Introduction Fields and oscillators The wave function Two oscillators The quantum field Results Summary

0000 00000 [e]e]e]e) [e]e]e]e]e} [e]e]e]e]e] 000000000 0000

Nikolaos Tetradis

University of Athens

Work with K. Boutivas, D. Katsinis, G. Pastras

of Athen

ment in an E



Introduction Fields and oscillators The wave function Two oscillators The quantum field Results Summary
00000 [e]e]e]e) [e]e]e]e]e} [e]e]e]e]e] 000000000 0000

0000

Consider a quantum mechanical system with many degrees of
freedom, such as a spin chain or a quantum field.

Assume it is in the ground state |W), which is a pure state.
The density matrix of the total system is por = |W)(W].
The von Neumann entropy Siot = —trptot 10g ptot vanishes.

Now divide the total system into subsystems A and B and
assume that B is inaccessible to A.

Trace out the part B of the Hilbert space in order to obtain the
reduced density matrix of A: pp = trgpiot-

The entropy Sy = —trapa log pa is a measure of the
entanglement between A and B.

It is nonvanishing and Sp = Sg.
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o For spatially separated systems in the ground state in a static
background, the leading contribution is proportional to the area
of the entangling surface between A and B:

SA ~ + subleading terms.

ed—1
o Massless scalar field in 3+1 dimensions:
Sa =s(R/e)* +c log(R/e) +d

s ~ 0.3 (scheme-dependent)  (Srednicki 1993)
c = —4 (universal)
(Lohmayer, Neuberger, Schwimmer, Theisen 2009).

o Conformal field theory in 1+1 dimensions, with central charge c.
System of length L, divided into pieces of lengths ¢ and L — ¢:

Sa = —1In %sinﬂ-—Z +c;
A7 6 TE L ‘1

¢} scheme-dependent. (Korepin 2004, Calabrese, Cardy 2004)
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o How does the entanglement entropy evolve in a time-dependent
background?

de Sitter space  (Maldacena, Pimentel 2013).

o Relevance for the expanding Universe.

(o}

(o]

We generalize Srednicki’s approach to expanding backgrounds.
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o Consider a free scalar field ¢(7,x) in a FRW background
ds® = a®(7) (dr® — dr® — 12dQ?) .

o With the definition ¢(7,x) = f(7,x)/a(7), the action becomes

1 a/’
S = 5 /de3X (f'2 — (V) + (; — an2> f2> .

The field f(7,x) has a canonically normalized kinetic term.
o For de Sitter: a(r) = —1/(Hr) with —co < 7 < 0, and

1 3 2 2 | 26,

where x = 1 — m?/2H2.
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o The eom (Mukhanov-Sasaki equation) in Fourier space is
2
#4126 — o h = 0.
T
o Its general solution is

fi(7) = Aq V-1, (=k7)+Az V-1Y, (—k7) W= % 1+ 8k.

o Bunch-Davies vacuum: A; = —‘/TE, A, = _\/Tﬂ' For 7 — —o0
1 .
fi(1) ~ —e 7.

o For k = 1 (massless scalar), the full solution reads

f(r) = \/%e_“" (1 _ ﬁ) .

For k7 — 0~ the mode becomes superhorizon and the oscillations
stop. The mode freezes.
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o The quantum field can be expressed as

T d3k N ok At ik-x
f(r,x) = @ny [fk(T)ak +fi(7)a) | e
where él, Ay are standard creation and annihilation operators.

o For superhorizon modes with k7 — 0~ the growing term
dominates and

14
#(1,x) =~ —=1{(7, x).
T

o The field and its conjugate momentum commute.

o For most of its properties the field can be viewed as a classical
stochastic field.

o However, the full quantum field and its conjugate always obey
the canonical commutation relation. This is guaranteed by the
presence of the subleading term in the mode function.
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o The entanglement entropy is of purely quantum origin, for which
a classical description is inadequate. It does not vanish for
superhorizon modes.

o We are interested in the entanglement between degrees of
freedom localized within two spatial regions separated by an
entangling surface.

o For a dS background one may consider the entanglement between
the interior of a horizon-size region of radius 1/H and the

exterior.
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For spherical entangling surfaces, expand in spherical harmonics

Discretize the radial coordinate as rj; = je, 1 <j < N.

UV cutoff: 1/e. IR cutoff: 1/L with L = Ne.

Trace out the oscillators with je > R.

€, L, R are comoving scales.

The ‘ground state’ of the system is the product of the ‘ground

states’ of the modes that diagonalize the Hamiltonian.

o In the Bunch-Davies vacuum, the ‘ground state’ is the solution of
the Schrédinger equation that reduces to the usual simple
harmonic oscillator ground state as 7 — —o0.

o The discretized Hamiltonian for the free field during inflation is

N
]' ~2 2 2KJ 0
H= % Z Z [Wlm,j + <wlm,j - (7./6)2) flm,j]’

Im j=1

©O 0O 0 © O O

where Tlm,j are the canonical modes.
o We need to solve for the harmonic oscillator with a
time-dependent eigenfrequency of the form w3 — 2 /72.
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o Oscillator with time-dependent frequency

2K
2 2

w(T) =wy — = -
( ) 0 72
o Find the general solution of the Ermakov equation

2
“o

b3(r)’

o For the Bunch-Davies vacuum, b(7) must tend to 1 as 7 — —oc.

b (1) + w?(1)b(7) =

b3(7) = —gw(ﬂ‘ (J,2, (—woT) + Y2 (—woT)) -
o The solution of the Schrédinger equation can now be expressed as
1 ib/(7) 2) @ (/ dr f )
F(r,f)= —— exp | = ) F 0
0= i = (353 () b7

where FO(7,f) is a solution with constant frequency wy.
o For kK > 0 and 7 — 07, we have Af/Am — 0: Squeezed state.

ity of Athens

ent in an E:



107
Y
BB,

~0.5)
-10,

-10

The amplitude of the ‘ground-state’ wave function for wy = 5.
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Left plot: The amplitude of the ‘ground-state’ wave function for the
transition from a dS to a RD background at 7 = 0.5, for wp = 1, H = 2.
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Left plot: The amplitude of the ‘ground-state’ wave function for the
transition from a dS to a MD background at 7 = 0.5, for wp = 1, H = 2.
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o Hamiltonian (we switched from f to x)

1
H=7 [p2 + D2 + ko(x2 + x2) + ki (x1 — x2)% — A(7)(x2 +x2)] -

o For oscillators arising from a massive field in dS, \(7) = 2x/72.

For a massless field in a general background, A(7) = a”/a.
o The Hamiltonian can be rewritten as

H=—- 1 [p++p +W+(7')X++W (7)x2 ]

X1 :|:X2

X = 22 ,w0+—k0,w07—k0+2k1,wi( ):wgi—k(r).
o The ‘ground state’ is the tensor product of the ‘ground states’ of
the two decoupled canonical modes:

Q.0 \1 1 i \
wO(X+,X,) = (;—2> exp |:—§ (Q+Xi =+ Qf}(%) =+ 5 (G+Xi =+ G7X27
_ wox _ b(7;wos)

) = b2(7; wot)’ Culml = b(7; wot)
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o Express the wave function in terms of x1, Xs.
o The reduced density matrix is given by

+oo
pmxaa/ R S )

o The Gaussian integration gives

P— )
P(X27X/2) = % exp <—%(Xg + X/22) + ﬁxleg) exp (1§(X§ - X122)> )

where v, 3, § are functions of Q4, G..
o The eigenfunctions of the reduced density matrix satisfy

+oo
| il x)(x9) = patal).

—0o0

o One finds

fo(x) = Ho(v/ax) exp (-%ﬁ) exp (i%ﬁ) :

where a = y/72 — 32 and H,, is a Hermite polynomial.
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o The eigenvalues p, are

SN ECET Y S

y+a \y+a

where

_ B
f= 1
They satisfy
Sh=(1-9) =1
n=0 n=0
o The entanglement entropy can be calculated as
Y . q_ 3
8=-2 (1-9¢n[1-9=-In(1-8 - 125

n=0

In&.

N. Te of Athe
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Left plot: The entanglement entropy in a dS background as a
function of conformal time 7 for wy = 1, w— = 2 and k =1, 0.5, 0.2, 0, —0.1,
—0.5 (from top to bottom).
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Left plot: The entanglement entropy as a function of conformal
time 7 for wy = 1, w— = 1.5, H = 2 and 79 = 0.5. The black line
corresponds to a dS background, with a transition at 7o to either a RD era
(blue line) or to a MD era (red line).
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o Consider N coupled oscillators with a Hamiltonian
1 N , 1 N
H= §Zpi -+ 3 2 x; Kijxj.
i i,j=1
o Diagonalize K = OTKpO through an orthogonal matrix O.

Qp = K]13/ % contains the eigenfrequencies of the corresponding
canonical modes X = OX.

o The wave function of the system is the product of the wave
functions of the canonical modes.

(o]

The system is assumed to lie in the ground state of each
canonical mode in the asymptotic past (Bunch-Davies vacuum).

(o]

At late times this becomes a squeezed state.
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o When the density matrix is expressed in terms of the original
coordinates x; it has the form

1
p(X,X') ~ exp [—5 (XTWX + X’TW*X’)] .
o One can introduce the block notation
. A B (X1
v=(sc) x=(%)
where A is a complex symmetric n X n matrix, C a complex

symmetric (N —n) x (N —n) matrix, X; an n-dimensional vector,
and so on.
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o When the N — n oscillators in X5 are traced out, the reduced
density matrix is

pl(XhXS) ~
1 1 . .
exp (—5X1fv X1 — X{Ty X} + X{TBXy + SXToXy — oX{T6 X’1> :
where
1 _
7—i6 =A - ;BRe(C) 'BT,
1 * —1pT
B =3B"Re(C)”' BT

o v and J are n X n real symmetric matrices, while 8 is a n X n
Hermitian matrix. (In a static background it would be real
symmetric. )

o The eigenvalues of the density matrix do not depend on 9.
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The matrices v and 8 cannot be diagonalized through real
orthogonal transformations in order to identify the eigenvalues of
the reduced density matrix.

These are real, but the determination of their exact values
requires an extensive analysis.

A method has been developed for the computation of the
eigenvalues. A detailed presentation is given in the publications.

It has been shown (analytically and numerically) that the results
are identical to those obtained through the covariance matrix.
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In flat (3+1)-dimensional spacetime the entropy scales ~ 1/¢2,
with € a short-distance cutoft.

There is a certain mode of comoving wavenumber kg which
crossed the horizon at the end of inflation and immediately
re-entered. Modes with k > kg remained subhorizon at all times.

The modes with k < kg are the ones directly accessible to
experiment and constitute the observable Universe.

The entanglement of interest is between modes with wavelengths
above a UV cutoff € ~ 1/ks ~ 1/Hjug.

Modes that exited the horizon at the end of inflation have a
frequency today f ~ 10® Hz, which sets the cutoff in the spectrum
of gravitational waves generated by inflation. The corresponding
wavelength is Ay ~ 1 m.
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Consider a toy model of a massless scalar field in 1+ 1
dimensions.

Assume a background given by the FRW metric, neglecting the
angular part. The curvature scalar R is equal to —2H?.

The field is canonically normalized.

The state of a canonical mode in (341)-dimensional de Sitter
space can be mimicked by including an effective mass term
through a non-minimal coupling to gravity —R¢?/2.

The radiation dominated era can be mimicked by assuming a
transition to a flat background with R = 0 at some time 7.

The toy model describes the 1 = 0 mode of the 3 + 1-dimensional
case.
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The entanglement entropy resulting from tracing out the part
n < k < N of a one-dimensional chain at various times, for a dS background.
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o For 7 — —o0, the entanglement entropy can be described very
well by the expression

2L 4
S:%In (—sin%) +c,

TE

with ¢ = 1, in agreement with Calabrese, Cardy 2004.

o For 7 — 0~ the entanglement entropy can be described very well
by the expression

S=1In (Msin%e) +d,

e

where a(7) = —1/(Hr).
o The entropy grows with the number of efoldings N = Ina(7).
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o The limit 7 — 0~ is not physical because

T 1/H
e a(r)e

corresponds to a physical lattice spacing (physical UV cutoff)
€p = a(7)e larger than the Hubble radius.

o Consider an 1/7 expansion around 7 = —o0.

o The numerical analysis, verified by an analytical calculation,
indicates the presence of a leading correction

2 [1 L 4 1 L 4
AS = — [=| — —| =H22 (2| P =
2 [3 = (27r£> - 9] p {3 o <2w£p Rl
for ¢, < 1/H < Ly,
o Dependence on the size of the total system.

(o]

A similar term is expected in 3+1 dimensions.
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o Massless scalar field in 3 + 1 dimensions.

o Hamiltonian:

: ZXN: + (j+2 *(fmg1  fimg )
= —_— 7T —_— (RS ——
o IT5) GG+1 ~ 7
11+1) 2 2
Fer) )

with kK = 1 for dS and k = 0 for RD.
o Trace out the oscillators with je > R.

o Sum over 1, m.
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Inn

The entanglement entropy for a spherical region as a function of the
entangling radius at various times for He = 1. The radius of the spherical
lattice is L = Ne. Results for N = 200 (brown), N = 100 (red), N = 50
(green). We indicate the entropy at the dS to RD transition (black curve)
and the location of the comoving horizon (dashed, red curve).
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Fit the result with a function (e = 1)

100 200 300 400 5007 g 200 300 400 500 7

The coefficents s (left plot) and c¢ (right plot) of the quadratic and
cubic term, respectively, as a function of time.
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o Conjectured form of the entanglement entropy in de Sitter
space (Maldacena, Pimentel 2013):

S= clé + log (%) +c4 log(Hep)H? A+ cs H2 A + %6 log(H2A).
o A = 4ma?(7)R?: proper area of the entangling surface

o €, = a(7)e: physical UV cutoff

o ¢; (scheme-dependent) (Srednicki 1993)

0 cg=-1/90 (Lohmayer, Neuberger, Schwimmer, Theisen 2009)
o cg=1/90 (Maldacena, Pimentel 2013)

o No volume term.

o Additional term: %HQRI% log (%jt)

N. Tetradis University of Athens
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Modes that start as quantum fluctuations in the Bunch-Davies
vacuum are expected to freeze upon horizon exit and transmute
into classical stochastic fluctuations.

This is only part of the picture. Even though its classical features
are dominant, the field never loses its quantum nature.

The various modes evolve into squeezed states.

The squeezing triggers an enhancement of quantum
entanglement. The effect is visible in the entanglement entropy.

The entanglement entropy survives during the eras of radiation
or matter domination. A volume effect appears during these eras.

Observable consequences?
A look behind the horizon?

Weakly interacting, very light fields that stay coherent during the
cosmological evolution (gravitational waves).
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O

Interpretation of the entropy as thermodynamic? A
quantum-mechanical realization of reheating after inflation?

o It is consistent with the quantum to classical transition.

o It is intriguing that the appearance of a volume term, a feature of
thermodynamic entropy, occurs in the RD era.

o For two oscillators, the reduced density matrix is that of a single
oscillator at a thermal state. For a free field there is no unique
temperature. The thermalization hypothesis suggests that in an
interacting theory the reduced density matrix would be thermal.

o If we estimate the entropy through the volume term, we get
~ (Ho)s) ™2 ~ 1078, to be compared with the standard
thermodynamic entropy ~ 10%® associated with the plasma in the
early Universe, transferred to the photons and neutrinos today.

o Can the entropy of the Universe be attributed to the presence of
the cosmological horizon?

N. Tetradis University of Athens
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Verification of the area law of mutual information in a quantum field simulator
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Paris, Lab. Kastler Brossel), Thomas Schweigler {(Vienna, Tech. U., Atominst.) et al. (Jun 21, 2022)
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Experimental verification of the area law of mutual information in a quantum field
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Theoretical understanding of the scaling of entropies and the mutual information has led to signif-
icant advances in the research of correlated states of matter, quantum field theory, and gravity. Mea-
suring von Neumann entropy in quantum many-body systems is challenging as it requires complete
knowledge of the density matrix. In this work, we measure the von Neumann entropy of spatially
extended subsystems in an ultra-cold atom simulator of one-dimensional quantum field theories. We
experimentally verify one of the fundamental properties of equilibrium states of gapped quantum

d: tems, the area law of quantum mutual information. We also study the dependence
of mutual information on temperature and the separation between the subsystems. Our work is a
crucial step toward employing ultra-cold atom simulators to probe entanglement in quantum field
theories.
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Quantum field simulator for dynamics in curved spacetime

Celia Viermann (Kirchhoff Inst. Phys.), Marius Spam (Kirchhoff Inst. Phys.), Nikolas Liebster (Kirchhoff Inst.
Elinor Kath (Kirchhoff Inst. Phys.) et al. (Feb 21, 2022)
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Phys.), Maurus Hans (Kirchhoff Inst. Phys),

Quantum field simulator for dynamics in curved spacetime

N. Tetradis

Celia Viermann,' Marius Sparn,' Nikolas Liebster,' Maurus Hans,' Elinor Kath,'

Alvaro Parra-Lépez,2* Mireia Tolosa-

Simeén,? Natalia Sinchez-Kuntz,? Tobias
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Maz-Wien-Platz 1,

The observed large-scale structure in our Uni-
verse is seen as a result of quantum fluctuations
amplified by spacetime evolution [1]. This, and
related problems in cosmology, asks for an un-
derstanding of the quantum fields of the stan-
dard model and dark matter in curved spacetime.
Even the reduced problem of a scalar quantum
field in an explicitly time-dependent spacetime
metric is a theoretical challenge [2-1] and thus a
quantum field simulator can lead to new insight:
Here, we demonstrate such a quantum field simu-
lator in a two-dimensional Bose-Einstein conden-
sate with a configurable trap [5, 6] and adjustable
interaction strength to implement this model sys-
tem. We explicitly show the realisation of space-
times with positive and negative spatial curvature
by wave packet propagation and confirm particle
pair production in controlled power-law expan-
sion of space. We find quantitative agreement
with new analytical predictions for different cur-
vatures in time and space. This benchmarks and
thereby establishes a quantum field simulator of
a new class. In the future, straightforward up-
grades offer the possibility to enter new, so fa
unexplored, regimes that give further insight into
relativistic quantum field dynamics.
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densate of potassium-30 with configurable de
bution and additional dynamic control of a
actions. With that we implement curved me
phononic field of the form (sce methods:
metric’)

du?

ds? = —dt? + a2(t) (1 +utdy

This corresponds to the standard cosmolo;
of a 2 + 1 dimensional homogencous and is
verse, the Friedmann-Lemaitre-Robertson-\
ric (FLRW) in reduced cireumference coordi
This metric is parametrised by intrinsic and e
vature: the intrinsic curvature, , is the cury
spatial part of the metric, while the extrins;
arises from the time dependence of the scale
In our atomic implementation both parame
ture and scale factor, can be adjusted indepe
Phonons in_the central region of a h
trapped Bose-Einstein condensate experien
with # < 0. In cosmological settings, this
bolic two-dimensional spatial geometry with
ordinate of infinite range, as depicted in
Through the Poincaré transformation, the in
bolic space is mapped to a finite disc, perf
to_be_implemented _in_finite size ultracold
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