Asymptotic Safety and Vacuum Stability in the Litim-Sannino Model

Tom Steudtner

Technische Universität Dortmund

[Litim, Riyaz, Stamou, TS: 2307.08747] [Bednyakov, Mukhaeva: 2312.12128] [TS: 2402.16950] [Litim, Riyaz, Stamou, TS: 2xxx.xxxx]

ERG 2024, September 24th, 2024

Outline

- I. Motivation
- II. Litim-Sannino Model
- III. UV Conformal Window

1

IV. Effective Potential

» Asymptotic Safety in d=4, renormalisable, perturbatively controlled \rightarrow guaranteed UV fixed point [Litim, Sannino 2014]

» Asymptotic Safety in d=4, renormalisable, perturbatively controlled \rightarrow guaranteed UV fixed point [Litim, Sannino 2014]

 » Fundamental Example? 4d weakly coupled UV FPs are variants/embeddings of LiSa (exception: N=4 SUSY)
 [Bond, Litim 2017] [TS 2020]

» Asymptotic Safety in d=4, renormalisable, perturbatively controlled \rightarrow guaranteed UV fixed point [Litim, Sannino 2014]

» Fundamental Example? 4d weakly coupled UV FPs are variants/embeddings of LiSa (exception: N=4 SUSY)
[Bond, Litim 2017] [TS 2020]

 \rightarrow triality at large-N

 $SU(N_c)$ Dirac, (LiSa) $SO(N_c)$ or $Sp(N_c)$ Majorana fermions

[Bond, Litim, TS 2019]

» Asymptotic Safety in d=4, renormalisable, perturbatively controlled \rightarrow guaranteed UV fixed point [Litim, Sannino 2014]

» Fundamental Example? 4d weakly coupled UV FPs are variants/embeddings of LiSa (exception: N=4 SUSY)
[Bond, Litim 2017] [TS 2020]

 \rightarrow triality at large-N $SU(N_c)$ $SO(N_c)$ or $Sp(N_c)$ [Bond, Litim, TS 2019]Dirac, (LiSa)Majorana fermions

» UV conformal window in LiSa entirely accessible in perturbation theory – lessions for IR FP in QCD?

II. Litim-Sannino Model

II. Litim–Sannino Model (LiSa)

Field		$SU(N_c)$	$U_L(N_f)$	$U_R(N_f)$
'Quarks'	ψ_L	N_c	N_{f}	1
	ψ_R	N_c	1	N_{f}
'complex Meson'	ϕ	1	N_{f}	$\overline{N_f}$

II. Litim–Sannino Model (LiSa)

Field		$SU(N_c)$	$U_L(N_f)$	$U_R(N_f)$
'Quarks'	ψ_L	N_c	N_{f}	1
	ψ_R	N_c	1	N_{f}
'complex Meson'	ϕ	1	N_{f}	$\overline{N_f}$

II. Litim–Sannino Model (LiSa)

Field		$SU(N_c)$	$U_L(N_f)$	$U_R(N_f)$
'Quarks'	ψ_L	N_c	N_{f}	1
	ψ_R	N_c	1	N_{f}
'complex Meson'	ϕ	1	N_{f}	$\overline{N_f}$

$$\mathcal{L} = -\frac{1}{4} F^{A\mu\nu} F^{A}_{\ \mu\nu} + \mathcal{L}_{gf} + \mathcal{L}_{gh}$$

$$+ \operatorname{Tr} \left[\overline{\psi} i \overline{\mathcal{P}} \psi \right] - y \operatorname{Tr} \left[\overline{\psi} \left(\phi \mathcal{P}_{R} + \phi^{\dagger} \mathcal{P}_{L} \right) \psi \right]$$

$$+ \operatorname{Tr} \left[\partial^{\mu} \phi^{\dagger} \partial_{\mu} \phi \right] - m^{2} \operatorname{Tr} \left[\phi^{\dagger} \phi \right] - u \operatorname{Tr} \left[\phi^{\dagger} \phi \phi^{\dagger} \phi \right] - v \operatorname{Tr} \left[\phi^{\dagger} \phi \right] \operatorname{Tr} \left[\phi^{\dagger} \phi \right]$$

$$+ \operatorname{Tr} \left[\partial^{\mu} \phi^{\dagger} \partial_{\mu} \phi \right] - m^{2} \operatorname{Tr} \left[\phi^{\dagger} \phi \right] - u \operatorname{Tr} \left[\phi^{\dagger} \phi \phi^{\dagger} \phi \right] - v \operatorname{Tr} \left[\phi^{\dagger} \phi \right] \operatorname{Tr} \left[\phi^{\dagger} \phi \right]$$

$$= \operatorname{trace}$$

 \rightarrow interacting fixed point $g^*, y^*, u^*, v^* \neq 0$

UV fixed point

1 relevant and 3 irrelevant directions

UV fixed point

UV fixed point

 \rightarrow fixed point is under perturbative control

» Veneziano limit: $N_{f,c} \to \infty$ but $N_f/N_c = \text{const.}$ » introduce 't Hooft couplings:

$$\alpha_g = \frac{N_c g^2}{(4\pi)^2} \qquad \qquad \alpha_y = \frac{N_c y^2}{(4\pi)^2} \qquad \qquad \alpha_u = \frac{N_f u}{(4\pi)^2} \qquad \qquad \alpha_v = \frac{N_f^2 v}{(4\pi)^2}$$

» Veneziano limit: $N_{f,c} \to \infty$ but $N_f/N_c = {\rm const.}$ » introduce 't Hooft couplings:

$$\alpha_g = \frac{N_c g^2}{(4\pi)^2} \qquad \qquad \alpha_y = \frac{N_c y^2}{(4\pi)^2}$$

» small and tunable expansion parameter:

$$\alpha_u = \frac{N_f u}{(4\pi)^2} \qquad \qquad \alpha_v = \frac{N_f^2 v}{(4\pi)^2}$$
$$\epsilon = \frac{N_f}{N_c} - \frac{11}{2} \qquad \qquad -\frac{11}{2} < \epsilon < \infty$$

» Veneziano limit: $N_{f,c} \to \infty$ but $N_f/N_c = \text{const.}$ » introduce 't Hooft couplings:

$$\alpha_g = \frac{N_c g^2}{(4\pi)^2} \qquad \qquad \alpha_y = \frac{N_c y^2}{(4\pi)^2}$$

» small and tunable expansion parameter:

$$\alpha_u = \frac{N_f u}{(4\pi)^2} \qquad \qquad \alpha_v = \frac{N_f^2 v}{(4\pi)^2}$$
$$\epsilon = \frac{N_f}{N_c} - \frac{11}{2} \qquad \qquad -\frac{11}{2} < \epsilon < \infty$$

» 1-Loop part of gauge beta function: $\beta_g = \alpha_g^2 \left[\frac{4}{3} \epsilon + \mathcal{O}(\alpha^1) \right]$

» Veneziano limit: $N_{f,c} \to \infty$ but $N_f/N_c = \text{const.}$ » introduce 't Hooft couplings:

$$\alpha_g = \frac{N_c g^2}{(4\pi)^2} \qquad \qquad \alpha_y = \frac{N_c y^2}{(4\pi)^2}$$

» small and tunable expansion parameter:

$$\alpha_u = \frac{N_f u}{(4\pi)^2} \qquad \qquad \alpha_v = \frac{N_f^2 v}{(4\pi)^2}$$
$$\epsilon = \frac{N_f}{N_c} - \frac{11}{2} \qquad \qquad -\frac{11}{2} < \epsilon < \infty$$

» 1-Loop part of gauge beta function: $\beta_g = \alpha_g^2 \left[\frac{4}{3} \epsilon + \mathcal{O}(\alpha^1) \right]$

» conformal expansion: $\alpha^* = \epsilon a_{\text{LO}} + \epsilon^2 a_{\text{NLO}} + \epsilon^3 a_{\text{NNLO}} + \dots$

2-loop gauge 1-loop Yukawa 1-loop quartic	3-loop gauge 2-loop Yukawa 2-loop quartic	4-loop gauge 3-loop Yukawa 3-loop quartic
Litim,Sannino, 2014]	[Bond, Medina,	[Litim, Riyaz, Stamou, TS, 2023]
	Litim, TS, 2017]	[Bednyakov, Mukhaeva, 2023]

υv	Asymptotic Freedom		mptotic Freedom Asymptotic Safety		
IR	Confinement	Banks-Zaks	IR Freedom or Confinement/Conformality	IR Freedom	
_	$\frac{11}{2}$ $\epsilon_{\rm m}$	nin () $\epsilon_{\rm m}$	ax	

Gaussian is UV FP

UV	Asymptotic Freedom		symptotic Freedom Asymptotic Safety		
IR	Confinement	Banks-Zaks	IR Freedom or Confinement/Conformality	IR Freedom	
_	$\frac{11}{2}$ $\epsilon_{\rm m}$	nin () $\epsilon_{\rm m}$	ax	

Gaussian is UV FP

UV	Asymptotic Freedom		symptotic Freedom Asymptotic Safety		Ē
IR	Confinement	Banks-Zaks	IR Freedom or Confinement/Conformality	IR Freedom	
—	$\frac{11}{2}$ $\epsilon_{\rm m}$	nin (IR FP $\alpha_g^* eq 0$	$\epsilon_{\rm m}$	lax	

Gaussian is UV FP			fully interacting UV FP $\alpha^*_{g,y,u,v} \neq 0$		
UV	Asymptotic Freedom		Asymptotic Safety	Effective Theory	
IR	Confinement	Banks-Zaks	IR Freedom or Confinement/Conformality	IR Freedom	- C
$-\frac{11}{2} \qquad \epsilon_{\min} \begin{array}{c} 0 \\ \text{IR FP} \alpha_g^* \neq 0 \end{array} \qquad \epsilon_{\max}$				lax	

Gaussian is UV FP		UV FP	fully interacting UV FP $\alpha^*_{g,y,u,v} \neq 0$	
UV	Asymptoti	c Freedom	Asymptotic Safety	Effective Theory
IR	Confinement	Banks-Zaks	IR Freedom or Confinement/Conformality	IR Freedom
	$\frac{11}{2}$ $\epsilon_{\rm m}$	nin (IR FP $\alpha_g^* \neq 0$	$\epsilon_{\rm m}$	lax
			\rightarrow disappears outside of UV confor	mal window $[0, \epsilon_{\max}]$
			\rightarrow determine $\epsilon_{\max} \rightarrow (N_f, N_c)_r$ \rightarrow determine why	nin

III. UV Conformal Window

- » beta functions $\beta_{g,y,u,v}$ at 433: $\beta_g @ 4L$, $\beta_y @ 3L$, $\beta_{u,v} @ 3L$ [Litim, Riyaz, Stamou, TS, 2023]
 - \rightarrow fixed point values $\alpha^*_{g,y,u,v}(\epsilon)$ from $\beta_{g,y,u,v} = 0$ up to ϵ^3

- » beta functions $\beta_{g,y,u,v}$ at 433: $\beta_g @ 4L$, $\beta_y @ 3L$, $\beta_{u,v} @ 3L$ [Litim, Riyaz, Stamou, TS, 2023]
 - \rightarrow fixed point values $\alpha^*_{g,y,u,v}(\epsilon)$ from $\beta_{g,y,u,v}=0$ up to ϵ^3
 - $\rightarrow \text{ critical exponents } \vartheta_i \text{ as eigenvalues of stability matrix } M_{xx'} = \frac{\partial \beta_x}{\partial \alpha_{x'}} \Big|_{\alpha = \alpha^*}$ $(\alpha_x \alpha_x^*) = c_{x,i} \left(\frac{\mu}{\mu_0}\right)^{\vartheta_i} \qquad \qquad \vartheta_1 < 0 < \vartheta_{2,3,4}$

- » beta functions $\beta_{g,y,u,v}$ at 433: $\beta_g @ 4L$, $\beta_y @ 3L$, $\beta_{u,v} @ 3L$ [Litim, Riyaz, Stamou, TS, 2023]
 - \rightarrow fixed point values $\alpha^*_{g,y,u,v}(\epsilon)$ from $\beta_{g,y,u,v}=0$ up to ϵ^3
 - $\rightarrow \text{ critical exponents } \vartheta_i \text{ as eigenvalues of stability matrix } M_{xx'} = \frac{\partial \beta_x}{\partial \alpha_{x'}} \Big|_{\alpha = \alpha^*} \\ (\alpha_x \alpha_x^*) = c_{x,i} \left(\frac{\mu}{\mu_0}\right)^{\vartheta_i} \qquad \qquad \vartheta_1 < 0 < \vartheta_{2,3,4}$
- » typical shape (all loop orders)
 - $\beta_g = \alpha_g^2 \left[\frac{4}{3} \epsilon + b_g(\alpha_{g,y,u}, \epsilon) \right]$ $\beta_y = \alpha_y \, b_y(\alpha_{g,y,u}, \epsilon)$

 $\beta_u = b_u(\alpha_{g,y,u}, \epsilon)$

$$\beta_v = f_0(\alpha_{g,y,u}, \epsilon) + f_1(\alpha_{g,y,u}, \epsilon) \,\alpha_v + f_2(\alpha_{g,y,u}, \epsilon) \,\alpha_v^2$$

- » beta functions $\beta_{g,y,u,v}$ at 433: $\beta_g @ 4L$, $\beta_y @ 3L$, $\beta_{u,v} @ 3L$ [Litim, Riyaz, Stamou, TS, 2023]
 - \rightarrow fixed point values $\alpha^*_{g,y,u,v}(\epsilon)$ from $\beta_{g,y,u,v}=0$ up to ϵ^3
 - $\rightarrow \text{ critical exponents } \vartheta_i \text{ as eigenvalues of stability matrix } M_{xx'} = \frac{\partial \beta_x}{\partial \alpha_{x'}} \Big|_{\alpha = \alpha^*}$ $(\alpha_x \alpha_x^*) = c_{x,i} \left(\frac{\mu}{\mu_0}\right)^{\vartheta_i} \qquad \qquad \vartheta_1 < 0 < \vartheta_{2,3,4}$
- » typical shape (all loop orders)
 - $\beta_g = \alpha_g^2 \left[\frac{4}{3} \epsilon + b_g(\alpha_{g,y,u}, \epsilon) \right]$ $\beta_y = \alpha_y \, b_y(\alpha_{g,y,u}, \epsilon)$

$$\beta_u = b_u(\alpha_{g,y,u}, \epsilon)$$

$$\beta_v = f_0(\alpha_{g,y,u}, \epsilon) + f_1(\alpha_{g,y,u}, \epsilon) \,\alpha_v + f_2(\alpha_{g,y,u}, \epsilon) \,\alpha_v^2$$

 $\mathcal{L} \supset -u \operatorname{Tr} \left[\phi^{\dagger} \phi \phi^{\dagger} \phi \right] - v \operatorname{Tr} \left[\phi^{\dagger} \phi \right] \operatorname{Tr} \left[\phi^{\dagger} \phi \right]$ $\begin{cases} \text{"single trace"} \end{cases}$

"double trace"

- » beta functions $\beta_{g,y,u,v}$ at 433: $\beta_g @ 4L$, $\beta_y @ 3L$, $\beta_{u,v} @ 3L$ [Litim, Riyaz, Stamou, TS, 2023]
 - \rightarrow fixed point values $\alpha^*_{g,y,u,v}(\epsilon)$ from $\beta_{g,y,u,v} = 0$ up to ϵ^3
 - $\rightarrow \text{ critical exponents } \vartheta_i \text{ as eigenvalues of stability matrix } M_{xx'} = \frac{\partial \beta_x}{\partial \alpha_{x'}} \Big|_{\alpha = \alpha^*} \\ (\alpha_x \alpha_x^*) = c_{x,i} \left(\frac{\mu}{\mu_0}\right)^{\vartheta_i} \qquad \qquad \vartheta_1 < 0 < \vartheta_{2,3,4}$
- » typical shape (all loop orders)
 - $\beta_g = \alpha_g^2 \left[\frac{4}{3} \epsilon + b_g(\alpha_{g,y,u}, \epsilon) \right]$ $\beta_y = \alpha_y \, b_y(\alpha_{g,y,u}, \epsilon)$

 $\beta_u = b_u(\alpha_{g,y,u}, \epsilon)$

$$\mathcal{L} \supset -u \operatorname{Tr} \left[\phi^{\dagger} \phi \phi^{\dagger} \phi \right] - v \operatorname{Tr} \left[\phi^{\dagger} \phi \right] \operatorname{Tr} \left[\phi^{\dagger} \phi \right]$$

single trace"

$$\beta_{v} = f_{0}(\alpha_{g,y,u}, \epsilon) + f_{1}(\alpha_{g,y,u}, \epsilon) \alpha_{v} + f_{2}(\alpha_{g,y,u}, \epsilon) \alpha_{v}^{2}$$

 \rightarrow quadratic shape, up to two solutions $\alpha_{v}^{*\pm}$ for each $\alpha_{g,y,u}^{*}$

"double trace"

» strong coupling: $\alpha_x^* \gtrsim 1$

» strong coupling: $\alpha_x^* \gtrsim 1 \longrightarrow$ not the case, entire window weakly coupled

» strong coupling: $\alpha_x^* \gtrsim 1 \longrightarrow$ not the case, entire window weakly coupled » vacuum instability: FP potential needs to be bounded from below

classical potential: $\alpha_u^* > 0$ $\alpha_u^* + \alpha_v^* > 0$

» strong coupling: $\alpha_x^* \gtrsim 1 \longrightarrow$ not the case, entire window weakly coupled » vacuum instability: FP potential needs to be bounded from below

classical potential: $\alpha_u^* > 0$ $\alpha_u^* + \alpha_v^* > 0$

» FP merger: UV FP collides with another solution at ϵ_{max} , both become complex

» strong coupling: $\alpha_x^* \gtrsim 1 \longrightarrow$ not the case, entire window weakly coupled » vacuum instability: FP potential needs to be bounded from below

classical potential: $\alpha_u^* > 0$ $\alpha_u^* + \alpha_v^* > 0$

» FP merger: UV FP collides with another solution at ϵ_{\max} , both become complex

» strong coupling: $\alpha_x^* \gtrsim 1$ → not the case, entire window weakly coupled
 » vacuum instability: FP potential needs to be bounded from below

classical potential: $\alpha_u^* > 0$ $\alpha_u^* + \alpha_v^* > 0$

» FP merger: UV FP collides with another solution at ϵ_{max} , both become complex

Investigating the conformal window

- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$
 - \rightarrow series is exact up to third term
- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$
 - \rightarrow series is exact up to third term
 - \rightarrow hints for vacuum instability

 $\alpha_u^* + \alpha_v^{*+} \approx + 0.0625 \epsilon - 0.192 \epsilon^2 - 1.62 \epsilon^3 + \dots$

 $\epsilon_{\rm vac} \approx 0.327$

- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$
 - \rightarrow series is exact up to third term
 - \rightarrow hints for vacuum instability

$$\alpha_u^* + \alpha_v^{*+} \approx +0.0625 \epsilon - 0.192 \epsilon^2 - 1.62 \epsilon^3 + \dots$$

 $\epsilon_{\rm vac} \approx 0.327$

 \rightarrow unstable second solution $\alpha_u^* + \alpha_v^{*-} \approx -0.673 \epsilon - 0.761 \epsilon^2 - 1.95 \epsilon^3 + \dots$

» ϵ – expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$ \rightarrow series is exact up to third term \rightarrow hints for vacuum instability $\alpha_u^* + \alpha_v^{*+} \approx +0.0625 \epsilon - 0.192 \epsilon^2 - 1.62 \epsilon^3 + \dots$ $\epsilon_{\rm vac} \approx 0.327$ \rightarrow unstable second solution $\alpha_u^* + \alpha_v^{*-} \approx -0.673 \epsilon - 0.761 \epsilon^2 - 1.95 \epsilon^3 + \dots$ \rightarrow hints for single trace merger $\vartheta_1 \approx -0.608 \epsilon^2 + 0.707 \epsilon^3 + 6.947 \epsilon^4 + \dots$

 $\epsilon_{\rm mer1} \approx 0.249$

» ε - expansion of α_i^{*}(ε) and θ_i(ε)
→ series is exact up to third term
→ hints for vacuum instability
α_u^{*} + α_v^{*+} ≈ + 0.0625 ε - 0.192 ε² - 1.62 ε³ + ...
→ unstable second solution
α_u^{*} + α_v^{*-} ≈ - 0.673 ε - 0.761 ε² - 1.95 ε³ + ...
→ hints for single trace merger
θ₁ ≈ -0.608 ε² + 0.707 ε³ + 6.947 ε⁴ + ...
εmer1 ≈ 0.249

8

 \rightarrow no hint for double-trace merger $\vartheta_3 \approx +2.941 \epsilon + 1.041 \epsilon^2 + 5.137 \epsilon^3 + \dots$

- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$ → series is exact up to third term → hints for vacuum instability $\alpha_u^* + \alpha_v^{*+} \approx +0.0625 \epsilon - 0.192 \epsilon^2 - 1.62 \epsilon^3 + \dots$ $\epsilon_{vac} \approx 0.327$ → unstable second solution $\alpha_u^* + \alpha_v^{*-} \approx -0.673 \epsilon - 0.761 \epsilon^2 - 1.95 \epsilon^3 + \dots$ → hints for single trace merger $\vartheta_1 \approx -0.608 \epsilon^2 + 0.707 \epsilon^3 + 6.947 \epsilon^4 + \dots$ $\epsilon_{mer1} \approx 0.249$ → no hint for double-trace merger
 - → no hint for double-trace merger $\vartheta_3 \approx +2.941 \epsilon + 1.041 \epsilon^2 + 5.137 \epsilon^3 + \dots$
- » ϵ expansion is short! Higher order estimates?

- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$
 - \rightarrow series is exact up to third term
 - \rightarrow hints for vacuum instability $\alpha_u^* + \alpha_v^{*+} \approx + 0.0625 \epsilon - 0.192 \epsilon^2 - 1.62 \epsilon^3 + \dots$
 - \rightarrow unstable second solution $\alpha_u^* + \alpha_v^{*-} \approx -0.673 \epsilon - 0.761 \epsilon^2 - 1.95 \epsilon^3 + \dots$
 - $\rightarrow \text{ hints for single trace merger} \\ \vartheta_1 \approx -0.608 \, \epsilon^2 + 0.707 \, \epsilon^3 + 6.947 \, \epsilon^4 + \dots$
 - \rightarrow no hint for double-trace merger $\vartheta_3 \approx +2.941 \epsilon + 1.041 \epsilon^2 + 5.137 \epsilon^3 + \dots$
- » ϵ expansion is short! Higher order estimates:
 - \rightarrow Padè resummation of ϵ expansion

$$\epsilon_{\rm vac} \approx 0.327$$
 Pade [2/1] 0.087
 $\epsilon_{\rm mer1} \approx 0.249$ Pade [3/1] 0.091

- » ϵ expansion of $\alpha_i^*(\epsilon)$ and $\vartheta_i(\epsilon)$
 - \rightarrow series is exact up to third term
 - \rightarrow hints for vacuum instability $\alpha_{u}^{*} + \alpha_{u}^{*+} \approx +0.0625 \epsilon - 0.192 \epsilon^{2} - 1.62 \epsilon^{3} + \dots$
 - \rightarrow unstable second solution $\alpha_u^* + \alpha_v^{*-} \approx -0.673 \epsilon - 0.761 \epsilon^2 - 1.95 \epsilon^3 + \dots$
 - \rightarrow hints for single trace merger $\vartheta_1 \approx -0.608 \,\epsilon^2 + 0.707 \,\epsilon^3 + 6.947 \,\epsilon^4 + \dots$
 - \rightarrow no hint for double-trace merger $\vartheta_3 \approx +2.941 \epsilon + 1.041 \epsilon^2 + 5.137 \epsilon^3 + \dots$
- » ϵ expansion is short! Higher order estimates:
 - \rightarrow Padè resummation of ϵ expansion
 - \rightarrow Numerical solution $\beta_{q,y,u,v} = 0$
 - \rightarrow Separatrix expansion $\beta_{sep}(\alpha, \epsilon) = 0$ and resummations in $\alpha \quad [\rightarrow \text{Nahzaan Riyaz Poster}]$

$$\epsilon_{\rm mer1} \approx 0.249 \quad \stackrel{\rm Pade [3/1]}{\longrightarrow} \quad 0.091$$

 ϵ

 ϵ

9

 $[\rightarrow Nahzaan Riyaz Poster]$

» describe running along relevant separatrix

 $[\rightarrow Nahzaan Riyaz Poster]$

» describe running along relevant separatrix $\rightarrow \beta_{sep} = \beta_g \text{ with } \alpha \equiv \alpha_g, \ \alpha_{y,u,v} = \sum_{\ell=1}^{\infty} c_{y,u,v}^{(\ell)}(\epsilon) \alpha^{\ell}$

» Expansion in α around Gaussian (weak branch)

$$\beta_{y,u,v} = \frac{\mathrm{d}\alpha_{y,u,v}(\alpha)}{\mathrm{d}\alpha}\beta_g$$

 $[\rightarrow Nahzaan Riyaz Poster]$

» describe running along relevant separatrix $\sum_{n=1}^{\infty} (n)$

$$\rightarrow \beta_{\text{sep}} = \beta_g \text{ with } \alpha \equiv \alpha_g, \ \alpha_{y,u,v} = \sum_{\ell=1} c_{y,u,v}^{(\ell)}(\epsilon) \alpha^\ell$$

» Expansion in α around Gaussian (weak branch)

$$\beta_{y,u,v} = \frac{\mathrm{d}\alpha_{y,u,v}(\alpha)}{\mathrm{d}\alpha}\beta_g$$

» effective 4L beta function along separatrix, single coupling $\beta_{\rm sep} = \sum_{\ell=1}^{\infty} A_{\ell}(\epsilon) \, \alpha^{\ell+1}$

ightarrow complete ϵ dependence up to A_4

 $[\rightarrow Nahzaan Riyaz Poster]$

» describe running along relevant separatrix $\rightarrow \beta_{sep} = \beta_g \text{ with } \alpha \equiv \alpha_g, \ \alpha_{y,u,v} = \sum_{\ell=1}^{\infty} c_{y,u,v}^{(\ell)}(\epsilon) \alpha^{\ell}$

» Expansion in α around Gaussian (weak branch)

$$\beta_{y,u,v} = \frac{\mathrm{d}\alpha_{y,u,v}(\alpha)}{\mathrm{d}\alpha}\beta_g$$

» effective 4L beta function along separatrix, single coupling $\beta_{\rm sep} = \sum_{\ell=1}^{\infty} A_{\ell}(\epsilon) \, \alpha^{\ell+1}$

→ complete ϵ dependence up to A_4 → requires **432** RGEs

Relevant Separatrix

Relevant Separatrix

Relevant Separatrix

 α

Relevant Separatrix – Padé resummation in α

 ϵ_{\max}

 $0.078\dots 0.081$

 $eta_{ ext{sep}}^{[4/1]} \quad eta_{ ext{sep}}$

 ϵ_{\max}

 $0.078 \dots 0.081$

 $\beta_{
m sep}^{[4/1]}$ $\beta_{
m sep}$

vacuum instability

compatible with ϵ - expansion

 ϵ_{\max}

 $0.078 \dots 0.081$

 $\beta_{
m sep}^{[4/1]}$ $\beta_{
m sep}$

single-trace merger dominated: \rightarrow vacuum instability ?!

depart from $\,\epsilon$ - expansion

vacuum instability

compatible with ϵ - expansion

 ϵ_{\max}

 $0.078\dots 0.081$

 $\beta_{
m sep}^{[4/1]} \quad \beta_{
m sep}$

single-trace merger dominated: \rightarrow vacuum instability ?!

depart from ϵ - expansion

vacuum instability

compatible with ϵ - expansion

» Is the merger dominant?

» Is the problem β_{sep} vs. $\beta_{g,y,u,v}$? Higher loops?

- $\epsilon_{\rm max}$ 0.078...0.081
 - $\beta_{
 m sep}^{[4/1]} = \beta_{
 m sep}$

single-trace merger dominated: \rightarrow vacuum instability ?!

depart from $\,\epsilon$ - expansion

vacuum instability

compatible with ϵ - expansion

- » Is the merger dominant?
- » Is the problem β_{sep} vs. $\beta_{g,y,u,v}$? Higher loops?
- » Influence of quantum corrections to vacuum stability?

» Boundedness from below of classical potential → quantum effective potential → additional loop corrections for $\alpha_u^* + \alpha_v^* > 0$ [Litim, Mojaza, Sannino, 2015]

- » Boundedness from below of classical potential → quantum effective potential → additional loop corrections for $\alpha_u^* + \alpha_v^* > 0$ [Litim, Mojaza, Sannino, 2015]
- » Expansion of scalar around classical background field $\phi_{ij} = h \, \delta_{ij} + \hat{\phi}_{ij}$ and integrate out $\hat{\phi}_{ij}$

- » Boundedness from below of classical potential → quantum effective potential → additional loop corrections for $\alpha_u^* + \alpha_v^* > 0$ [Litim, Mojaza, Sannino, 2015]
- » Expansion of scalar around classical background field $\phi_{ij} = h \, \delta_{ij} + \hat{\phi}_{ij}$ and integrate out $\hat{\phi}_{ij}$ » effective potential along close to UV FP due to RG invariance

$$\frac{V_{\text{eff}}}{(4\pi)^2} = \alpha_w^*(\epsilon, z_0) \, h^4\left(\frac{z}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \qquad \text{with} \qquad z = \frac{(4\pi)^2}{N_f} \frac{h^2}{\mu^2}$$

- » Boundedness from below of classical potential → quantum effective potential → additional loop corrections for $\alpha_u^* + \alpha_v^* > 0$ [Litim, Mojaza, Sannino, 2015]
- » Expansion of scalar around classical background field $\phi_{ij} = h \, \delta_{ij} + \hat{\phi}_{ij}$ and integrate out $\hat{\phi}_{ij}$
- » effective potential along close to UV FP due to RG invariance

$$\frac{V_{\text{eff}}}{(4\pi)^2} = \alpha_w^*(\epsilon, z_0) \frac{h^4}{h^4} \left(\frac{z}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \text{ with } z = \frac{(4\pi)^2}{N_f} \frac{h^2}{\mu^2}$$

- » Boundedness from below of classical potential → quantum effective potential → additional loop corrections for $\alpha_u^* + \alpha_v^* > 0$ [Litim, Mojaza, Sannino, 2015]
- » Expansion of scalar around classical background field $\phi_{ij} = h \, \delta_{ij} + \hat{\phi}_{ij}$ and integrate out $\hat{\phi}_{ij}$
- » effective potential along close to UV FP due to RG invariance

$$\frac{V_{\text{eff}}}{(4\pi)^2} = \alpha_w^*(\epsilon, z_0) h^4 \left(\frac{z}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \text{ with } z = \frac{(4\pi)^2}{N_f} \frac{h^2}{\mu^2}$$
sign determines stability

- » Boundedness from below of classical potential → quantum effective potential → additional loop corrections for $\alpha_u^* + \alpha_v^* > 0$ [Litim, Mojaza, Sannino, 2015]
- » Expansion of scalar around classical background field $\phi_{ij} = h \, \delta_{ij} + \hat{\phi}_{ij}$ and integrate out $\hat{\phi}_{ij}$
- » effective potential along close to UV FP due to RG invariance

$$\frac{V_{\text{eff}}}{(4\pi)^2} = \alpha_w^*(\epsilon, z_0) h^4 \left(\frac{z}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \qquad \text{with} \qquad z = \frac{(4\pi)^2}{N_f} \frac{h^2}{\mu^2}$$
sign determines
stability

» determine α_w^* by matching fixed order computation at $z = z_0$ \rightarrow two loops for α_w^* up to ϵ^3

$$\phi_{ij} = \frac{h}{\delta_{ij}} + \frac{\delta_{ij}}{\sqrt{2N_f}} \left(\frac{S}{S} + i\tilde{S} \right) + t^a_{ij} \left(R^a + iI^a \right)$$

» Expansion of scalar field around classical background field $U(N_f)_L \times U(N_f)_R \mapsto U(N_f)_V$

$$\phi_{ij} = \frac{h}{\delta_{ij}} + \frac{\delta_{ij}}{\sqrt{2N_f}} \left(\mathbf{S} + i\tilde{\mathbf{S}} \right) + t^a_{ij} \left(R^a + iI^a \right)$$

classical field

$$\phi_{ij} = \frac{h}{\delta_{ij}} + \frac{\delta_{ij}}{\sqrt{2N_f}} \left(S + i\tilde{S} \right) + t^a_{ij} \left(R^a + iI^a \right)$$

classical field subleading in large-N

$$\phi_{ij} = \frac{h}{\delta_{ij}} + \underbrace{\frac{\delta_{ij}}{\sqrt{2N_f}}}_{\text{classical field}} + i\tilde{S} + t^a_{ij} \left(R^a + iI^a\right)$$

 \gg

$$\phi_{ij} = \frac{h}{\delta_{ij}} + \frac{\delta_{ij}}{\sqrt{2N_f}} + \frac{i\tilde{S}}{\sqrt{2N_f}} + t^a_{ij} (R^a + iI^a)$$

classical field subleading in large-N adjoint quantum fields
two loops matching:
 $\alpha_w^{(0)} = \alpha_u + \alpha_v$ $\alpha_w^{(\ell)} \propto \alpha^{\ell+1}$ also logs: $\propto \alpha^{\ell+1} \log^{\ell} \frac{\alpha_{F,R,I}}{z_0}$

$$\phi_{ij} = \frac{h}{\delta_{ij}} + \underbrace{\delta_{ij}}_{\sqrt{2N_f}} + \underbrace{tis}_{ij} + t^a_{ij} (R^a + iI^a)$$
classical field subleading in large-N adjoint quantum fields

* two loops matching:
$$\alpha_w^{(0)} = \alpha_u + \alpha_v \qquad \alpha_w^{(\ell)} \propto \alpha^{\ell+1} \qquad \text{also logs:} \qquad \propto \alpha^{\ell+1} \log^{\ell} \frac{\alpha_{F,R,I}}{[z_0]} \text{ only here}$$

$$\phi_{ij} = \frac{h}{\delta_{ij}} + \frac{\delta_{ij}}{\sqrt{2N_f}} + \frac{1}{(s+iS)} + t^a_{ij} (R^a + iI^a)$$
classical field subleading in large-N adjoint quantum fields

* two loops matching:
$$\alpha_w^{(0)} = \alpha_u + \alpha_v \qquad \alpha_w^{(\ell)} \propto \alpha^{\ell+1} \qquad \text{also logs:} \qquad \propto \alpha^{\ell+1} \log^{\ell} \frac{\alpha_{F,R,I}}{[z_0]} \text{ only here}$$

$$\rightarrow \quad \alpha_F = \left(\frac{11}{2} + \epsilon\right) \alpha_y \qquad \alpha_R = 6 \alpha_u + 2 \alpha_v \qquad \alpha_I = 2 \alpha_u + 2 \alpha_v$$
» Expansion of scalar field around classical background field $U(N_f)_L \times U(N_f)_R \mapsto U(N_f)_V$

$$\phi_{ij} = \frac{h \,\delta_{ij}}{\sqrt{2N_f}} + \frac{\delta_{ij}}{\sqrt{2N_f}} + \frac{1}{iS} + t^a_{ij} \left(R^a + iI^a\right)$$
classical field subleading in large-N adjoint quantum fields

* two loops matching:
$$\alpha_w^{(0)} = \alpha_u + \alpha_v \qquad \alpha_w^{(\ell)} \propto \alpha^{\ell+1} \qquad \text{also logs:} \qquad \propto \alpha^{\ell+1} \log^{\ell} \frac{\alpha_{F,R,I}}{z_0} \text{ only here}$$

$$\rightarrow \quad \alpha_F = \left(\frac{11}{2} + \epsilon\right) \alpha_y \qquad \alpha_R = 6 \,\alpha_u + 2 \,\alpha_v \qquad \alpha_I = 2 \,\alpha_u + 2 \,\alpha_v$$

» classical instability: $\alpha_I < 0 \rightarrow \text{imaginary } \alpha_w^*$

$$\phi_{ij} = \frac{h}{\delta_{ij}} + \frac{\delta_{ij}}{\sqrt{2N_f}} + \frac{iS}{iS} + t^a_{ij} (R^a + iI^a)$$
classical field subleading in large-N adjoint quantum fields

* two loops matching:
$$\alpha_w^{(0)} = \alpha_u + \alpha_v \qquad \alpha_w^{(\ell)} \propto \alpha^{\ell+1} \qquad \text{also logs:} \qquad \propto \alpha^{\ell+1} \log^\ell \frac{\alpha_{F,R,I}}{\mathbb{Z}_0} \text{ only here}$$

$$\rightarrow \quad \alpha_F = \left(\frac{11}{2} + \epsilon\right) \alpha_y \qquad \alpha_R = 6 \alpha_u + 2 \alpha_v \qquad \alpha_I = 2 \alpha_u + 2 \alpha_v$$

* classical instability: $\alpha_I < 0 \rightarrow \text{imaginary } \alpha_w^*$

$$\log \frac{\alpha_I}{z_0}$$
 large for $|\alpha_I| \to 0$

>>

>>>

$$\begin{aligned} \phi_{ij} &= h \, \delta_{ij} + \underbrace{\sqrt{2N_f}}_{\sqrt{2N_f}} (R^a + iS) + t^a_{ij} \left(R^a + iI^a \right) \\ \text{classical field subleading in large-N} \quad \text{adjoint quantum fields} \end{aligned}$$

$$\begin{aligned} \text{two loops matching:} \\ \alpha_w^{(0)} &= \alpha_u + \alpha_v \qquad \alpha_w^{(\ell)} \propto \alpha^{\ell+1} \qquad \text{also logs:} \quad \propto \alpha^{\ell+1} \log^\ell \frac{\alpha_{F,R,I}}{\mathbb{Z}_0} \text{ only here} \\ \rightarrow \quad \alpha_F &= \left(\frac{11}{2} + \epsilon\right) \alpha_y \qquad \alpha_R = 6 \, \alpha_u + 2 \, \alpha_v \qquad \alpha_I = 2 \, \alpha_u + 2 \, \alpha_v \end{aligned}$$

$$\begin{aligned} \text{classical instability:} \quad \alpha_I < 0 \quad \rightarrow \text{ imaginary } \alpha_w^* \\ \left| \log \frac{\alpha_I}{z_0} \right| \quad \text{large for } |\alpha_I| \rightarrow 0 \end{aligned}$$

$$\end{aligned}$$

>>

>>>

$$\phi_{ij} = \underbrace{h \, \delta_{ij}}_{QK} + \underbrace{\delta_{ij}}_{QK} + \underbrace{iS}_{I} + t^a_{ij} \left(R^a + iI^a \right)$$
classical field subleading in large-N adjoint quantum fields
two loops matching:
$$\alpha_w^{(0)} = \alpha_u + \alpha_v \qquad \alpha_w^{(\ell)} \propto \alpha^{\ell+1} \qquad \text{also logs:} \qquad \propto \alpha^{\ell+1} \log^\ell \frac{\alpha_{F,R,I}}{[20]} \text{ only here}$$

$$\rightarrow \quad \alpha_F = \left(\frac{11}{2} + \epsilon\right) \alpha_y \qquad \alpha_R = 6 \, \alpha_u + 2 \, \alpha_v \qquad \alpha_I = 2 \, \alpha_u + 2 \, \alpha_v$$
classical instability: $\alpha_I < 0 \rightarrow \text{imaginary } \alpha_w^* \qquad \Big\} \qquad \text{`Goldstone catastrophe''}$

$$\left| \log \frac{\alpha_I}{z_0} \right| \quad \text{large for } |\alpha_I| \rightarrow 0 \qquad & \\ \Delta_I = - \underbrace{\bigcirc}_{v} + - \underbrace{\bigcirc}_{v} + - \underbrace{\bigcirc}_{v} + - \underbrace{\bigcirc}_{v} + - \underbrace{\bigcirc}_{w} - - \sim \alpha_{g,y}$$

>>

>>>

$$\begin{split} \phi_{ij} &= h \, \delta_{ij} + \underbrace{\delta_{ij}}_{I \to I} \left(\begin{array}{c} \mathcal{R}^{a} + i I^{a} \\ \mathcal{Q} \mathcal{N}_{I} \\ \mathcal{Q}$$

» Logarithms $\log \frac{\alpha_{F,R}}{z_0}$ and $\log \frac{\tilde{\alpha}_I}{z_0}$ can be partially removed by choosing z_0 $\alpha_w^*(\epsilon, z_0') = \left(\frac{z_0'}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \alpha_w^*(\epsilon, z_0)$

» Logarithms $\log \frac{\alpha_{F,R}}{z_0}$ and $\log \frac{\tilde{\alpha}_I}{z_0}$ can be partially removed by choosing z_0 $\alpha_w^*(\epsilon, z_0') = \left(\frac{z_0'}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \alpha_w^*(\epsilon, z_0)$

» hierarchy at UV FP

 $\begin{array}{c} 0 < \tilde{\alpha}_I \ll \alpha_R \approx \epsilon < \alpha_F \ll 1 \\ 0.13\epsilon \quad 0.92\epsilon \quad 1.16\epsilon \end{array}$

» Logarithms $\log \frac{\alpha_{F,R}}{z_0}$ and $\log \frac{\tilde{\alpha}_I}{z_0}$ can be partially removed by choosing z_0 $\alpha_w^*(\epsilon, z_0') = \left(\frac{z_0'}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \alpha_w^*(\epsilon, z_0)$

» hierarchy at UV FP

 $\begin{array}{c} 0 < \tilde{\alpha}_I \ll \alpha_R \approx \epsilon < \alpha_F \ll 1 \\ 0.13\epsilon \quad 0.92\epsilon \quad 1.16\epsilon \end{array}$

» soft logs in potential :

$$\alpha_I^2 \log \frac{\tilde{\alpha}_I}{z_0} + \alpha_R^2 \log \frac{\alpha_R}{z_0}$$

» Logarithms $\log \frac{\alpha_{F,R}}{z_0}$ and $\log \frac{\tilde{\alpha}_I}{z_0}$ can be partially removed by choosing z_0 $\alpha_w^*(\epsilon, z_0') = \left(\frac{z_0'}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \alpha_w^*(\epsilon, z_0)$

» hierarchy at UV FP

 $\begin{array}{c} 0 < \tilde{\alpha}_I \ll \alpha_R \approx \epsilon < \alpha_F \ll 1 \\ 0.13\epsilon \quad 0.92\epsilon \quad 1.16\epsilon \end{array}$

» soft logs in potential :

$$\alpha_I^2 \log \frac{\tilde{\alpha}_I}{z_0} + \alpha_R^2 \log \frac{\alpha_R}{z_0} \longrightarrow \alpha_I^2 \log \frac{\tilde{\alpha}_I}{\alpha_R}$$
 better than $\alpha_R^2 \log \frac{\alpha_R}{\tilde{\alpha}_I}$

» Logarithms $\log \frac{\alpha_{F,R}}{z_0}$ and $\log \frac{\tilde{\alpha}_I}{z_0}$ can be partially removed by choosing z_0 $\alpha_w^*(\epsilon, z_0') = \left(\frac{z_0'}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \alpha_w^*(\epsilon, z_0)$

» hierarchy at UV FP
$$0 < \tilde{\alpha}_{I} \ll \alpha_{R} \approx \epsilon < \alpha_{F} \ll 1$$

$$0.13\epsilon \quad 0.92\epsilon \quad 1.16\epsilon$$
» soft logs in potential :
$$\alpha_{I}^{2} \log \frac{\tilde{\alpha}_{I}}{z_{0}} + \alpha_{R}^{2} \log \frac{\alpha_{R}}{z_{0}} \quad \rightarrow \quad \alpha_{I}^{2} \log \frac{\tilde{\alpha}_{I}}{\alpha_{R}} \quad \text{better than} \quad \alpha_{R}^{2} \log \frac{\alpha_{R}}{\tilde{\alpha}_{I}}$$
best choice:
$$z_{0} \neq \tilde{\alpha}_{I} \quad \alpha_{R} \leq z_{0} \leq \alpha_{F}$$

» Logarithms $\log \frac{\alpha_{F,R}}{z_0}$ and $\log \frac{\tilde{\alpha}_I}{z_0}$ can be partially removed by choosing z_0 $\alpha_w^*(\epsilon, z_0') = \left(\frac{z_0'}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \alpha_w^*(\epsilon, z_0)$

 \rightarrow uncertainty estimate for higer loop corrections

» Logarithms $\log \frac{\alpha_{F,R}}{z_0}$ and $\log \frac{\tilde{\alpha}_I}{z_0}$ can be partially removed by choosing z_0 $\alpha_w^*(\epsilon, z_0') = \left(\frac{z_0'}{z_0}\right)^{2\gamma_h^*/(1-\gamma_h^*)} \alpha_w^*(\epsilon, z_0)$

» hierarchy at UV FP
$$0 < \tilde{\alpha}_I \ll \alpha_R \approx \epsilon < \alpha_F \ll 1$$

 $0.13\epsilon \quad 0.92\epsilon \quad 1.16\epsilon$

» soft logs in potential : $\alpha_I^2 \log \frac{\tilde{\alpha}_I}{z_0} + \alpha_R^2 \log \frac{\alpha_R}{z_0} \longrightarrow \alpha_I^2 \log \frac{\tilde{\alpha}_I}{\alpha_R}$ better than $\alpha_R^2 \log \frac{\alpha_R}{\tilde{\alpha}_I}$

best choice: $z_0 \neq \tilde{\alpha}_I$ $\alpha_R \leq z_0 \leq \alpha_F$

→ uncertainty estimate for higer loop corrections
 → consecutive loop orders: nested ranges ↔ relible loop expansion

 ϵ

» conformal window in weakly coupled regime \rightarrow 433 and effective potential

» conformal window in weakly coupled regime \rightarrow 433 and effective potential

» increased consistency between conformal expansion and resummations

- » conformal window in weakly coupled regime \rightarrow 433 and effective potential
- » increased consistency between conformal expansion and resummations
- » effective potential widens CW

- » conformal window in weakly coupled regime \rightarrow 433 and effective potential
- » increased consistency between conformal expansion and resummations
- » effective potential widens CW
- » resummations predict

 $\epsilon_{\rm max}\approx 0.08-0.10$

- » conformal window in weakly coupled regime \rightarrow 433 and effective potential
- » increased consistency between conformal expansion and resummations
- » effective potential widens CW 0.2 » resummations predict $\epsilon_{\rm max} \approx 0.08 - 0.10$ ϵ expansion 433 ω 0.1 Padé Separatrix • 0 5 8 11 12 13 14 15 3 6 7 9 10 4

 N_c

- » conformal window in weakly coupled regime \rightarrow 433 and effective potential
- » increased consistency between conformal expansion and resummations
- » effective potential widens CW
- » resummations predict

 $\epsilon_{\rm max} \approx 0.08 - 0.10$

 » vacuum instability or single-trace merger – mystery remains

- » conformal window in weakly coupled regime \rightarrow 433 and effective potential
- » increased consistency between conformal expansion and resummations
- » effective potential widens CW
- » resummations predict

 $\epsilon_{\rm max}\approx 0.08-0.10$

- » vacuum instability or single-trace merger – mystery remains
- » higher loops? γ_5 -problem different approaches?

