Exact Renormalization Group 2024, Les Diablerets, 26.10.2024

Multipoint correlation functions:

spectral representation, numerical evaluation, and improved estimators

Jan von Delft

Fabian Kugler, Seung-Sup Lee, Jan von Delft, Phys. Rev. X 11, 041006 (2021)

Seung-Sup Lee, Fabian Kugler, Jan von Delft, Phys. Rev. X 11, 041007 (2021)

Jae-Mo Lihm, Johannes Halbinger, Jeongmin Shim, Jan von Delft, Fabian Kugler, Seung-Sup Lee, Phys. Rev. B 109, 125138 (2024)

Anxiang Ge, Nepomuk Ritz, Elias Walter, Santiago Aguirre, Jan von Delft, Fabian Kugler Phys. Rev. B 109, 115128 (2024)

Jae-Mo Lihm Johannes Halbinger Jeongmin Shim (Seoul National (LMU Munich) (LMU Munich) University)

Anxiang Ge Nepomuk Ritz (LMU (LMU Munich) Munich)

Fabian Kugler (CCO, Flatiron)

Symmetric estimator $\Delta / / \Delta$ Seung-Sup Lee (Seoul National University)

Acknowledgement: many slides are borrowed from Jae-Mo Lihm & Seung-Sup Lee

- Why multi-point functions?
- Limitations of purely field-theoretical approaches for strong-coupling problems
- Spectral representations
- NRG for local multi-point correlators
- Improved estimators for self-energy and 4-point vertices
- Outlook

Why multipoint correlation functions?

- Dynamical properties are encoded in correlation functions
- Two-point functions: local density of states, spectral function, ...

Four-point functions: magnetic susceptibility, conductivity, ...

 $F_{\sigma\sigma'}(\mathbf{k}_1, \omega_1; \mathbf{k}_2, \omega_2; \mathbf{k}_3, \omega_3)$: 4-point vertex: energy-dependent effective interaction (needed as function of <u>real</u> frequencies)

Field-theoretical approaches for fermionic problems

multi-loop fRG: ensures that $\dot{\Gamma}$ = total derivative; integrating flow yields regulator-independent results; sums up all parquet diagrams in parquet approximation Kugler, von Delft, PRL 2018, PRB 2018, NJP (2018)

Fabian Kugler

Benchmark study of 1-loop fRG vs. parquet approximation (PA) vs. NRG

Single-impurity Anderson model

Kondo temperature:

$$T_{\rm K} = \sqrt{\Delta U/2} \exp\left[-\pi \left(\frac{U}{8\Delta} + \frac{\Delta}{U}\right)\right]$$

- Low-energy properties of this model can be computed essentially exactly using the numerical renormalization group (NRG)
- Use fRG / PA / NRG to compute $\Gamma^{12|22}_{\uparrow\downarrow}(\nu=0,\nu'=0,\omega=0)$
- Conclusion: 1-loop fRG and parquet both fail for u > 1
- both 1-loop fRG and parquet approximation do not yield non-perturbative results

Approaches based on exact treatments of local correlations

Dynamical mean field theory (DMFT)

treat local correlations exactly by solving self-consistent impurity model

$$G(\mathbf{k},\omega) = \left[\omega - \varepsilon_{\mathbf{k}} + \mu - \Sigma(\mathbf{k},\omega)\right]^{-1}$$

dynamical mean-field $\Delta(\omega)$ bath DMFT $\Delta(\omega)$ impurity DMF⁻ obtain lattice Green's function extensions

Reviews: Georges et al. RMP (1996),

extensions of DMFT

include nonlocal correlations by field-theoretic methods with <u>DMFT input</u> for local self-energy and 4-point vertex

$$G(\mathbf{k},\omega) = \left[\omega - \varepsilon_{\mathbf{k}} + \mu - \Sigma(\mathbf{k},\omega)\right]^{-1}$$

Examples:

dynamical vertex approximation Held et al. (2008)

dual fermions Havermann et al. (2008)

DMF²RG Taranto et. al (2014), Vilardi et al. (2019), poster by Marcel Schäfer

self-consistent parquet Lihm et al. (to be published)

 $\Sigma_{\rm imp}\left(\omega\right)$

6

Kotliar et al. RMP (2006)

Review: Rohringer et al, RMP (2018), Benchmark: Schäfer et al, PRX (2021)

General multipoint functions $\langle O^1(t_1) \dots O^\ell(t_\ell) \rangle$: spectral representations

Two-stage computation: (1) compute PSF; (2) convolve PSF with kernels

Different formalisms or frequencies: same PSF, only change kernels

Quantum impurity models: Numerical renormalization group (NRG)

- Logarithmic discretization: Wilson chain Wilson, RMP (1975); Bulla, Costi, Pruschke, RMP (2008)
- Iterative diagonalization: complete basis of energy eigenstates Anders, Schiller, PRL (2005)
- Tensor network formulation: many-body states as matrix product states (MPS) Weichselbaum, PRB (2012)
- (Partial) spectral functions:

Peters, Pruschke, Anders, *PRB* (2006) Weichselbaum, von Delft, *PRL* (2007)

multipoint:

Lee, Kugler, von Delft, PRX 11, 041007 (2021)

Andreas S Weichselbaum

Seung-Sup Lee

Vertex of Anderson impurity model (AIM)

$$\begin{split} H &= \sum_{\sigma} \varepsilon_d d_{\sigma}^{\dagger} d_{\sigma} + U d_{\uparrow}^{\dagger} d_{\downarrow} d_{\downarrow} + \sum_{k\sigma} \varepsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} + \sum_{k\sigma} v (d_{\sigma}^{\dagger} c_{k\sigma} + c_{k\sigma}^{\dagger} d_{\sigma}) \\ & \\ U &= 0.2D \\ -D & \Delta = 0.04D \end{split}$$

Kondo temperature: $T_{\rm K}$

 $T_{\rm K} \simeq 5 \times 10^{-3} D$

 Benchmark imaginary-frequency vertex against quantum Monte Carlo (QMC) $T = 0.01D > T_K$ by Toschi group (TU Wien) Chalupa et al, PRB (2018); PRL (2021)

	QMC	NRG
imaginary frequency	0	0
accuracy against statistical noise	\bigtriangleup	0
low temperature	×	0
real frequency	×	0

Vertex of Anderson impurity model (AIM)

 $T = 10^{-4} D$ Kondo temperature: $T_{\rm K} \simeq 5 \times 10^{-3} D$

- stronger features at higher freq.; reduced at lower freq.
- $T \gg U$: bare vertex $U\delta_{\overline{\sigma}\sigma'}$
- \blacksquare $T \simeq T_{\rm K}$: most pronounced correlation effects
- T $\ll T_{\rm K}$: Fermi liquid

Renormalized perturbation theory (RPT) parameters: $\tilde{U} \simeq 0.20U, Z \simeq 0.36$

From strongly interacting particles to weakly interacting quasiparticles!

Lee, Kugler, von Delft, PRX 11, 041006 (2021)

Challenges when calculating 4-point vertex $G = \langle \mathcal{T} d(t_1) d^{\dagger}(t_2) d(t_3) d^{\dagger}(t_4) \rangle$

• Subtraction of the disconnected part

$$g(\omega) = G[d,d^{\dagger}](\omega)$$

$$G_{\rm con}(\omega_1,\omega_2,\omega_3,\omega_4) = G_{\rm tot}(\omega_1,\omega_2,\omega_3,\omega_4) - ig(\omega_1)g(\omega_3)[\delta(\omega_1+\omega_4) - \delta(\omega_1+\omega_2)]$$

in the non-interacting limit: $G_{tot} = G_{dis}$ $G_{con} = 0$ **†** requires numerically delicate of

requires numerically delicate cancellations

• Amputation of external legs

$$\Gamma(\omega_1, \omega_2, \omega_3, \omega_4) = \frac{G_{\rm con}(\omega_1, \omega_2, \omega_3, \omega_4)}{g(\omega_1)g(-\omega_2)g(\omega_3)g(-\omega_4)}$$

large-frequency limit $\sim \frac{U/\omega^4}{1/\omega^4} = U \qquad (\omega \gg 1)$

requires numerically delicate cancellations

Lihm, Halbinger, Shim, von Delft, Kugler, Lee, PRB 109, 125138 (2024)

"improved estimator" is formally equivalent to desired function, but yields better cancellation of numerical artifacts;

can be derived using equations of motion (EOM)

amputate external legs by division:

use equation of motion for one operator:

use equations of motion for four operators:

- EOM of a time-ordered correlator:
- EOM in frequency domain:

$$\begin{split} i\frac{\partial}{\partial t_1}G[d_1, d_2^{\dagger}](t_1, t_2) &= \delta(t_1 - t_2)\delta_{12} + G\big[[d_1, H], d_2^{\dagger}\big](t_1, t_2) \\ & \{d_1, d_2^{\dagger}\} = \delta_{12} \\ \omega G[d_1, d_2^{\dagger}](\omega) &= \delta_{12} + G\big[[d_1, H], d_2^{\dagger}\big](\omega) \end{split}$$

Asymmetric estimator for self-energy

- We want the improved estimators to be
 - (A) **Symmetric**: symmetric in all indices of the vertex, and
 - (B) **Full**: Involving only full correlators (not the bare ones)

	2-point self-energy $\Sigma(\nu)$	4-point vertex Γ(ν , ν' , ω)	
asymmetric, full	Bulla et al. (1998)	Hafermann et al. (2012)	
symmetric, bare	Kaufmann et al. (2019)	Kaufmann et al. (2019)	
symmetric, full	Kugler (2022)	Lihm et al. (2024)	

Jae-Mo Lihm

Bulla, Hewson, Pruschke, J. Phys.: Condens. Matter 10, 8365 (1998);Hafermann, Patton, Werner, PRB 85, 205106 (2012);Kaufmann, Gunacker, Kowalski, Sangiovanni, Held, PRB 100, 075119 (2019);Kugler, PRB 105, 245132 (2022)

(1-leg) EOM for multipoint correlator

2-point correlator: $\{d_1, d_2^\dagger\} = \delta_{12}$ $(g^0)^{-1}G[d_1, d_2^{\dagger}] = \delta_{12} + G[q_1, d_2^{\dagger}]$ * from differentiation time-ordering theta functions lae-Mo Lihm *e*-point correlator: $G[d_1, O^2, \dots, O^{\ell}](t) = (-i)^{\ell-1} \langle \mathcal{T} d_1(t_1) O^2(t_2) \dots O^{\ell}(t_{\ell}) \rangle$ $(g^{0})^{-1}G[d_{1}, O^{2}, \cdots, O^{\ell}] = \sum_{n=2}^{\ell} G[O^{2}, \cdots, [d_{1}, O^{n}]_{\zeta_{n}}, \cdots, O^{\ell}] + G[q_{1}, O^{2}, \cdots, O^{\ell}]$ from differentiation time-ordering theta functions $(q^0)^{-1} = q^{-1} + \Sigma$ $g^{-1}G[d_1,\cdots] = \sum_{n=2}^{\ell} G[\cdots[d_1,O^n]_{\zeta_n},\cdots] + G[q_1,\cdots](\omega) - \Sigma G[d_1,\cdots]$ $\sum_{n=2}^{\ell} G[\cdots[d_1,O^n]_{\zeta_n},\cdots] + G[q_1,\cdots](\omega) - \Sigma G[d_1,\cdots]$ $\sum_{n=2}^{\ell} \alpha = \sum_{n=2}^{\ell} f(\mathbf{x}_n) + f(\mathbf{y}_n) + f$ $\Sigma = G[q_{\sigma}, d_{\sigma}^{\dagger}]q^{-1}$ or g^{-1} on right side!) subtraction of reducible diagrams yields <u>1-particle irreducible vertex</u> for leg 1

 $\Gamma(\nu,\nu';\omega) = \Gamma_{\text{bare}} + \sum \mathcal{K}_1^r(\omega_r)$ $r = ph, pp, \overline{ph}$ + $\sum \mathcal{K}_2^r(\nu_r;\omega_r) + \mathcal{K}_{2'}^r(\nu_r';\omega_r)$ lae-Mo Lihm $+\Gamma_{\rm core}(\nu,\nu';\omega)$

> asymptotic classes [Wentzell et al. (2020)] emerge naturally and are computed separately

 $\lim_{|\nu|\to\infty} \mathcal{K}_2(\nu;\omega) = \lim_{|\omega|\to\infty} \mathcal{K}_2(\nu;\omega) = 0$ $\lim_{|\nu| \to \infty} \Gamma_{\rm core} = \lim_{|\nu'| \to \infty} \Gamma_{\rm core} = \lim_{|\omega| \to \infty} \Gamma_{\rm core} = 0$ weak-coupling limit: $\mathcal{K}_1 = \mathcal{O}(U^2), \ \mathcal{K}_2 = \mathcal{O}(U^3), \ \Gamma_{\text{core}} = \mathcal{O}(U^4)$

Wentzell, Li, Tagliavini, Taranto, Rohringer, Held, Toschi, Andergassen, PRB 102, 085106 (2020)

SIAM at weak coupling: benchmark NRG vs. 3rd-order perturbation theory (PT3)

Lihm, Halbinger, Shim, von Delft, Kugler, Lee, PRB109, 125138 (2024)

SIAM at strong coupling: benchmark NRG vs. renormalized perturbation theory (RPT)

Lihm, Halbinger, Shim, von Delft, Kugler, Lee, PRB109, 125138 (2024)

Outlook: Going beyond impurity model – non-local extensions of DMFT

- Main methodological result: <u>full</u> frequency dependence of impurity models is accessible !
- Next steps: tackle non-local extensions of DMFT
- diagrammatic vertex approximation (DFA)
- or DMF²RG
- parquet formalism
- Input: 4-point vertex of the impurity Hamiltonian

 $R = R_{\rm DMFT}$

 $\Gamma = R + \gamma_a + \gamma_p + \gamma_t$ $\gamma_a = I_a \qquad \Gamma \qquad \gamma_p = \frac{1}{2} \qquad I_p \qquad \Gamma$ $\gamma_t = - \qquad \Gamma \qquad -\frac{1}{2} \qquad \Gamma$

• Major challenge: vertex is "big object", with huge memory costs. Can it be compressed?

Outlook: Compression via Tensor Cross Interpolation (TCI)

 $f(x) = f(\sigma_1, \dots, \sigma_R) = F_{\sigma_1, \dots, \sigma_R} \qquad \sigma_\ell \in \{0, 1\}$ binary digits

 $F_{\sigma} = -$

TCI

• Outlook for DMFT extensions: use TCI representation of vertices !

Discretized functions can be expressed as tensors

• Sometimes, these tensors are compressible

• TCI is efficient scheme for finding compressed