

Nonperturbative QCD within the functional renormalization group

Wei-jie Fu

Dalian University of Technology

12th International Conference on the Exact Renormalization Group 2024 (ERG2024), Les Diablerets, Switzerland, Sep. 23-27, 2024

Based on:

WF, Xiaofeng Luo, Jan M. Pawlowski, Fabian Rennecke, Shi Yin, arXiv: 2308.15508;
Braun, Chen, WF, Gao, Huang, Ihssen, Pawlowski, Rennecke, Sattler, Tan, Wen, and Yin, arXiv:2310.19853;
Yang-yang Tan, Yong-rui Chen, WF, Wei-Jia Li, arXiv: 2403.03503;
WF, Chuang Huang, Jan M. Pawlowski, Yang-yang Tan, arXiv:2209.13120; arXiv:2401.07638;
WF, Chuang Huang, Jan M. Pawlowski, Yang-yang Tan, Li-jun Zhou, in preparation;
Lei Chang, WF, Chuang Huang, Jan M. Pawlowski, Dao-yu Zhang, in preparation;
WF, Jan M. Pawlowski, Robert D. Pisarski, Fabian Rennecke, Rui Wen, and Shi Yin, in preparation;
Yang-yang Tan, Shi Yin, Yong-rui Chen, Chuang Huang, WF, in preparation.

fQCD collaboration:

Braun, Chen, Fu, Gao, Geissel, Huang, Lu, Ihssen, Pawlowski, Rennecke, Sattler, Schallmo, Stoll, Tan, Töpfel, Turnwald, Wessely, Wen, Wink, Yin, Zheng, Zorbach 1

Basic questions in nuclear physics

Mass generation

Image from BNL website

Distribution amplitudes for pion

X Lattice: J. Hua *et al.* (LPC), *PRL* 129 (2022) 132001; DSE: C. Roberts *et al.*, *PPNP* 120 (2021) 103883; Sum rules: P. Ball *et al.*, *JHEP* 08 (2007) 090; OPE: G. Bali *et al.* (RQCD), *JHEP* 08 (2019) 065; 11 (2020) 37.

• How can we understand mass generation and hadron structure from firstprinciples QCD?

CEP in QCD phase diagram

Fluctuations measured in BES-II

QCD phase diagram

• Is there a "peak" structure serving as the smoking gun signal for the critical end point in the QCD phase diagram?

CEP in QCD phase diagram

Fluctuations measured in BES-II

QCD phase diagram

• Is there a "peak" structure serving as the smoking gun signal for the critical end point in the QCD phase diagram?

Critical slowing down near QCD critical point

Tan, Yin, Chen, Huang, WF, in preparation

Relaxation time:

 $\tau = \xi^{\mathsf{Z}} f(k\xi)$

 \mathcal{Z} : dynamic critical exponent

Goldstone damping

also cf. talk by Lorenz von Smekal

Call for:

- Real-time description of strongly interacting systems.
- Nonperturbative approach of QCD.

- ***** Introduction
- *** QCD in vacuum and hadron structure**
- *** QCD** at finite temperature and densities
- *** Real-time dynamics of QCD**
- *** Summary and outlook**

Chiral symmetry breaking and mass generation in RG

• β function of 4-quark coupling:

• Quark mass:

• Flows of two- and four-quark vertices play the same roles of gap and Bethe-Salpeter equations.

Bound states in RG

• Bound states encoded in *n*-point correlation functions:

• Flow equation of 4-quark interaction:

Note: playing the same role as the **Bethe-Salpeter equation**.

WF, Huang, Pawlowski, Tan, arXiv:2401.07638

 $\partial_t \lambda_{\pi,k}(P^2) = C_k(P^2)\lambda_{\pi,k}^2(P^2) + A_k(P^2),$ $\lambda_{\pi,k=0}(P^2) = \frac{\lambda_{\pi,k=\Lambda}}{1 - \lambda_{\pi,k=\Lambda} \int_{\Lambda}^{0} C_k(P^2) \frac{dk}{k}},$

Bethe-Salpeter amplitude

• Bethe-Salpeter amplitude can be extracted from the 4-quark vertex in the proximity of on-shell momentum of bound states:

QCD within fRG

QCD with dynamical hadronization

Introducing a RG scale dependent composite field:

$$\hat{\phi}_k(\hat{\varphi}), \text{ with } \hat{\varphi} = (\hat{A}, \hat{c}, \hat{\bar{c}}, \hat{q}, \hat{\bar{q}}),$$

Wetterich equation is modified as

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \operatorname{STr} \left(G_k[\Phi] \,\partial_t R_k \right) + \operatorname{Tr} \left(G_{\phi \Phi_a}[\Phi] \frac{\delta \langle \partial_t \hat{\phi}_k \rangle}{\delta \Phi_a} \, R_\phi \right)$$
$$- \int \langle \partial_t \hat{\phi}_{k,i} \rangle \left(\frac{\delta \Gamma_k[\Phi]}{\delta \phi_i} + c_\sigma \delta_{i\sigma} \right),$$

Flow equation:

See also recent work: Ihssen, Pawlowski, Sattler, Wink, arXiv:2408.08413 $\langle \partial_t \hat{\phi}_k \rangle = \dot{A}_k \, \bar{q} \tau q + \dot{B}_k \, \phi + \dot{C}_k \, \hat{e}_\sigma \,, \quad \mathbf{H}$

Gies, Wetterich , *PRD* 65 (2002) 065001; 69 (2004) 025001; Pawlowski, *AP* 322 (2007) 2831; Flörchinger, Wetterich, *PLB* 680 (2009) 371

Mitter, Pawlowski, Strodthoff, *PRD* 91 (2015) 054035, arXiv:1411.7978; Braun, Fister, Pawlowski, Rennecke, *PRD* 94 (2016) 034016, arXiv:1412.1045; Rennecke, *PRD* 92 (2015) 076012, arXiv:1504.03585; Cyrol, Mitter, Pawlowski, Strodthoff, *PRD* 97 (2018) 054006, arXiv:1706.06326; WF, Pawlowski, Rennecke, *PRD* 101 (2020) 054032

four-quark interaction encoded in Yukawa coupling:

also cf. talks by Franz R. Sattler and Friederike Ihssen

QCD within fRG in vacuum

3.0 2.5 gluon propagator dressing $1/\mathbb{Z}_A$ 2.0 1.5 1.0 fRG, $N_f = 2 + 1$ 0.5 Lattice, $N_f = 2 + 1$ 0.0 ∟ 0.1 0.2 0.4 0.6 1 2 3 4 5 7 10 p[GeV]

Lattice: Boucaud et al., PRD 98 (2018) 114515

Quark-gluon vertex:

Gluon dressing:

Ghost dressing:

Strong couplings:

fRG: WF, Huang, Pawlowski, Tan, Zhou, in preparation

QCD within fRG in vacuum

Quark mass:

Lattice: Chang et al., PRD 104 (2021) 094509

Four-quark vertex:

Quark wave function:

Four-quark vertex (pion channel):

Quasi-PDA of pion

• Bethe-Salpeter amplitude (unamputated):

$$\chi_{\pi}(k;P) = G_q(k_+)\Gamma(k;P)G_q(k_-)$$

with

$$\Gamma(k;P) = i\gamma_5 h_{\pi}(k;P)$$

and
$$P = (iE_{\pi}, P_z, 0, 0), E_{\pi} = \sqrt{P_z^2 + m_{\pi}^2}$$
 and $k_{\pm} = k \pm P/2$

• Quasi parton distribution amplitude (qPDA) reads

$$\phi_{\pi}(x, P_z) = \frac{1}{f_{\pi}} \operatorname{Tr}_{CD} \left[\int \frac{d^4k}{(2\pi)^4} \delta(\tilde{n} \cdot k_+ - x\tilde{n} \cdot P) \gamma_5 \gamma \cdot \tilde{n} \chi_{\pi}(k; P) \right]$$

with $\tilde{n} = (0,1,0,0)$. Integrating k_3 firstly by using the delta function, one is led to

$$\begin{split} \phi_{\pi}(x,P_z) &= \frac{1}{f_{\pi}} \frac{4N_c}{(2\pi)^4} \int d^2 k_{\perp} dk_0 \, h_{\pi}(k;P) P_z \Big[x M_q(k_-^2) + (1-x) M_q(k_+^2) \Big] \\ & \times \frac{1}{Z_q(k_+^2) Z_q(k_-^2)} \frac{1}{k_+^2 + M_q^2(k_+^2)} \frac{1}{k_-^2 + M_q^2(k_-^2)} \end{split}$$

$$\begin{split} k_{\mu} &= \left(k_0, (x-1/2)P_z, k_{\perp}\right), \\ k_{+\mu} &= \left(k_0 + iE_{\pi}/2, xP_z, k_{\perp}\right), \\ k_{-\mu} &= \left(k_0 - iE_{\pi}/2, (x-1)P_z, k_{\perp}\right) \end{split}$$

Quasi-PDA and PDA

• Quasi-PDA at finite P_z can be used to extrapolate the PDA with $P_z \rightarrow \infty$ based on LaMET Ji, *PRL* 110 (2013) 262002

$$\phi_{\pi}(x, P_z) = \phi_{\pi}(x, P_z \to \infty) + \frac{c_2(x)}{P_z^2} + \mathcal{O}\left(\frac{1}{P_z^4}\right)$$

• But, in the endpoint region, say 0 < x < 0.1 and 0.9 < x < 1, LaMET cannot be reliably used, we adopt a phenomenological extrapolation $x^a(1-x)^a$ J. Hua *et al.* (LPC), *PRL* 129 (2022) 132001

Quasi-PDA:

PDA and its moments

• Moments of pion PDA

$$\langle \xi^n \rangle \equiv \int_0^1 dx (2x-1)^n \phi_\pi(x)$$

Pion PDA:

fRG: Chang, WF, Huang, Pawlowski, Zhang, in preparation

Moments:

Method	ξ^2_π	ξ^4_π	ξ^6_π
fRG (This Work)	0.271	0.142	0.092
Lattice LaMET (LPC)	0.300(41)	-	-
DSE	0.251	0.128	-
Lattice OPE (RQCD)	$0.234^{+6}_{-6}(4)(4)(2)$	-	-
Lattice OPE (RBC and UKQCD)	0.28(1)(2)	-	-
Sum Rule	0.271(13)	0.138(10)	0.087(6)

Lattice LaMET: J. Hua *et al.* (LPC), *PRL* 129 (2022) 132001. DSE: C. Roberts *et al.*, *PPNP* 120 (2021) 103883; Chang *et al.*, *PRL* 110 (2013) 132001. Lattice OPE: G. Bali *et al.* (RQCD), *JHEP* 08 (2019) 065; 11 (2020) 37. Lattice OPE: R. Arthur *et al.* (RBC and UKQCD), *PRD* 83 (2011) 074505. Sum rules: P. Ball *et al.*, *JHEP* 08 (2007) 090; T. Zhong *et al.*, *PRD* 104 (2021) 016021 Asymptotic: 6x(1 - x)

QCD phase transitions

Renormalized light quark condensate:

Reduced condensate:

CEP from first-principles functional QCD

Passing through strict benchmark tests in comparison to lattice QCD at vanishing and small μ_B .

also cf. talks by Rui Wen

Estimates of the location of CEP from first-principles functional QCD:

fRG:

• $(T, \mu_B)_{CEP} = (107, 635) \text{MeV}$

fRG: WF, Pawlowski, Rennecke, PRD 101 (2020), 054032

DSE:

 ∇ (*T*, μ_B)_{CEP} = (109, 610)**MeV**

DSE (fRG): Gao, Pawlowski, PLB 820 (2021) 136584

•
$$(T, \mu_B)_{CEP} = (112, 636) \text{MeV}$$

DSE: Gunkel, Fischer, PRD 104 (2021) 5, 054022

- No CEP observed in $\mu_B/T \leq 2 \sim 3$ from lattice QCD. Karsch, *PoS* CORFU2018 (2019)163
- Recent studies of QCD phase structure from both fRG and DSE have shown convergent estimate for the location of CEP: 600 MeV ≤ μ_{BCEP} ≤ 650 MeV.

17

CEP from other approaches

Recent estimates of the location of CEP:

Figure from:

Bluhm, Fujimoto, McLerran, Nahrgang, arXiv:2409.12088

fRG:

WF, Pawlowski, Rennecke, *PRD* 101 (2020), 054032, arXiv:1909.02991.

DSE1:

Gao, Pawlowski, *PLB* 820 (2021) 136584, arXiv:2010.13705. DSE2:

Gunkel, Fischer, *PRD* 104 (2021) 054022, arXiv:2106.08356. Lattice extrapolation (Yang-Lee edge singularities): David A. Clarke *et al.*, arXiv:2405.10196.

Finite-size-scaling analysis:

A. Sorensen, P. Sorensen, arXiv:2405.10278.

• Estimates of the location of CEP in the QCD phase diagram have arrived at convergence from different approaches.

CEP from other approaches

Recent estimates of the location of CEP:

Figure from:

Bluhm, Fujimoto, McLerran, Nahrgang, arXiv:2409.12088

fRG:

WF, Pawlowski, Rennecke, *PRD* 101 (2020), 054032, arXiv:1909.02991.

DSE1:

Gao, Pawlowski, *PLB* 820 (2021) 136584, arXiv:2010.13705. DSE2:

Gunkel, Fischer, *PRD* 104 (2021) 054022, arXiv:2106.08356. Lattice extrapolation (Yang-Lee edge singularities): David A. Clarke *et al.*, arXiv:2405.10196.

Finite-size-scaling analysis:

A. Sorensen, P. Sorensen, arXiv:2405.10278.

• Estimates of the location of CEP in the QCD phase diagram have arrived at convergence from different approaches.

Baryon number fluctuations

baryon number fluctuations

$$\chi_n^B = \frac{\partial^n}{\partial (\mu_B/T)^n} \frac{p}{T^4} \qquad \qquad R_{nm}^B = \frac{\chi_n^B}{\chi_m^B}$$

relation to the cumulants

$$\frac{M}{VT^3} = \chi_1^B, \ \frac{\sigma^2}{VT^3} = \chi_2^B, \ S = \frac{\chi_3^B}{\chi_2^B \sigma}, \ \kappa = \frac{\chi_4^B}{\chi_2^B \sigma^2},$$

HotQCD: A. Bazavov *et al.*, arXiv: *PRD* 95 (2017), 054504; *PRD* 101 (2020), 074502

WB: S. Borsanyi et al., arXiv: JHEP 10 (2018) 205

• In comparison to lattice results and our former results, the improved results of baryon number fluctuations at vanishing chemical potential in the QCD-assisted LEFT are convergent and consistent.

Grand canonical fluctuations at the freeze-out

STAR fixed-target (0-40%)

STAR: Adam *et al.* (STAR), *PRL* 126 (2021) 092301; Abdallah *et al.* (STAR), *PRL* 128 (2022) 202303; Aboona *et al.* (STAR), *PRL* 130 (2023) 082301

fRG: WF, Luo, Pawlowski, Rennecke, Yin, arXiv: 2308.15508

- Results in fRG are obtained in the QCD-assisted LEFT with a CEP at $(T_{\text{CEP}}, \mu_{B_{\text{CEP}}}) = (98,643)$ MeV.
- Peak structure is found in 3 GeV $\lesssim \sqrt{s_{\rm NN}} \lesssim 7.7$ GeV.
- Agreement between the theory and experiment is worsening with $\sqrt{s_{\rm NN}} \lesssim 11.5 \ {\rm GeV}.$
- Effects of global baryon number conservation in the regime of low collision energy should be taken into account.

Caveat:

Fluctuations of baryon number in theory are compared with those of proton number in experiments.

Canonical fluctuations at the freeze-out

STAR: Adam *et al.* (STAR), *PRL* 126 (2021) 092301; Abdallah *et al.* (STAR), *PRL* 128 (2022) 202303; Aboona *et al.* (STAR), *PRL* 130 (2023) 082301

fRG: WF, Luo, Pawlowski, Rennecke, Yin, arXiv: 2308.15508

- Peak structure is found in 3 GeV $\lesssim \sqrt{s_{\rm NN}} \lesssim 7.7$ GeV.
- Position of peak in R_{42} is $\mu_{B_{\text{peak}}} =$ 536, 541 and 486 MeV for the three freeze-out curves, significantly smaller than $\mu_{B_{\text{CEP}}} = 643$ MeV.

Dependence on the location of the CEP

Ripples of the QCD critical point

Position of peak:

fRG: WF, Luo, Pawlowski, Rennecke, Yin, arXiv: 2308.15508

- Note that the ripples of CEP are far away from the critical region characterized by the universal scaling properties, e.g., the critical slowing down.
- But, the information of CEP, such as its location and properties, etc., is still encoded in the ripples.

Comparison to BES-II

Net baryon (proton) number Kurtosis:

- In comparison to BES-I, BES-II results are better consistent with the theoretical prediction.
- Experimental results in the energy regime of fixed-target experiments, i.e. $3 \text{ GeV} \leq \sqrt{s_{\text{NN}}} \leq 7.7 \text{ GeV}$, are now very important!! It will finally tell us whether there is a CEP.

Magnetic equation of state

• The magnetic equation of state (EoS) is obtained via the chiral condensate:

$$\Delta_q = m_q \frac{\partial \Omega(T; m_q(T))}{\partial m_q} = m_q \frac{T}{V} \int_x \left\langle \bar{q}(x) q(x) \right\rangle$$

• The chiral properties of the magnetic EoS are encoded in the magnetic susceptibility:

$$\chi_M = -\frac{\partial \bar{\Delta}_l}{\partial m_l}$$
, with $\bar{\Delta}_l = \frac{\Delta_l}{m_l}$

• In the critical region, the magnetic EoS can be expressed as a universal scaling function $f_G(z)$ through

$$\bar{\Delta}_l = m_l^{1/\delta} f_G(z)$$

with

$$z = t m_l^{-1/\beta\delta}$$
, and $t = (T - T_c)/T_c$

z is the scaling variable and t is the reduced temperature.

• The pseudo-critical temperature T_{pc} , which is defined through the peak location of χ_M , is readily obtained from the scaling function as

$$T_{\rm pc}(m_{\pi}) \approx T_c + c \, m_{\pi}^p$$
, with $p = 2/(\beta \delta)$

Critical exponent in fRG for 3d-O(4):

$$\beta = 0.405, \quad \delta = 4.784, \quad \theta_H = 0.272,$$

obtained from the fixed-point equation for the Wilson-Fisher fixed point, which leads us $p_{\rm fRG} = 1.03$

Critical exponent in mean field:

$$\beta_{\rm MF} = 1/2 \,, \quad \delta_{\rm MF} = 3 \,,$$

thus, one has $p_{\rm MF} = 4/3$

Braun, WF, Pawlowski, Rennecke, Rosenblüh, Yin, PRD 102 (2020), 056010.

Critical region in QCD

Scaling in the temperature:

Critical exponent δ :

- QCD at physical light quark mass is far away from the critical region.
- The scaling behavior is observed for the first time in the calculations of first-principles QCD.

Braun, Chen, WF, Gao, Huang, Ihssen, Pawlowski, Rennecke, Sattler, Tan, Wen, and Yin, arXiv:2310.19853.

Moat regime in QCD phase diagam

WF, Pawlowski, Rennecke, PRD 101 (2020) 054032

• Transverse momentum spectrum of one particle:

Pisarski, Rennecke, *PRL* 127 (2021) 152302; Rennecke, Pisarski, *PoS* CPOD2021 (2022); Rennecke, Pisarski, Rischke, *PRD* 107 (2023) 116011 Mesonic two-point correlation function:

$$\Gamma_{\phi\phi}^{(2)}(p) = \left[Z_{\phi}^{\parallel}(p_0, \mathbf{p}) \, p_0^2 + Z_{\phi}^{\perp}(p_0, \mathbf{p}) \, \mathbf{p}^2 \right] + m_{\phi}^2$$

with

• Two-particle correlation:

Spectral functions in moat regime

Relaxation dynamics of the critical mode

• Langevin dynamics of the critical mode:

$$Z_{\phi}^{(t)}\partial_t \sigma - Z_{\phi}^{(i)}\partial_i^2 \sigma + U'(\sigma) = \xi$$

with the correlation of the Gaussian white noise

$$\left\langle \xi(t, \mathbf{x})\xi(t', \mathbf{x}') \right\rangle = 2 Z_{\phi}^{(t)} T \,\delta(t - t')\delta(\mathbf{x} - \mathbf{x}')$$

• Inputs from first-principles functional QCD: WF, Pawlowski, Rennecke, PRD 101 (2020) 054032

Effective potential:

$$U'(\sigma) = \frac{\delta \Gamma[\Phi]}{\delta \sigma} \bigg|_{\substack{\sigma(x) = \sigma \\ \tilde{\Phi} = \tilde{\Phi}_{\text{EoM}}}}$$

Spatial wave function:

$$Z_{\phi}^{(i)} = \frac{\partial \Gamma_{\sigma\sigma}^{(2)}(p_0, \boldsymbol{p})}{\partial \boldsymbol{p}^2} \bigg|_{p_0 = 0}$$
$$\boldsymbol{p} = 0$$

Temporal wave function:

$$Z_{\phi}^{(t)} = \lim_{|\boldsymbol{p}| \to 0} \lim_{\omega \to 0} \frac{\partial}{\partial \omega} \operatorname{Im} \Gamma_{\sigma\sigma,R}^{(2)}(\omega, \boldsymbol{p})$$

with

$$\Gamma^{(2)}_{\sigma\sigma,\mathsf{R}}(\omega,\boldsymbol{p}) = \lim_{\epsilon \to 0^+} \Gamma^{(2)}_{\sigma\sigma} (p_0 = -\mathrm{i}(\omega + \mathrm{i}\epsilon), \boldsymbol{p})$$

Relaxation time in QCD phase diagram

Relaxation time:

Relaxation time at the freezeout :

Tan, Yin, Chen, Huang, WF, in preparation

See also: M. Bluhm *et al.*, *NPA* 982 (2019) 871

• Relaxation time drops quickly once the system is away from the critical regime.

Summary and outlook

- ★ Functional renormalization group provides us with a powerful approach to study nonperturbative problems, e.g., hadron structure, QCD phase diagram, real-time dynamics, from first-principles QCD.
- ★ There are also challenges and problems to be solved: larger Pz, error controls at large baryon densities, better analytic continuations, etc.

Summary and outlook

- ★ Functional renormalization group provides us with a powerful approach to study nonperturbative problems, e.g., hadron structure, QCD phase diagram, real-time dynamics, from first-principles QCD.
- ★ There are also challenges and problems to be solved: larger Pz, error controls at large baryon densities, better analytic continuations, etc.

Thank you very much for your attentions!

Four-quark vertices

• 4-quark effective action:

$$\begin{split} \Gamma_{4q,k} &= -\int \frac{d^4 p_1}{(2\pi)^4} \cdots \frac{d^4 p_4}{(2\pi)^4} (2\pi)^4 \delta(p_1 + p_2 + p_3 + p_4) \\ &\times \sum_{\alpha} \lambda_{\alpha}(\boldsymbol{p}) \, \mathcal{T}^{(\alpha)}_{ijlm}(\boldsymbol{p}) \, \bar{q}_i(p_1) q_j(p_2) \bar{q}_l(p_3) q_m(p_4) \,, \end{split}$$

With $\boldsymbol{p} = (p_1, p_2, p_3, p_4)$, $\mathcal{T}^{(\alpha)}(\boldsymbol{p})$ is comprised of 512 tensors. Eichmann, *PRD* 84 (2011) 014014

A basis of the lowest momentum-independent order includes ten elements

$$\alpha \in \left\{ \sigma, \pi, a, \eta, (V \pm A), (V - A)^{\operatorname{adj}}, (S \pm P)^{\operatorname{adj}}_{-}, (S + P)^{\operatorname{adj}}_{+} \right\},$$

• 4-quark vertex:

$$\Gamma_{\bar{q}_{i}q_{j}\bar{q}_{l}q_{m}}^{(4)}(\boldsymbol{p}) = \frac{\delta^{4}\Gamma_{k}[q,\bar{q}]}{\delta\bar{q}_{i}(p_{1})\delta q_{j}(p_{2})\delta\bar{q}_{l}(p_{3})\delta q_{m}(p_{4})}$$
$$= -4 (2\pi)^{4}\delta(p_{1}+p_{2}+p_{3}+p_{4})$$
$$\times \sum_{\alpha} \left[\lambda_{\alpha}^{+}(\boldsymbol{p})\mathcal{T}_{ijlm}^{(\alpha^{-})} + \lambda_{\alpha}^{-}(\boldsymbol{p})\mathcal{T}_{ijlm}^{(\alpha^{+})} \right]$$

where we have used 4-quark dressings and tensor structures with definite symmetries, viz.,

$$\lambda_{\alpha}^{\pm}(\boldsymbol{p}) \equiv \frac{1}{2} \Big[\lambda_{\alpha}(p_1, p_2, p_3, p_4) \pm \lambda_{\alpha}(p_3, p_2, p_1, p_4) \Big],$$

and

33

$$\mathcal{T}_{ijlm}^{(\alpha^{\pm})} \equiv \frac{1}{2} \left(\mathcal{T}_{ijlm}^{(\alpha)} \pm \mathcal{T}_{ljim}^{(\alpha)} \right)$$

with the symmetry relations

$$\begin{split} \lambda_{\alpha}^{+}(p_{1},p_{2},p_{3},p_{4}) &= \lambda_{\alpha}^{+}(p_{3},p_{2},p_{1},p_{4}) \\ &= \lambda_{\alpha}^{+}(p_{1},p_{4},p_{3},p_{2}) = \lambda_{\alpha}^{+}(p_{3},p_{4},p_{1},p_{2}) \,, \\ \lambda_{\alpha}^{-}(p_{1},p_{2},p_{3},p_{4}) &= -\lambda_{\alpha}^{-}(p_{3},p_{2},p_{1},p_{4}) \\ &= -\lambda_{\alpha}^{-}(p_{1},p_{4},p_{3},p_{2}) = \lambda_{\alpha}^{-}(p_{3},p_{4},p_{1},p_{2}) \end{split}$$

and similar relations for the tensors.

s, t, u-channel truncation

• *s*, *t*, *u*-channel approximation for 4-quark vertices:

$$\begin{split} \lambda_{\alpha}^{\pm}(p_1, p_2, p_3, p_4) &= \lambda_{\alpha}^{\pm}(s, t, u) + \Delta \lambda_{\alpha}^{\pm}(p_1, p_2, p_3, p_4) \\ &\approx \lambda_{\alpha}^{\pm}(s, t, u) \end{split}$$

with

$$t = (p_1 - p_2)^2 = P^2,$$

$$u = (p_1 - p_4)^2 = (\bar{p} - \bar{p}')^2,$$

$$s = (p_1 + p_3)^2 = (\bar{p} + \bar{p}')^2$$

• We choose a subspace of the full momentum of 4-quark vertices as follows

$$P_{\mu} = \sqrt{P^2} \left(1, 0, 0, 0 \right),$$
$$\bar{p}_{\mu} = \sqrt{p^2} \left(1, 0, 0, 0 \right),$$
$$\bar{p}'_{\mu} = \sqrt{p^2} \left(\cos \theta, \sin \theta, 0, 0 \right)$$

one is led to

$$t = P^2$$
, $u = 2p^2(1 - \cos \theta)$, $s = 2p^2(1 + \cos \theta)$

Here, $\{\sqrt{P^2}, \sqrt{p^2}, \cos\theta\}$ is in one-by-one correspondence with respect to $\{t, u, s\}$

WF, Huang, Pawlowski, Tan, arXiv:2401.07638

The error for the truncation is smaller than 1.5%

Four-quark dressings

Dressings of different tensors:

WF, Huang, Pawlowski, Tan, arXiv:2401.07638

Pion decay constant

The pion weak decay constant is defined as

$$\langle 0 | J^a_{5\mu}(x) | \pi^b \rangle = i P_\mu f_\pi \delta^{ab}$$

where the left hand side reads

$$\begin{split} &\langle 0 \,|\, J^a_{5\mu}(x) \,|\, \pi^b \rangle \\ &= \int \! \frac{d^4 q}{(2\pi)^4} \mathrm{Tr} \left[\gamma_\mu \gamma_5 T^a \, \bar{G}_q(q+P) \, \bar{h}_\pi(q) \, \gamma_5 T^b \, \bar{G}_q(q) \right] \,, \end{split}$$

then

$$f_{\pi} = 2N_c \int \frac{d^4q}{(2\pi)^4} \frac{\bar{h}_{\pi}(q)M_q(q)}{\left[q^2 + M_q^2(q)\right]^2}$$

up to leading order in powers of $P^2 = -m_{\pi}^2$

fRG: WF, Huang, Pawlowski, Tan, arXiv:2401.07638chiPT: Gasser and Leutwyler, *Annals Phys.* 158 (1984) 142

Contour of k_0 **integral**

• Poles of two quark propagators:

$$\begin{split} k_{0,1} &= i \Big[-\sqrt{k_{\perp}^2 + (xP_z)^2 + M_q^2(k_{\perp}^2)} - \sqrt{P_z^2 + m_{\pi}^2/2} \Big] \,, \\ k_{0,2} &= i \Big[\sqrt{k_{\perp}^2 + (xP_z)^2 + M_q^2(k_{\perp}^2)} - \sqrt{P_z^2 + m_{\pi}^2/2} \Big] \,, \\ k_{0,3} &= i \Big[-\sqrt{k_{\perp}^2 + (x-1)^2 P_z^2 + M_q^2(k_{\perp}^2)} + \sqrt{P_z^2 + m_{\pi}^2/2} \Big] \\ k_{0,4} &= i \Big[\sqrt{k_{\perp}^2 + (x-1)^2 P_z^2 + M_q^2(k_{\perp}^2)} + \sqrt{P_z^2 + m_{\pi}^2/2} \Big] \end{split}$$

With the increase of P_z , $k_{0,2}$ or $k_{0,3}$ cross the x axis, one has to shift the integral of k_0 towards finite imaginary part, such that one can pick up the desired pair of poles, e.g., $k_{0,1}$ and $k_{0,3}$ or $k_{0,2}$ and $k_{0,4}$

Analytic continuation

• We use Taylor expansion to continue
$$h_{\pi}$$
, M_q , Z_q in the complex plane of k_0 :

$$h_{\pi}(k^2, P^2, \cos \theta) = h_{\pi}(\bar{k}^2, P^2, \cos \theta) + \frac{\partial}{\partial k^2} h_{\pi} \bigg|_{k^2 = \bar{k}^2} k_0^2 + \cdots$$

and

$$\begin{split} M_q(k_+^2) &= M_q(\bar{k}_+^2) + \frac{\partial}{\partial k_+^2} M_q \Big|_{k_+^2 = \bar{k}_+^2} (k_0 + iE_\pi/2)^2 + \cdots \\ M_q(k_-^2) &= M_q(\bar{k}_-^2) + \frac{\partial}{\partial k_-^2} M_q \Big|_{k_-^2 = \bar{k}_-^2} (k_0 - iE_\pi/2)^2 + \cdots \end{split}$$

$$k^{2} = \bar{k}^{2} + k_{0}^{2}$$
$$\bar{k}^{2} = k_{\perp}^{2} + (x - 1/2)^{2} P_{z}^{2}$$

 $k_{+}^{2} = \bar{k}_{+}^{2} + (k_{0} + iE_{\pi}/2)^{2}$ $\bar{k}_{+}^{2} = k_{\perp}^{2} + x^{2}P_{z}^{2}$

$$k_{-}^{2} = \bar{k}_{-}^{2} + (k_{0} - iE_{\pi}/2)^{2}$$
$$\bar{k}_{-}^{2} = k_{\perp}^{2} + (x - 1)^{2}P_{z}^{2}$$

Pion wave function amplitudes:

Chang, WF, Huang, Pawlowski, Zhang, in preparation

Larger P_z ?

Poles of $k_{0,2}$ and $k_{0,3}$ interchange their potions, when $P_z \gtrsim 3.5 \text{ GeV}$

fRG: Chang, WF, Huang, Pawlowski, Zhang, in preparation

QCD-assisted LEFT

Canonical corrections with SAM

- Experimental data R_{32} is used to constrain the parameter α in the range $\sqrt{s_{\rm NN}} \lesssim 11.5$ GeV.
- We choose the simplest linear dependence

SAM:

• We adopt the subensemble acceptance method (SAM) to take into account the effects of global baryon number conservation:

$$\alpha = \frac{V_1}{V}$$

 V_1 : the subensemble volume measured in the acceptance window, V: the volume of the whole system.

• fluctuations with canonical corrections are related to grand canonical fluctuations as follows:

$$\bar{R}_{21}^B = \beta R_{21}^B, \qquad \bar{R}_{32}^B = (1 - 2\alpha) R_{32}^B,$$
$$\bar{R}_{42}^B = (1 - 3\alpha\beta) R_{42}^B - 3\alpha\beta (R_{32}^B)^2$$

SAM: Vovchenko, Savchuk, Poberezhnyuk, Gorenstein, Koch , *PLB* 811 (2020) 135868

Magnetic equation of state

$$T_{\rm pc}(m_{\pi}) \approx T_c + c \, m_{\pi}^{\rm h}$$

Braun, Chen, WF, Gao, Huang, Ihssen, Pawlowski, Rennecke, Sattler, Tan, Wen, and Yin, arXiv:2310.19853.

Lattice (HotQCD):

$$T_c^{\text{lattice}} = 132_{-6}^{+3} \,\text{MeV},$$

Ding et al., PRL 123 (2019) 062002.

fRG:

 $T_c^{\text{fRG}} \approx 142 \,\text{MeV}, \qquad p_{\text{fRG}} = 1.024$

Braun, WF, Pawlowski, Rennecke, Rosenblüh, Yin, *PRD* 102 (2020) 056010.

DSE:

 $T_c^{\text{DSE}} \approx 141 \,\text{MeV}, \qquad p_{\text{DSE}} = 0.9606$

Gao, Pawlowski, PRD 105 (2022) 9, 094020, arXiv: 2112.01395.

- The almost linear dependence of the pseudocritical temperature on the pion mass has nothing to do with the criticality.
- So what is the size of the critical region in QCD?

Scaling vs regular fitting

Errors:

Potential:

 $\bar{\Delta}_{l}^{(\text{crit})}(m_{\pi}) = B_{c} \, m_{\pi}^{2/\delta} \left[1 + a_{m} m_{\pi}^{2\theta_{H}} \right]$ $\Delta_{l}^{(\text{reg})}(m_{\pi}) = b_{\frac{1}{5}} m_{\pi}^{2/5} + b_{\frac{3}{5}} m_{\pi}^{6/5} + b_{1} \, m_{\pi}^{2}$

Braun, Chen, WF, Gao, Huang, Ihssen, Pawlowski, Rennecke, Sattler, Tan, Wen, and Yin, arXiv:2310.19853.

Momentum-dependent mesonic wave function

Real-time mesonic two-point functions

Real-time mesonic two-point functions

Real part:

Spectral function:

WF, Pawlowski, Pisarski, Rennecke, Wen, Yin, in preparation.

Schwinger-Keldysh path integral

- Schrödinger equation: $t \xrightarrow{V \vee V} \dots \vee V \vee V_{\delta_{t}} = t_{0} |\psi(t_{0})\rangle$ $i\partial_{t}|\psi(t)\rangle = H|\psi(t)\rangle \longrightarrow |\psi(t)\rangle = U(t, t_{0})|\psi(t_{0})\rangle,$ • von Neumann equation: $t \xrightarrow{V \vee \dots \vee V} \dots \vee V_{U^{\dagger}} \longrightarrow t_{\delta_{t}} = t_{0}$ $\partial_{t}\rho(t) = -i[H, \rho(t)] \longrightarrow \rho(t) = U(t, t_{0})\rho(t_{0})U^{\dagger}(t, t_{0}),$ • Keldysh partition function: $Z = \operatorname{tr} \rho(t),$ $\rho(t_{0}) \xrightarrow{V \vee \dots \vee V} \longrightarrow \rho(t_{0})$
- two-point closed time-path Green's function:

$$G(x,y) \equiv -i\mathrm{tr}\{T_p(\phi(x)\phi^{\dagger}(y)\rho)\}$$

$$\equiv -i\langle T_p(\phi(x)\phi^{\dagger}(y))\rangle,$$

$$G(x,y) = \begin{pmatrix} G_{++} & G_{+-} \\ G_{-+} & G_{--} \end{pmatrix}$$

$$\equiv \begin{pmatrix} G_F & G_+ \\ G_- & G_{\tilde{F}} \end{pmatrix},$$
Schwinger, J. Math. Phys. 2, 407 (1961);

 $t_f = +\infty$

Schwinger, J. Math. Phys. 2, 407 (1961); Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964); Chou, Su, Hao, Yu, Phys. Rept. 118, 1 (1985).

47

- contour

 $G_F(x,y) \equiv -i \langle T(\phi(x)\phi^{\dagger}(y)) \rangle,$

 $G_{+}(x,y) \equiv -i \langle \phi^{\dagger}(y) \phi(x) \rangle,$

 $G_{-}(x,y) \equiv -i\langle \phi(x)\phi^{\dagger}(y)\rangle,$

 $G_{\tilde{F}}(x,y) \equiv -i \langle \tilde{T}(\phi(x)\phi^{\dagger}(y)) \rangle,$

FRG in Keldysh path integral

Implement the formalism of fRG in the two time branches:

$$Z_k[J_c, J_q] = \int \left(\mathscr{D}\varphi_c \mathscr{D}\varphi_q \right) \exp\left\{ i \left(S[\varphi] + \Delta S_k[\varphi] + (J_q^i \varphi_{i,c} + J_c^i \varphi_{i,q}) \right) \right\},\$$

with

Keldysh rotation:

$$\Delta S_{k}[\varphi] = \frac{1}{2} (\varphi_{i,c}, \varphi_{i,q}) \begin{pmatrix} 0 & R_{k}^{ij} \\ (R_{k}^{ij})^{*} & 0 \end{pmatrix} \begin{pmatrix} \varphi_{j,c} \\ \varphi_{j,q} \end{pmatrix}$$

$$= \frac{1}{2} \Big(\varphi_{i,c} R_{k}^{ij} \varphi_{j,q} + \varphi_{i,q} (R_{k}^{ij})^{*} \varphi_{j,c} \Big),$$

$$Keidysh rotation:$$

$$\begin{cases} \varphi_{i,+} = \frac{1}{\sqrt{2}} (\varphi_{i,c} + \varphi_{i,q}), \\ \varphi_{i,-} = \frac{1}{\sqrt{2}} (\varphi_{i,c} - \varphi_{i,q}), \\ \varphi_{i,-} = \frac{1}{\sqrt{2}} (\varphi_{i,c} - \varphi_{i,q}), \end{cases}$$

Then we derive the flow equation in the closed time path:

$$\partial_{\tau}\Gamma_{k}[\Phi] = \frac{i}{2}\mathrm{STr}\left[\left(\partial_{\tau}R_{k}^{*}\right)G_{k}\right], \qquad \qquad R_{k}^{ab} \equiv \begin{pmatrix} 0 & R_{k}^{ij} \\ (R_{k}^{ij})^{*} & 0 \end{pmatrix},$$

$$iG(x,y) = \begin{pmatrix} iG^{K}(x,y) & iG^{R}(x,y) \\ iG^{A}(x,y) & 0 \end{pmatrix},$$

Tan, Chen, WF, SciPost Phys. 12 (2022) 026, arXiv: 2107.06482

$$\begin{split} &iG^{R}(x,y) = \theta(x^{0} - y^{0}) \langle [\phi(x), \phi^{*}(y)] \rangle, \\ &iG^{A}(x,y) = \theta(y^{0} - x^{0}) \langle [\phi^{*}(y), \phi(x)] \rangle, \\ &iG^{K}(x,y) = \langle \{\phi(x), \phi^{*}(y)\} \rangle, \end{split}$$

A relaxation critical O(N) model

 $\bullet~$ The effective action on the Schwinger-Keldysh contour reads

Model A

$$\Gamma[\phi_c, \phi_q] = \int d^4x \left(Z_a^{(t)} \phi_{a,q} \,\partial_t \phi_{a,c} - Z_a^{(i)} \phi_{a,q} \,\partial_i^2 \phi_{a,c} + V'(\rho_c) \,\phi_{a,q} \,\phi_{a,c} - 2 \,Z_a^{(t)} \,T \,\phi_{a,q}^2 - \sqrt{2} c \,\sigma_q \right)$$

 $\Gamma = 1/Z_a^{(t)}$: relaxation rate

 $V'(\rho_c)$: potential $\rho_c \equiv \phi_c^2/4$

 $Z_a^{(i)}$: wave function

c: explicit breaking

Gaussian white noise with coefficient determined by fluctuation-dissipation theorem

Retarded propagator

$$G_{ab}^{R} = \left(\frac{\delta^{2}\Gamma[\phi_{c},\phi_{q}]}{\delta\phi_{a,q}\,\delta\phi_{b,c}}\right)^{-1}$$

Retarded propagator of Goldstone

$$G^{R}_{\varphi\varphi}(\omega,q) = \frac{1}{-iZ^{(t)}_{\varphi}\omega + Z^{(i)}_{\varphi}\left(q^{2} + m^{2}_{\varphi}\right)}$$

pseudo-Goldstone:

Mass of pseudo-Goldstone

$$m_{\varphi}^{2} = \frac{V'(\rho_{0})}{Z_{\varphi}^{(i)}} = \frac{c}{\sigma_{0} Z_{\varphi}^{(i)}}$$

Gell-Mann--Oakes--Renner (GMOR) relation

Hohenberg and Halperin, Rev.

Mod. Phys. 49 (1977) 435.

49

Universal damping or not?

From the pole of the retarded propagator of Goldstone

$$G^{R}_{\varphi\varphi}(\omega,q) = \frac{1}{-iZ^{(t)}_{\varphi}\omega + Z^{(i)}_{\varphi}\left(q^{2} + m^{2}_{\varphi}\right)}$$

One obtains the dispersion relation of a damped mode

$$\omega(q) = -i \frac{Z_{\varphi}^{(i)}}{Z_{\varphi}^{(t)}} \left(m_{\varphi}^2 + q^2 \right)$$

The relaxation rate at zero momentum reads

$$\Omega_{\varphi} \equiv -\operatorname{Im} \omega(q=0) = \frac{Z_{\varphi}^{(i)}}{Z_{\varphi}^{(t)}} m_{\varphi}^{2}$$

• If $T \ll T_c$

$$\frac{\Omega_{\varphi}}{m_{\varphi}^2} \simeq D_{\varphi}(T) + \mathcal{O}\left(\frac{m_{\varphi}^2}{T^2}\right) \quad \text{with} \quad D_{\varphi}(T) \equiv \frac{Z_{\varphi}^{(i)}(T, c=0)}{Z_{\varphi}^{(i)}(T, c=0)}$$

Tan, Chen, WF, Li, arXiv: 2403.03503

This seemingly appears as a **universal** relation that was also observed in Holographics, Hydrodynamics, and EFT

Holographics:

Amoretti, Areán, Goutéraux, Musso, *PRL* 123 (2019) 211602; Amoretti, Areán, Goutéraux, Musso, *JHEP* 10 (2019) 068; Ammon *et al.*, *JHEP* 03 (2022) 015; Cao, Baggioli, Liu, Li, *JHEP* 12 (2022) 113

Hydrodynamics:

Delacrétaz, Goutéraux, Ziogas, PRL 128 (2022) 141601

EFT:

Baggioli, *Phys. Rev. Res.* 2 (2020) 022022; Baggioli, Landry, *SciPost Phys.* 9 (2020) 062

50

Breaking down of the universal damping in the critical region

In the critical region, the two wave function renormalizations read

$$Z_{\varphi}^{(i)} = t^{-\nu\eta} f^{(i)}(z) , \qquad Z_{\varphi}^{(t)} = t^{-\nu\eta} f^{(t)}(z)$$

Here $f^{(i)}(z), f^{(t)}(z)$: scaling functions; $z \equiv tc^{-1/(\beta\delta)}$: scaling variable; $t \equiv (T_c - T)/T_c$: reduced temperature. The static and dynamic anomalous dimensions are

$$\eta = -\frac{\partial_{\tau} Z_{\varphi}^{(i)}}{Z_{\varphi}^{(i)}}, \qquad \eta_t = -\frac{\partial_{\tau} Z_{\varphi}^{(t)}}{Z_{\varphi}^{(t)}}$$

RG time $\tau = \ln(k/\Lambda)$

• In the case of $c \to 0$

$$\frac{Z_{\varphi}^{(i)}}{Z_{\varphi}^{(t)}} \propto t^{\nu(\eta_t - \eta)}$$

• In the other case of $t \to 0$

$$\frac{Z_{\varphi}^{(i)}}{Z_{\varphi}^{(t)}} \propto c^{\frac{\nu}{\beta\delta}(\eta_t - \eta)} \propto m_{\varphi}^{(\eta_t - \eta)} \quad \text{with} \quad m_{\varphi}^2 \propto c^{\frac{2\nu}{\beta\delta}}$$

From the fixed-point equation we determine in the O(4) symmetry

$$\eta \approx 0.0374, \quad \eta_t \approx 0.0546$$

Thus

$$\Delta_{\eta} \equiv \eta_t - \eta \approx 0.0172$$

Estimate of size of the dynamic critical region:

$$m_{\pi 0} \lesssim 0.1 \sim 1 \text{ MeV}$$

Large N limit

In the large *N* limit, the static and dynamic anomalous dimensions can be solved analytically

$$\eta = \frac{5}{N-1} \frac{(1+\eta)(1-2\eta)^2}{(5-\eta)(2-\eta)^2}$$

and

$$\eta_t = \frac{1}{9(N-1)} \frac{(1-2\eta)^2 (13+15\eta-2\eta^3)}{(2-\eta)^2}$$

Tan, Chen, WF, Li, arXiv: 2403.03503

- In the limit $N \rightarrow \infty$, the breaking down of the universal damping disappears.
- One should not expect that the anomalous scaling regime can be observed in classical holographic models.

