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 modelsO(N) × O(2)
• For Stacked Triangular Antiferromagnets (STA), the 
order parameter is  matrix. 

• For  above (below) , the transition is of second 
(first) order.

N × 2

N Nc(d)

negative, a fact forbidden by first principles if the theory is
!4 GLW-like "see the following#. The theoretical situation in
these systems is also not clear from the perturbative point of
view "Secs. IV and V#: first, independently of the experimen-
tal context, the results obtained within the usual perturbative
approaches—in dimensions d!2"$ and d!4#$—conflict.
Second, neither the low-temperature expansion around d
!2 nor high-order weak-coupling calculations performed
around d!4 or directly in d!3 succeed in reproducing sat-
isfactorily the phenomenology. We show, in this article, that
the NPRG approach "Sec. VI# to frustrated systems "Sec.
VII# almost entirely clarifies the situation. First, it allows us
to smoothly interpolate between d!2 and d!4 and to
clarify the mismatch between these approaches. In particular,
a mechanism of annihilation of fixed points, already identi-
fied for a long time around 4#$ dimensions for N%21.8 is
shown to operate around two dimensions for N%3 nonper-
turbatively with respect to the low-temperature approach of
the NL& model.63,64 This explains the irrelevance in d!3 of
the O(4) fixed point obtained within a low-temperature ap-
proach in d!2"$ . Second, our approach provides a de-
scription of the physics in d!3, in terms of weakly first
order behaviors, compatible with the phenomenology "Secs.
VIII and IX#. In this respect, an important feature of our
work is that it explains the occurrence of scaling in frustrated
magnets without fixed or pseudofixed65–67 point. This phe-
nomenon relies on a slowing down of the RG flow in a
whole region in coupling constants space. This allows us to
explain one of the most puzzling aspect of the critical phys-
ics of these systems, i.e., the occurence of scaling without
universality. We discuss "Sec. X# possible experimental and
numerical tests of our scenario. We then comment "Sec. XI#
the consequences of our work for the perturbative ap-
proaches that have been used to investigate the physics of
frustrated magnets. Finally, we give our conclusions "Sec.
XII#.

II. THE STA MODEL AND GENERALIZATION

A. The lattice model, its continuum limit, and symmetries

We now describe the archetype of frustrated spin systems,
the stacked triangular antiferromagnets "STA#. This system is
composed of two-dimensional triangular lattices which are
piled up in the third direction. At each lattice site, there is a
magnetic ion whose spin is described by a classical vector.
The interaction between the spins is given by the usual lat-
tice Hamiltonian

H!'
(i j)

Ji jS! i .S! j , "1#

where, depending on the anisotropies, the S! i’s are two or
three-component vectors and the sum runs on all pairs of
nearest-neighbor spins. The coupling constants Ji j equals J !
for a pair of sites inside a plane and J! between planes.
The interactions between nearest-neighbor spins within a

plane is antiferromagnetic, i.e., J !$0. This induces frustra-

tion in the system and, in the ground state, gives rise to the
famous 120° structure of the spins, see Fig. 1"a#. This non-
trivial magnetic structure is invariant under translations of
length !3 times the initial lattice spacing. The magnetic cell,
indexed by I, which is replicated all over the system, is a
plaquette of three spins S! 1

I , S! 2
I and S! 3

I , see Fig. 1"a#.
Note that the nearest-neighbor out-of-plane interaction J!

is, depending on the compounds, ferromagnetic or antiferro-
magnetic, but the two cases can be treated simultaneously
since no extra frustration appears through this interaction.
Finally, interactions between more distant spins "next-to-
nearest neighbors, etc.# also exist but are neglected in the
following since they are supposed to be irrelevant.
There have been numerous derivations of the long-

distance effective field theory supposed to describe the criti-
cal physics of this system.68–71 We here sketch the derivation
which is the most appropriate for our purpose. The Hamil-
tonian "1# has the usual rotational symmetry acting on the
spin components: O(2) or O(3) for XY or Heisenberg spins,
respectively. To identify the order parameter, it is also nec-
essary to consider the symmetry of the magnetic cell. For the
triangular lattice, this is the C3v group that interchanges the
spins inside a plaquette.72
The identification of the order parameter is close in spirit

to what is done in the nonfrustrated case, e.g., for the anti-
ferromagnets on a square lattice. At zero temperature, the
sum of the three spins for a given plaquette I:

*! I!S! 1
I "S! 2

I "S! 3
I "2#

FIG. 1. The ground-state configurations "a# of the spins on the
triangular lattice and "b# of the order parameter made of two ortho-
normal vectors. The plaquettes, which constitute the magnetic cell,
are indexed by I and are shaded.
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 modelsO(N) × O(2)
•  is found to be very close to 3 and its 
precise determination is crucial to know whether 
the transition is first or second order for the 
systems realized in nature. 

• It is also interesting for physics in  to study the 
part of the curve  below  (However it was 
difficult to study it within previous approximations  
of NPRG).

Nc(d = 3)

d = 3

Nc(d) d = 3

safely above 3. It is possible that the setup of [46] was simply not constraining enough to

see a large-enough NCB
c (d = 3). Finally, our study used ⇤ = 31, while [46] used ⇤ 6 25.23

Our curve NCB
c (d) of Fig. 3 is, in the range 3 6 d 6 3.84, a monotonic curve consistent

in shape and position with the curves extracted from the NPRG and the ✏-expansion. We

have thus ruled out the S-shaped FD curve in Fig. 2, which has a turnaround point at

d ⇡ 3.2 [14].24

Let us now come back to the question (1.3) about the existence of unitary stable CFTs

with O(N)⇥O(2) symmetry for N = 2, 3. Being fully agnostic, there still remains small

loopholes which might allow their existence. First, on the basis of our results alone, we

cannot rule out a turnaround of the Nc(d) curve at some d•< 3, i.e. somewhat below the

range explored here. Indeed, in the MZM fixed-dimensional scheme (see footnote 24), such

a turnaround does happen for d slightly below 3 (see the discussion in [14] below Fig. 3),

although its precise location has not been determined. It seems implausible from the look

of our curve in Fig. 3 that such a turnaround would happen just below d = 3. In the future

it would be interesting to extend our study to smaller d in order to definitively exclude

such a turnaround.

Second, even if there is no turnaround, we cannot a priori exclude an allowed (d, N)

region which is disconnected from the region at large N . These two still allowed scenarios

(as well as the excluded one) are illustrated in Fig. 13. We are however adamant that the

CFTs in the allowed region for integer d and N , being unitary, cannot be of focus type,

but should have real correction-to-scaling exponent !.
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Figure 13. Three scenarios for the shape of the curve separating the region of the (d, N) plane
where a unitary O(N) ⇥ O(2) CFT exists (white) from the one where it does not (gray). The
scenario on the left, where the boundary curve has a turnaround point (•) at a d• > 3, is excluded
by our work. The two other scenarios, where the turnaround point is at a d• < 3, or where the
allowed region is not connected, are still allowed.
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Numerical simulations  
for STA

• Numerical simulations for XY and Heisenberg STA 
found first order transition (Loison-Schotte, Itakura, 
Thanh Ngo-Diep). 



Numerical simulations  
for STA

• A recent simulation of Heisenberg STA with a very 
large lattice size  found second order transition 
corresponding to a focus FP with a complex-valued 
correction-to-scaling exponent (Nagano-Kawamura).
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Monte Carlo study of the critical properties of noncollinear Heisenberg magnets:
O(3) × O(2) universality class
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The critical properties of the antiferromagnetic Heisenberg model on the three-dimensional stacked-triangular
lattice are studied by means of a large-scale Monte Carlo simulation in order to get insight into the controversial
issue of the criticality of the noncollinear magnets with the O(3) × O(2) symmetry. The maximum size studied
is 3843, considerably larger than the sizes studied by the previous numerical works on the model. Availability of
such large-size data enables us to examine the detailed critical properties including the effect of corrections to
the leading scaling. Strong numerical evidence of the continuous nature of the transition is obtained. Our data
indicate the existence of significant corrections to the leading scaling. Careful analysis by taking account of the
possible corrections yields critical exponents estimates, α = 0.44(3), β = 0.26(2), γ = 1.03(5), ν = 0.52(1),
η = 0.02(5), and the chirality exponents, βκ = 0.40(3) and γκ = 0.77(6), supporting the existence of the O(3)
chiral [or O(3) × O(2)] universality class governed by a “chiral” fixed point. We also obtain an indication
that the underlying fixed point is of the focus type, characterized by the complex-valued correction-to-scaling
exponent, ω = 0.1+0.4

−0.05 + i 0.7+0.1
−0.4. The focus-like nature of the chiral fixed point accompanied by the spiral-like

renormalization-group (RG) flow is likely to be the origin of the apparently complicated critical behavior. The
results are compared and discussed in conjunction with the results of other numerical simulations, several distinct
types of RG calculations including the higher-order perturbative massive and massless RG calculations and the
nonperturbative functional RG calculation, and the conformal-bootstrap program.

DOI: 10.1103/PhysRevB.100.224430

I. INTRODUCTION

The concept of universality has been a cornerstone of
modern theory of phase transition and critical phenomena.
According to the universality hypothesis, critical properties
associated with continuous phase transitions possess universal
features independent of microscopic details of each system
and can be classified into a small number of universality
classes. Each universality is specified by the symmetry of the
order parameter, the spatial dimensionality, and the range of
interaction.

Magnetic systems have offered a framework for the study
of the critical phenomena and the universality class for years.
In bulk magnets, the universality class is usually labeled by the
number of spin components n, i.e., n = 1 (Ising), n = 2 (XY ),
and n = 3 (Heisenberg) depending on whether the interaction
is easy-axis type, easy-plane-type, or isotropic, respectively.

In the middle 1980s, one of the present authors (H.K.)
suggested on the basis of a symmetry argument, Monte Carlo
(MC) simulations, and renormalization-group (RG) analysis
that certain frustrated magnets with the noncollinear spin or-
der might exhibit a phase transition belonging to a new univer-
sality class, the O(n) “chiral” universality class, different from
the well-known O(n) universality class [1–6]. We begin with
a summary of these earlier works. Concerning a symmetry,
the order-parameter space V isomorphic to the set of ordered

*kawamura@ess.sci.osaka-u.ac.jp

state of the frustrated noncollinear n-component magnets is
O(n)/O(n − 2) [1,2,6], instead of O(n)/O(n − 1) = Sn−1 (Sn
the n-dimensional sphere) of the collinear order in standard
unfrustrated n-component magnets. The associated Landau-
Ginzburg-Wilson (LGW) Hamiltonian can be written in terms
of two n-component vector fields, in contrast to a single n-
component field in the standard n-component φ4 model, with
the associated symmetry O(n) × O(2), in contrast to O(n) of
the standard φ4 model [3,6]. Then the O(n) chiral universality
class is sometimes called the O(n) × O(2) universality class.
This symmetry was further extended to O(n) × O(m) [4,6].
Renormalization-group (RG) analysis based on the LGW
Hamiltonian including both the ϵ = 4 − d and 1/n expansions
was performed, to yield a new “chiral” fixed point (FP) for
larger n [3,4]. More precisely, the second-order ϵ expansion
yielded the stability region of the chiral FP to be n ! nc(ϵ) =
21.8 − 23.4ϵ + O(ϵ2). Whether the physically relevant case
of d = 3 and n = 2, 3 is included in this region or not has
been not so clear, however. Concerning the Monte Calro (MC)
study of microscopic spin models, the MC simulations of
Refs. [1,2,5] studied the classical vector (n = 2 or 3) anti-
ferromagnet on the three-dimensional (3D) stacked-triangular
lattice, observing a continuous transition. In the Heisenberg
(n = 3) case, the exponents were estimated to be α = 0.24(8),
β = 0.30(2), γ = 1.17(7), ν = 0.59(2), and η = 0.02(18)
[5], where α, β, γ , ν, η are the specific-heat, the order-
parameter, the ordering-susceptibility, the correlation length,
and the critical-point-decay exponents, respectively. The chi-
ral exponents were also estimated to be βκ = 0.55(4) and

2469-9950/2019/100(22)/224430(15) 224430-1 ©2019 American Physical Society



　Renormalization group studies  
on  modelsO(N) × O(2)

• With -expansion, the value of  is 
systematically found larger than 3 as it is also the 
case for the NPRG calculations 

• On the contrary, the perturbative calculation 
performed directly in  at six loops yields a 
focus fixed point for , suggesting the second 
order phase transition.

ϵ Nc(d = 3)

d = 3

N = 2,3



　Conformal bootstrap studies  
on  modelsO(N) × O(2)

•  An early study found a critical FP for  in  
and the critical exponents in good agreement with 
the focus FPs found with the perturbative fixed 
dimensional approach. 
(Ohtsuki-Nakayama PRD 2014,2015) 

• In a recent refined conformal bootstrap study, a 
lower bound for systems satisfying reflection 
positivity is . 
(Reehorst-Rychkov-Sirois-van Rees, arXiv 2024)

N = 2,3 d = 3

Nc(d) > 3.78



Experimental results
• Helimagnets are expected to belong to the same universal 
class. 

Revisiting  models with NPRG (after some refinement) 
might be useful.

O(N ) × O(2)

13

at their multicritical point. Finally, those which be-
come isotropic because they have been prepared in a fine-
tuned stœchiometry such that the Ising-like and XY-like
anisotropies cancel each other to form an isotropic mate-
rial. This is the case of CsMn(Br0.19I0.81)3.
Let us comment the experimental results summarized

in Table IV.

Compound Ref. α β γ ν

VCl2 [133] 0.20(2) 1.05(3) 0.62(5)
VBr2 [134] 0.30(5)
A [135] 0.22(2)
B [87, 136, 137] 0.24(1) 1.16(3)

[138] 0.244(5)
CsNiCl3 [98, 139] 0.25(8)

[99] 0.23(4)
[100] 0.28(3)

CsMnI3 [98] 0.28(6)
C [140] 0.23(7)

[141] 0.29(1) [0.75(4)] [0.42(3)]
[142] 0.28(2)

TABLE IV: The critical exponents of the Heisen-
berg STA. The abbreviations A, B and C stand
for Cu(HCOO)22CO(ND2)22D2O, Fe[S2CN(C2H5)2]2Cl and
CsMn(Br0.19I0.81)3 respectively. The data in brackets are sus-
pected to be incorrect. They are given for completeness.

i) As in the XY case, the Heisenberg materials fall into
two groups. The group 1, made up of:

group 1 : Cu(HCOO)22CO(ND2)22D2O,

Fe[S2CN(C2H5)2]2Cl,

VCl2,VBr2 (32)

is characterized by:

β = 0.230(8) (33)

while for group 2, made up of:

CsNiCl3,CsMnI3,CsMn(Br0.19, I0.81)3 (34)

one finds:

β = 0.287(8) . (35)

Note that, strictly speaking, the values of β for VBr2 and
for CsMnI3 are not known and, thus, our classification is
somewhat improper. It seems however logical to suppose
that VBr2 is close to VCl2 and CsMnI3 close to CsNiCl3.
Anyway, it will be clear in the following that our analysis
is almost insensitive to this point.
For group 1, the average values of the critical expo-

nents are given by:

β = 0.230(8),α = 0.272(35), ν = 0.62(5), γ = 1.105(21) .
(36)

A very severe difficulty in the study of the materials of
group 1 is their two-dimensional character and Ising-like

anisotropies. The temperature range where the systems
behave effectively as three-dimensional Heisenberg sys-
tems is narrow. This is the case of VCl2 where this range
is less than two decades and where, closer to the criti-
cal temperature, the system becomes Ising-like. For this
group of materials the exponent β is very small and the
authors of [133] have noticed that such small values have
also been found in materials where dimensional cross-over
is suspected. Thus, it is not clear whether the whole
set of results really corresponds to a three-dimensional
Heisenberg STA.
For group 2, the experimental situation seems to be

better under control. The average values of the critical
exponents are given by:

β = 0.287(9),α = 0.243(3), ν = 0.585(9), γ = 1.181(33)
(37)

where the scaling relations have been used to compute ν
and γ. Note that the values of ν and γ thus obtained dif-
fer significantly from those of CsMn(Br0.19I0.81)3 whose
critical behavior has been claimed to be perturbed by
disorder (see however [209]).
ii) For group 1, the anomalous dimension η is signifi-

cantly negative. Using the two exponents that have been
measured at least twice in group 1 — β and γ — we can
compute the anomalous dimension from the scaling re-
lation η = (4β − γ)/(2β + γ). We find η = −0.118(25)
which is thus negative by 4.8 standard deviations.
iii) For group 2, the anomalous dimension η is

marginally negative. Using the critical exponents given
in Eq. (37), one obtains, for the anomalous dimension:
η = −0.018(33). Thus η is found negative but not signif-
icantly, contrarily to what happens in group 1.
iv) For group 1, the scaling relations γ +2β − 2 +α =

0 = 2β + γ − 3ν are violated. Indeed, γ + 2β − 2 + α =
−0.135(56) and 2β + γ − 3ν = −0.29(15). Of course,
none of these violations is completely significant in itself
because of the lack of experimental data. However, since
they are both independently violated it remains only a
very small probability that the scaling relations are ac-
tually satisfied.

2. The numerical situation

In the Heisenberg case, as in the XY case, five different
kinds of systems: STA, STAR, Stiefel (V3,2 in this case),
BCT and GLW models have been studied. The results
of the simulations are given in Table V.
Let us comment them. Again, we put aside the work

of Itakura [126].
i) For the STA, scaling laws are found with an exponent

β close to that of group 2. The average values for the
exponents of STA are:

β = 0.288(6), γ = 1.185(3), ν = 0.587(5) . (38)

β is thus extremely close to the experimental value of
group 2 while ν and γ are extremely close to the ex-
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compute, especially the error bars, should be taken with
caution. We however show in the course of this article
that our conclusions are robust to a possible underesti-
mation of the error bars in our calculations, see Section
VB7.
Let us also notice that a possible source of error in the

estimation of the critical exponents themselves could be
the existence of corrections to scaling that could bias all
the results. As we now argue, we can however expect
that these effects are not dramatic. Let us consider the
well-documented case of the ferromagnetic Ising model
in d = 3. Most of the time corrections to scaling are not
considered in the determination of the critical exponents
and the associated error bars. When they are taken into
account, they induce a tiny change in the critical expo-
nents, i.e. at most of few percents (see for instance [87]
and [88] for a review). It is therefore reasonable to think
that neglecting corrections to scaling induce an error of
few percents on the critical exponents while this proba-
bly leads to largely underestimated error bars when those
are announced to be of the order of 1% [208].
In the case of frustrated magnets, if we make the as-

sumption that the corrections to scaling are comparable
with those found in the ferromagnetic Ising model and
bear in mind that the error bars quoted in the literature
are of the order of 5 − 10% (see Tables I, II and IV),
we are led to the conclusion that corrections to scaling
are significant neither for the exponents nor for the error
bars.

B. The XY systems

Let us first discuss the XY case since the experimen-
tal situation is richer than in the Heisenberg case. Also,
the symptoms of the existence of a problem in the in-
terpretation of the results are clearer than in this latter
case for reasons that shall be explained in this article and
particularly in Section IX.

1. The experimental situation

Two classes of materials are supposed to be described
by the Hamiltonian (9). The first one is made of ABX3

hexagonal perovskites — where A is an alkali metal, B
a transition metal and X a halogen atom — which are
physical realizations of XY STA. The most studied ones
are CsMnBr3, CsCuCl3, CsNiCl3 and CsMnI3 (see [89]
for a review and [90] for RbMnBr3. We have excluded
this material since the measurement of its specific heat
presents a shoulderlike anomaly near Tc which renders
the determination of α and β doubtful). The second one
is made of rare earth helimagnets: Ho, Dy, Tb. For most
materials, the transitions are found continuous but not
with the same critical exponents. For CsCuCl3, the tran-
sition is found to be weakly of first order, i.e. with small

discontinuities. The results are summarized in Tables I
and II.

Compound Ref. α β γ ν

CsMnBr3 [86] 0.21(1)
[91] 0.24(2)
[92] 0.21(2) 1.01(8) 0.54(3)
[93] 0.25(1)
[94] 0.22(2)
[95] 0.39(9)
[96] 0.40(5)
[96] 0.44(5)
[97] 1.10(5) 0.57(3)

CsNiCl3 [98] 0.37(8)
[98] 0.37(6)
[99] 0.342(5)
[100] 0.243 (5)

CsMnI3 [98] 0.34(6)
CsCuCl3 [101] 0.23-0.25(2)

[90] 0.35(5) 1st order

TABLE I: The critical exponents of the XY STA.

Compound Ref. α β γ ν

Tb [102] 0.20(3)
[103] 0.23(4)
[104] 0.21(2)
[105] 0.53

Ho [106] 1storder
[107] 0.27(2)
[95] 0.10-0.22
[108] 0.30(10) 1.24(15) 0.54(4)
[108] 0.37(10)
[109] 0.39(3)
[110] 0.39(2)
[111] 0.39(4)
[112] 0.39(4)
[112] 0.41(4)
[113] 1.14(10) 0.57(4)
[114] 0.38(1)

Dy [115] 0.335(10)
[116] 0.39+0.04

−0.02

[110] 0.38(2)
[109] 0.39(1)
[113] 1.05(7) 0.57(5)
[117] 0.24(2)

TABLE II: The critical exponents of the XY helimagnets.

We highlight four striking characteristics [118] of these
data. Their consequences for the physics of frustrated
magnets will be discussed in more details in the following.
i) There are two groups of incompatible exponents. In

the following discussion, we mainly use the exponent β
to analyze the results since, as seen in Tables I and II, it
is by far the most precisely measured exponent. Clearly,
there are two groups of materials, each of which being
characterized by a set of exponents, β in particular.
In the first one — that we call group 1 — made up of:
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Approximations in NPRG
• Field expansion of the local potential  

• Derivative expansiton (DE) of effective action 

 Discrepancy in  between NPRG and some 
bootstrap studies may be due to the approximations 
used in NPRG. 

In this study, we do not make any field expansion of 
the local potential (but do derivative expansions). 

d = 3



 modelsO(N) × O(2)

• The order parameter for STA is a  matrix 
 that satisfies  for .  The 

constraint can be replaced by a soft potential 
 whose minima are given by . 

The effective Hamiltonian is  

          

N × 2

Φ = (ϕ1, ϕ2) ϕi ⋅ ϕ2 = δi,j i, j = 1,2

U (ϕ1, ϕ2) ϕi ⋅ ϕ2 = const δi,j

H = ∫ ddx ( 1
2 [(∂ϕ1)2 + (∂ϕ2)2] + U (ϕ1, ϕ2))



Derivative expansion (DE) 
of the effective action

 

• This approximation, that we call LPA’ with  , reproduces one-loop 
results by  and  expansions. We call the 

approximation setting  here as LPA’. At criticality  

• The approximation with  ( ) and  is called LPA.

Γk = ∫x
{Uk(ρ, τ) +

1
2

Zk((∂φ1)2 + (∂φ2)2) +
1
4

ωk(φ1 ⋅ ∂φ2 − φ2 ⋅ ∂φ1)2} .

ωk

ϵ = 4 − d ϵ = d − 2

ωk = 0 Zk→0 ∼ ( k
Λ )

−η

.

η = 0 Zk = const ωk = 0



Flow equation
 

•  and  

• We employ a family of regulators  
 which is useful for analytical 

treatment when  

• We evaluate  and  at the minimum of the potential.

∂tΓk[φi] =
1
2

Tr∫x,y
∂tRk(x − y)(

δ2Γk [φi]
δφα

i (x) δφα′￼
i′￼ (y)

+ Rk (x − y) δi,i′￼δα,α′￼)
−1

α, α′￼= 1,2,...,N i, i′￼= 1,2

Rk (q2) = βZkk2 (1 −
q2

k2 )
α

Θ (k2 − q2),

α = β = 1

η ωk



Local potential of  
 modelsO(N) × O(2)

• For any  and , we can “diagonalize” the matrix 
 as  so that 

  

• Because of  symmetry . 

• The potential is a function of the  invariants  

 and , which satisfies that 

φ1 φ2

Ψ = (φ1, φ2) M ≡ O1ΨO2

O(N) × O(2) Uk (Ψ) = Uk (M)

O(N) × O(2)

ρ = ψ2
1 + ψ2

2 τ =
1
4 (ψ2

1 − ψ2
2)2

Uk (ψ1, ψ2) = Uk (−ψ1, ψ2) = Uk (ψ1, − ψ2) = Uk (ψ2, ψ1)



Dimensionless variables 
and FP potential

• In order to find FP solutions, we employ the 
following dimensionless quantities             

,   ψ̃i = (Zkk2−d)1/2 ψi Ũk(ψ̃i) = k−dUk (ψi) .

Ũ

ψ̃1

ψ̃2

FP potential for   
(1-unstable critical FP)

C+

  exists for  and 

 it vanishes at  by colliding with  
 (2-unstable multicritical FP)

C+ N ≥ Nc(d)

N = Nc(d)

C−



Nc(d = 3)

• The variations of  with respect to the parameter  seem much smaller than 
the uncertainty associated with the truncation of the DE (LPA, LPA’, LPA’ with ).  

• This confirms previous NPRG results with “semi-expansion” 
 at LPA, LPA’ with . 

• NPRG results seem to converge well within each approximation (LPA, LPA’, LPA’ 
with ).

Nc(d = 3) α

ωk

Nsemi
c (d = 3) ≃ 4.68(2), 5.24(2) ωk

ωk

1 2 3 4 5
α

4.7

4.8

4.9

5.0

5.1

5.2

5.3

Nc

LPA'

LPA' with ω
LPA

We fix β = 1



Critical exponents  
 for ν, η N = 6, d = 3

• Previous NPRG (“semi-expansion” with a different regulator) results give 
 and . Assuming that these results are 

converging, the dependence on the regulator is not small contrary to . 

• The correction-to-scaling exponent (not shown) is real.

ν(N = 6) = 0.695(5) η(N = 6) = 0.042(2)

Nc(d = 3)

2 3 4 5
α

0.72

0.73

0.74

0.75

0.76

ν

LPA

LPA'

LPA'+ω

2 3 4 5
α

0.046

0.047

0.048

0.049

0.050

0.051
η

LPA'

LPA'+ω

We fix β = 1



Nc(d = 2.5)

• In lower dimensions, the roles of  and  are important. 

• We recall that  is interesting for physics in  

• The solutions are numerically under control.

η ωk

Nc(d ≤ 3) d = 3

1 2 3 4 5α2.88
2.90
2.92
2.94
2.96
2.98
3.00
3.02
Nc

LPA'+ωk

LPA'

We fix β = 1



 in Nc(d) 2.3 ≤ d ≤ 4

• The spreading of  when  is varied between 1 and 5 and  between 
1 and 2 is almost invisible on this scale. 

• This suggests that S-shape behavior of  around  is not probable. 

• As for the approach to , we have found good agreement with the  
expansion results after resummation.

Nc(d, α, β) α β

Nc(d) d = 3

d = 2 ϵ

2.5 3.0 3.5 4.0
d

5

10

15

20

Nc(d)

Resummation

LPA'with k

LPA'

LPA

2.2 2.4 2.6 2.8 3.0
d

2

3

4

5

6

Nc (d)



Multicritical problems

• For multicritical FPs in  models, we found boundary layer 
behavior at Large- , which cannot be captured by field 
expansions. 

•  Therefore it may be interesting to study the multicritical FP in 
 models without any field expansion (in progress).

O(N )

N

O(N ) × O(2)

We find two interesting features of the curve N0
cðdÞ.

First, the two curves NcðdÞ and N0
cðdÞ meet in a point, that

we call S, located at (d ¼ 2.81, N ¼ 19), see Figs. 2 and 3.
This means that right at S: T2 ¼ C3 ¼ C2. We also find that
S is a singular point: If we follow smoothly T2 around a
closed loop containing S starting, for instance, at
P ¼ ðd ¼ 2.94; N ¼ 30Þ, see Fig. 3, we do not come back
at T2. More precisely, starting from P and following an
anticlockwise closed path as in Fig. 3(b), T2 collides on
the line NcðdÞ with C3 and disappears. More precisely, it
becomes complex. On the contrary, following the same
path clockwise, T2 does not collide with any FP but
becomes C2 after a full rotation around S. This is why
we have claimed above that the fate of T2 when N → ∞
depends on the path followed. In the Supplemental Material
[32], we give a toy model in terms of the roots of a cubic
equation that shows how T2 can become C2 when it is
continuously followed along a closed path surrounding S.
From a purely mathematical point of view, the continuity
argument for following smoothly the FPs everywhere in
the (d, N) plane and exhibiting the double-valued structure
of T2 and C2 makes sense only after allowing the FPs to be
complex valued (or, in a Taylor expansion, the g$m to be
complex). For instance, let us again consider Fig. 3(b). We
start at P with T2, which is very close toG. Beyond the line
NcðdÞ, T2 becomes complex. It becomes real again when
the path crossesN0

cðdÞ and it is thenC2 which is far from G.
If we go on following the same path, C2 remains real all the
way but after the second full rotation, it is T2 again.
The second interesting feature of the curve N0

cðdÞ is
that it also becomes vertical at large N while being this
time asymptotic to the d ¼ 4 axis, see Fig. 2. We therefore
conclude that most probably C3 exists at N ¼ ∞ every-
where for d ∈%3; 4½ and C2 for d ∈%2; 4½. However, we also
find that for larger and larger N in d > 3, the FP potentials
of C2 and C3 become steeper and steeper at ρ ¼ 0 which
indicates the presence of a singularity at the origin in
their FP potential or its derivatives. The second derivative
of the two potentials with respect to ρ becomes also
discontinuous at a point ρ ≠ 0 in the large N limit. These
singularities are a possible explanation of the fact that
these two fixed points were not found previously in large
N analyses [11–14,16]. Using the LPA’, we have checked
that the line N0

cðdÞ is only slightly modified compared to
the LPA results because η is small all along this line. It
makes us confident that the overall picture above is not an
artifact of our truncations.
The double-valued character of the FPs exhibited above

concerns only C2 and T2 and we could wonder whether
the same thing occurs for C3. We have indeed found two
other nonperturbative FPs that are 3- and 4-unstable, two
analogues of the curves NcðdÞ and N0

cðdÞ, where these FPs
show up and annihilate as well as a singular point S0 where
the two curves meet and that shares many similarities with
S. It is of course tempting to imagine that this kind of

structure repeats for the 4-unstable FP found that itself
involves a 5-unstable FP and so on and so forth.
A natural question is whether the intricate FP structure

presented above is specific to the OðNÞ models or is
generic. To shed some light on this question, we have
therefore considered the OðNÞ ⊗ Oð2Þ model which is
relevant for frustrated antiferromagnetic systems [35–37].
The order parameter of this model is the N × 2 matrix
Φ ¼ ðφ1;φ2Þ [38] and the Hamiltonian is the sum of the
usual kinetic terms and of the potential U ¼ rðφ2

1 þ φ2
2Þ þ

uðφ2
1 þ φ2

2Þ2 þ v½φ2
1φ

2
2 − ðφ1 · φ2Þ2%. By a suitable choice

of r, u, and v the symmetry is spontaneously broken down
to OðN − 2Þ ⊗ Oð2Þ. For N typically larger than 21.8, two
FPs are found in d ¼ 4 − ϵ, a critical one, Cþ, that can be
followed smoothly down to d ¼ 2 and another one, C−,
which is tricritical [39,40]. These FPs are also found in
the large N expansion in all dimensions between 2 and 4
[40–42]. However, using the LPA’, we find for C− a picture
which is very much similar to the OðNÞ case, see Fig. 4:
(i) There exists a line where C− collapses with a 3-unstable
FP, that we call M3; (ii) this line is asymptotic to the d ¼ 3
axis, and (iii) M3 appears on another line together with a
2-unstable FP that we call M2 [43].
To conclude, we have found that the multicritical FP

structure of both the OðNÞ and OðNÞ ⊗ Oð2Þ models is
much more complicated than usually believed. In particu-
lar, we have shown that several nonpertubative FPs exist in
d ¼ 3 that were not previously found. Although they also
exist at N ¼ ∞ on a finite interval of dimensions they were
not found by previous direct studies of this case and this is
clearly a subject that must be further studied, see, however,
Ref. [33]. The existence and role of possible singularities
of the FP potential of C2 and C3 should be studied in the
future as well. It would also be interesting to study the
d ¼ 3 case and figure out what the basins of attraction of

FIG. 4. OðNÞ ⊗ Oð2Þ model. In the gray region, starting in
d ¼ 4 at N ¼ 21.8, no FP at all is found. Above this region and
for d close to 4, both the critical Cþ and the tricritical C− FPs are
found. The line on the right joining the squares indicates the
region where two nonperturbative FPs, M2 and M3, appear. On
the line joining the crosses, C− and M3 collapse. In each region,
we indicate the FPs that are present.
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Summary
• We have obtained  in  solving the FP 
equation without any field expansion (but with 
derivative expansion). 

• In , our results confirm what was found with 
field expansions of NPRG and recent conformal 
bootstrap results. 

• As for the approach to , we have found good 
agreement with the  expansion after resummation.

Nc(d) 2.3 ≤ d ≤ 4

d = 3

d = 2
ϵ


