2 \log \frac{\tilde{\alpha}_I}{\tilde{\alpha}_I} + \alpha_R^2 \log \frac{\alpha_R}{\tilde{\alpha}_I}$ $\longrightarrow \alpha_I^2 \log \frac{\tilde{\alpha}_I}{\alpha_R}$ better than $\alpha_R^2 \log \frac{\alpha_R}{\tilde{\alpha}_I}$

 $z_0 \neq \tilde{\alpha}_I$ $\alpha_R \leq z_0 \leq \alpha_F$ best choice:

> \rightarrow consecutive loop orders: nested ranges \leftrightarrow relible loop expansion \rightarrow uncertainty estimate for higer loop corrections

 ϵ

» conformal window in weakly coupled regime \rightarrow 433 and effective potential

» conformal window in weakly coupled regime \rightarrow 433 and effective potential

» increased consistency between conformal expansion and resummations

- » conformal window in weakly coupled regime \rightarrow 433 and effective potential
- » increased consistency between conformal expansion and resummations
- » effective potential widens CW

- » conformal window in weakly coupled regime \rightarrow 433 and effective potential
- » increased consistency between conformal expansion and resummations
- » effective potential widens CW
- » resummations predict

 $\epsilon_{\text{max}} \approx 0.08 - 0.10$

- » conformal window in weakly coupled regime \rightarrow 433 and effective potential
- » increased consistency between conformal expansion and resummations

- » conformal window in weakly coupled regime \rightarrow 433 and effective potential
- » increased consistency between conformal expansion and resummations
- » effective potential widens CW 0.2 » resummations predict $\epsilon_{\text{max}} \approx 0.08 - 0.10$
	- » vacuum instability or single-trace merger – mystery remains

 N_c

- » conformal window in weakly coupled regime \rightarrow 433 and effective potential
- » increased consistency between conformal expansion and resummations
- » effective potential widens CW
- » resummations predict

 $\epsilon_{\text{max}} \approx 0.08 - 0.10$

- » vacuum instability or single-trace merger – mystery remains
- \gg higher loops? γ_5 -problem different approaches?

