The role of quenched disorder in polymerized membranes

D. Mouhanna

LPTMC - Sorbonne University

O. Coquand (LPMS - Perpignan University, Perpignan, France)
L. Delzescaux (LPTMC - Sorbonne University, Paris, France)
C. Duclut (Laboratoire Physico-Chimie Curie, Paris, France)
K. Essafi (QunaSys, Paris, France)
J.-P. Kownacki (LPTM - Cergy-Pontoise University, France)
S. Metayer (INPP, Shanghai, China)
M. Tissier (LPTMC - Sorbonne University, Paris, France)

ERG 2024 (Les Diablerets)

Outline

- 2 RG approaches to pure membranes
- 3 RG approaches to disordered membranes

4 Conclusion

Introduction

 Membranes: D-dimensional extended objects embedded in a d-dimensional space subject to quantum and/or thermal and/or disorder fluctuations

Generic questions :

- effects of thermal fluctuations ?
 - \implies phase transition ?
 - \Longrightarrow ordered, flat, phase at low temperatures ?
- effects of quenched disorder ?
- (effects of quantum fluctuations as $T \rightarrow 0$?)

\Longrightarrow depends crucially on the nature of the membrane

イロト イヨト イヨト

Fluid membranes vs polymerized membranes

Fluid membranes

- weakly interacting molecules
 - free diffusion inside the membrane plane \Longrightarrow no shear modulus
 - $\bullet\,$ very small compressibility and elasticity \Longrightarrow no elastic energy
 - \implies only curvature energy

Fluid membranes and polymerized membranes

RG approaches to pure membranes RG approaches to disordered membranes Conclusion

Fluid membranes

Free energy:

$$F = \frac{\kappa}{2} \int d^2 \sigma \sqrt{g} \ \mathbf{H}^2$$

- *H*: extrinsic curvature
- κ: rigidity constant
- $\sqrt{g} = \sqrt{\det g_{\mu\nu}}$ ensures reparametrization invariance
- $g_{\mu\nu} = \partial_{\mu} \mathbf{r} . \partial_{\nu} \mathbf{r} \equiv$ metric induced by the embedding $\mathbf{r}(\boldsymbol{\sigma})$

Fluctuations ?

Fluid membranes

- Low temperatures: Monge parametrization
 - $x = \sigma_1$, $y = \sigma_2$ and z = h(x, y) with h height, capillary, mode

 $\bullet~\mathbf{r}(x,y)=(x,y,h(x,y))$ parametrizes points

•
$$\hat{\mathbf{n}}(x,y) = \frac{(-\partial_x h, -\partial_y h, 1)}{\sqrt{1 + (\partial_i h)^2}}$$
 • $\hat{\mathbf{n}}(x,y) \cdot \mathbf{e}_{\mathbf{z}} = \cos\theta(x,y) = \frac{1}{\sqrt{1 + (\partial_i h)^2}}$

Fluid membranes

• Flat phase ? \implies harmonic fluctuations of $\theta(x, y)$:

$$\begin{aligned} \partial(x,y)^2 \rangle &\simeq k_B T \int d^2 q \, \left\langle \partial_i h(\mathbf{q}) \partial_i h(-\mathbf{q}) \right\rangle \\ &= k_B T \int d^2 q \, \frac{q^2}{\kappa q^4} \simeq \frac{k_B T}{\kappa} \log\left(\frac{L}{a}\right) \longrightarrow \infty \end{aligned}$$

 \implies no long range order between the normals (Mermin-Wagner)

 \implies strong analogy with 2D-nonlinear σ model with $N-2\longrightarrow rac{d}{2}$

• exp. decreasing correlations: $\langle {f \hat{S}}({f r}).{f \hat{S}}({f 0})
angle \sim e^{-r/\xi}$

• correlation length – mass gap: $\xi \simeq a e^{2\pi\kappa/(3k_BT(d/2))}$

Polymerized membranes

Polymerized membranes

- chemical physics/biology: red blood cell, ...
- condensed matter physics: graphene, phosphorene, ...

strongly interacting molecules by V(|**r**_i − **r**_j|)
 ⇒ bending and elastic energy contributions

Free energy of crystalline membranes

Polymerized membranes

- Flat reference configuration: $\mathbf{r}_0(x,y)=(x,y,z=0)$
- Fluctuations: $\mathbf{r}(x,y) = \mathbf{r}_0 + u_x(x,y) \mathbf{e}_1 + u_y(x,y) \mathbf{e}_2 + h(x,y) \mathbf{\hat{n}}$
 - $h \equiv$ height field and $u_i \equiv$ phonon fields

Polymerized membranes

• Free energy: curvature + elasticity/shear

$$F \simeq \int d^2 \mathbf{x} \left[\frac{\kappa}{2} (\Delta h)^2 + \lambda g_{ab}^2 + \mu g_{aa}^2 \right]$$

 $g_{ab} = \frac{1}{2} \left[\partial_a u_b + \partial_b u_a + \partial_a \mathbf{u} \cdot \partial_b \mathbf{u} + \partial_a h \, \partial_b h \right]$

 $g_{ab}\equiv$ stress tensor \sim encodes fluctuations with respect to the flat configuration ${\bf r}_0$

 λ, μ : Lamé coefficients

Polymerized membranes

• Free energy: curvature + elasticity/shear

$$F \simeq \int d^2 \mathbf{x} \left[\frac{\kappa}{2} (\Delta h)^2 + \lambda g_{ab}^2 + \mu g_{aa}^2 \right]$$

$$g_{ab} = \frac{1}{2} \left[\partial_a u_b + \partial_b u_a + \partial_a \mathbf{u} \cdot \partial_b \mathbf{u} + \partial_a h \, \partial_b h \right]$$

 $g_{ab} \equiv$ stress tensor \sim encodes fluctuations with respect to the flat configuration \mathbf{r}_0

 λ, μ : Lamé coefficients

• coupling between height and phonon fluctuations

 \implies *frustration* of height fluctuations:

$$\langle \theta(x,y)^2 \rangle \simeq T\left(\frac{L}{a}\right)^{-\eta} \longrightarrow 0$$

 \implies long range order between normals in D = 2 (and less) !

1/36

Polymerized membranes

• spontaneous symmetry breaking in D = 2 and even in D < 2 \implies crumpled-to-flat transition

〜へで 12/36

Polymerized membranes

 \implies low-temperature, ordered, flat, phase with non-trivial correlations in the I.R.

$$\begin{cases} G_{hh}(\mathbf{q}) \sim q^{-(4-\eta)} \\ \\ G_{uu}(\mathbf{q}) \sim q^{-(6-D-2\eta)} \end{cases}$$

with $\eta \neq 0 \implies$ associated *e.g.* correlations of stable membrane (e.g. graphene monolayer)

• a big challenge: computing η associated with scaling properties of graphene

RG approaches to pure membranes

One-loop perturbative approach of the crumpling-to-flat transition (Paczuski, Kardar and Nelson (89)) \mathbb{P} to all $\int dP \int_{0}^{R} (t + t)^{2} dP = (0 + t)^{2} dP$

$$F\left[\partial_{\mu}\mathbf{r}\right] = \int d^{D}\mathbf{x} \,\frac{\mathbf{\kappa}}{2} \left(\Delta\mathbf{r}\right)^{2} + \,\boldsymbol{\lambda} \left(\partial_{a}\mathbf{r}.\partial_{b}\mathbf{r}\right)^{2} + \,\boldsymbol{\mu} \left(\partial_{a}\mathbf{r}.\partial_{a}\mathbf{r}\right)^{2}$$

 \implies perturbative expansion in λ and μ

 β -functions in $D = 4 - \epsilon$ at one-loop order:

$$\partial_t \lambda = -\epsilon \lambda + \frac{1}{8\pi^2} \left(\left(\frac{d}{3} + \frac{65}{12} \right) \lambda^2 + 6\mu\lambda + \frac{4}{3}\mu^2 \right)$$
$$\partial_t \mu = -\epsilon \mu + \frac{1}{8\pi^2} \left(\left(\frac{21}{16} \right) \lambda^2 + \frac{21}{2}\mu\lambda + (4d+5)\mu^2 \right)$$

 \implies fluctuation induced 1^{st} order for $d < d_c \simeq 218.2$ near D = 4

One-loop perturbative approach of the flat phase (Aronovitz, Golubović and Lubensky (88); Guitter, David, Leibler and Peliti (89))

$$F \simeq \int d^D \mathbf{x} \left[\frac{\kappa}{2} (\Delta h)^2 + \lambda g_{ab}^2 + \mu g_{aa}^2 \right]$$

 \implies perturbative expansion in λ and μ

 β -functions in $D = 4 - \epsilon$ at one-loop order:

$$\partial_t \mu = (-\epsilon + 2\eta)\mu + \frac{d_c \mu^2}{96\pi^2}$$

$$\partial_t \lambda = (-\epsilon + 2\eta)\lambda + \frac{d_c(6\lambda^2 + 6\lambda\mu + \mu^2)}{96\pi^2}$$

and $\eta = \frac{5\mu(\lambda+\mu)}{(2\mu+\lambda)} \Longrightarrow$ fixed point P_4 with $\eta_4(\epsilon = 2, d = 3) = 0.96$ far from MC predictions: $\eta = 0.85$

Thus two great questions:

- nature of the phase transition of D = 2, d = 3, *i.e.* physical, membranes ?
- flat phase properties $-\eta$ of physical membranes ?

while all computations are performed near D = 4

Non perturbative RG

- \implies use of a non perturbative RG approach (Kownacki and D.M. (08))
 - Effective action $\Gamma_k[\partial_\mu \mathbf{r}]$ for membranes:

$$\Gamma_k\left[\partial_\mu \mathbf{r}
ight] = \int d^D \mathbf{x} \; rac{\kappa}{2} \left(\Delta \mathbf{r}
ight)^2 + \; oldsymbol{\lambda} \left(\partial_a \mathbf{r}.\partial_b \mathbf{r} - \delta_{ab}
ight)^2 + \; oldsymbol{\mu} \left(\partial_a \mathbf{r}.\partial_a \mathbf{r} - \delta_{aa}
ight)^2$$

- \implies Wetterich equation
- \Longrightarrow unified treatment of crumpling-to-flat transition and flat phase

- crumpled-to-flat transition: $d_c(D = 2) \sim 3$ and strong dependence with respect to the ansatz (powers of $\partial \mathbf{r}$)
- flat phase $\eta = 0.85$ that compares very well to Monte Carlo $\eta = 0.85(1)$ (Los, Katsnelson, Yazyev, Zakharchenko and Fasolino (09))

Striking facts : in the flat phase (only):

• <u>no</u> corrections at orders $\varphi^4 \sim (\partial \mathbf{r})^4$! (Essafi, Kownacki and D.M. (14))

• <u>no</u> quantitative corrections at all orders in ∂^{2p} ! $\eta = 0.849$ (Braghin and Hasselmann (10)) compared to $\eta = 0.85$

 \implies extreme stability of the approach

<u>Question</u>: structure and properties of the perturbative theory at higher orders in λ and μ ?

Polymerized membranes at two and three loop order

Polymerized membranes at two-loop and three loop order (Coquand, D.M. and Teber (20), Metayer, D.M. and Teber (22))

$$S[\mathbf{h}, \mathbf{u}] = \int \mathrm{d}^D x \left\{ \frac{\kappa}{2} \left(\Delta \mathbf{h} \right)^2 + \lambda \, g_{ab}^2 + \mu \, g_{aa}^2 \right\}$$

with the metric tensor: $g_{ij} = \frac{1}{2}(\partial_i \mathbf{r} \cdot \partial_j \mathbf{r} - \delta_{ij})$ given by:

$$g_{ij} \simeq \frac{1}{2} \left[\partial_i u_j + \partial_j u_i + \partial_i \mathbf{h} . \partial_j \mathbf{h} \right] \,.$$

not so simple: derivative field theory
 momentum dependent vertices

< ロ > < 同 > < 回 > < 回 >

good news: in the flat phase it is sufficient to renormalize the propagators

height-field propagator:

$$G_{h}^{\alpha\beta}(q) = \frac{\delta^{\alpha\beta}}{\kappa q^{4}} = \xrightarrow{\alpha \qquad q \qquad \beta}$$

phonon-field propagator:

$$G_u^{ij}(q) = \frac{1}{\mu q^2} P_T^{ij}(q) + \frac{1}{(\lambda + 2\mu)q^2} P_L^{ij}(q)$$
$$= \frac{i}{\sqrt{2}} q \frac{j}{\sqrt{2}}$$

with
$$P_T^{ij}(q) = \delta_{ij} - \frac{q_i q_j}{q^2}$$
 and $P_L^{ij}(q) = \frac{q_i q_j}{q^2}$

२०० 1/36

Results

36 years after Aronovitz et al.:

• the non-trivial stable fixed point P₄ controls the flat phase with remarkable, rapidly decreasing, series

$$\begin{cases} \eta_{3L} = 0.4800 \epsilon - 0.01152 \epsilon^2 - 0.00334 \epsilon^3 \\ \eta_{\text{NPRG re-expanded}} = 0.4800 \epsilon - 0.00918 \epsilon^2 - 0.00333 \epsilon^3 \end{cases}$$

- a rapidly converging exponent η : in D = 2 (*i.e.* $\epsilon=2$) and d = 3:
- $-1L:\eta=0.96$
- $2L: \eta = 0.9139$
- $-3L: \eta = 0.8872$
- $4L : \eta = 0.8760$ (Pikelner (22))

to be compared to NPRG $\eta = 0.85$

RG approaches to disordered membranes

<u>Disorder in membranes</u>: imperfect polymerization, vacancies, impurities etc \implies "defects"

- isotropic defects \implies elastic disorder (a)
- anisotropic defect \implies curvature disorder (b)

Free energy:

$$\begin{split} \Gamma[\mathbf{r}] &= \int \mathsf{d}^D x \left\{ \frac{\kappa}{2} \left(\Delta \mathbf{r} - \frac{\mathbf{c}(\mathbf{x})}{\kappa} \right)^2 + \lambda \left(\partial_a \mathbf{r} . \partial_b \mathbf{r} - \delta_{ab} (1 + 2 \, \boldsymbol{m}(\mathbf{x})) \right)^2 \\ &+ \mu \left(\partial_a \mathbf{r} . \partial_a . \mathbf{r} - \delta_{aa} (1 + 2 \, \boldsymbol{m}(\mathbf{x})) \right)^2 \right\} \end{split}$$

with $\mathbf{c}(\mathbf{x})$ and $m(\mathbf{x})$ Gaussian random fields coupled to curvature and metric

• average over (quenched) disorder using replica trick:

$$F = \overline{\log Z} = \lim_{n \to 0} \frac{Z^n - 1}{n}$$

24 / 36

 \implies effective action with interacting replica : A,B

$$\begin{split} \Gamma[\mathbf{r}] &= \int \! \mathrm{d}^d x \sum_A \! \left\{ \frac{\overline{\kappa}}{2} (\Delta \mathbf{r}^A)^2 + \overline{\lambda} \! \left(\partial_a \mathbf{r}^A . \partial_b \mathbf{r}^A - \delta_{ab} \right)^2 \! + \overline{\mu} \! \left(\partial_a \mathbf{r}^A . \partial_a \mathbf{r}^A - \delta_{aa} \right)^2 \right\} \\ &- \frac{\overline{\Delta}_\kappa}{2} \sum_{A,B} \! \Delta \mathbf{r}^A . \Delta \mathbf{r}^B \\ &- \overline{\Delta}_\lambda \sum_{A,B} \! \left(\partial_a \mathbf{r}^A . \partial_b \mathbf{r}^A - \delta_{ab} \right) \! \left(\partial_a \mathbf{r}^B . \partial_b \mathbf{r}^B - \delta_{ab} \right) \\ &- \overline{\Delta}_\mu \sum_{A,B} \! \left(\partial_a \mathbf{r}^A . \partial_a \mathbf{r}^A - \delta_{aa} \right) \! \left(\partial_b \mathbf{r}^B . \partial_b \mathbf{r}^B - \delta_{bb} \right) \end{split}$$
with $\overline{\Delta}_\kappa, \overline{\Delta}_\lambda, \overline{\Delta}_\mu$ disorder variances

25 / 36

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Weak coupling approach of the flat phase

• one-loop, weak coupling, analysis in $D = 4 - \epsilon$ (Morse and Lubensky (92))

 \implies stability of the disorder-free fixed point P_4

 \implies new zero-T, disordered fixed point P_5 but unstable

イロト イボト イヨト イヨト

Weak coupling approach of the flat phase

• one-loop, weak coupling, analysis in $D = 4 - \epsilon$ (Morse and Lubensky (92))

 \implies stability of the disorder-free fixed point P_4

 \implies new zero-T, disordered fixed point P_5 but unstable

NPRG approach of the flat phase

• Functional RG approach (Coquand, Essafi, Kownacki and D.M. (17))

 \implies new *critical fixed point* P_c between P_4 and P_5

27 / 36

Three scaling behaviours associated with P_5 , P_4 and P_c observed in partially fluid polymerized membranes (S. Chaieb, V.K. Natrajan and A. A. El-rahman (06))

୬ ୯ ୯ 28 / 36

Question:

• could P_c just be an artifact of the NPRG ?

... as P_c not seen via Self-Consistent Screening Approximation (\sim 2P.I.) (Le Doussal and Radzihovsky (18))

Disordered membranes at two and three loop order

Disordered membranes at two-loop and three loop order (Metayer and Mouhanna (22))

$$S = \int d^{D}x \left\{ \frac{\widetilde{\kappa}_{AB}}{2} \Delta \mathbf{h}^{A}(\mathbf{x}) \Delta \mathbf{h}^{B}(\mathbf{x}) + \widetilde{\lambda}_{AB} g_{ab}^{A}(\mathbf{x}) g_{ab}^{B}(\mathbf{x}) + \widetilde{\mu}_{AB} g_{aa}^{A}(\mathbf{x}) g_{bb}^{B}(\mathbf{x}) \right\}$$

with: $g_{ij}^A \simeq \frac{1}{2} \left[\partial_i u_j^A + \partial_i u_j^A + \partial_i \mathbf{h}^A . \partial_j \mathbf{h}^A \right]$ and with generalized coupling constants

$$\begin{cases} \widetilde{\kappa}^{AB} &= \widetilde{\kappa} \, \delta^{AB} - \widetilde{\Delta}_{\kappa} \, J^{AB} \\ \widetilde{\mu}^{AB} &= \widetilde{\mu} \, \delta^{AB} - \widetilde{\Delta}_{\mu} \, J^{AB} \\ \widetilde{\lambda}^{AB} &= \widetilde{\lambda} \, \delta^{AB} - \widetilde{\Delta}_{\lambda} \, J^{AB} \end{cases}$$

where $J^{AB} \equiv 1 \ \forall A, B$.

Disordered membranes at two and three loop order

- a fixed point P_c of order ϵ^2 found !
- Very proximity between three-loop and NPRG !

$$\eta_{3L} = 0.42857 \epsilon - 0.03695 \epsilon^2 - 0.01191 \epsilon^3$$

$$\eta_{NPRG re-expanded} = 0.42857 \epsilon - 0.03621 \epsilon^2 - 0.01318 \epsilon^3$$

- a rapidly converging exponent η_c : in D = 2 (*i.e.* $\epsilon=2$) and d = 3:
- $-1L: \eta_c = 0.8571$
- -2L: $\eta_c = 0.7093$
- $-3L: \eta_c = 0.6140$

to be compared to NPRG $\eta_c=0.490$ and experiment $\eta_c=0.492$

Crumpled-to-flat transition in membranes

• Weak coupling analysis in $D = 4 - \epsilon$ at one-loop (Paczuski Kardar and Nelson (92))

 \Longrightarrow first order transitions below $d_c\simeq 218.20$

• and beyond one loop ?

 \implies limited physical interest (?)

 \implies but a challenge: to tackle with the derivative O(N)model : $\varphi \longrightarrow \partial_a \varphi$

$$F\left[\partial_{a}\mathbf{r}\right] = \int d^{D}\mathbf{x} \,\frac{\kappa}{2} \left(\partial_{a}\partial_{a}\varphi\right)^{2} + \,\lambda \left(\partial_{a}\varphi \cdot \partial_{b}\varphi\right)^{2} + \,\mu \left(\partial_{a}\varphi \cdot \partial_{a}\varphi\right)^{2}$$

rem: scalar case treated by Safari, Stergiou, Vacca and Zanusso (22)

4 A & 4

_

И

Crumpled-to-flat transition in membranes

4-point vertex: strong momentum dependence: a nightmare

) ९ (२ ४ / 36

 Auxiliary field method ⇒ introducing D auxiliary d-components fields {A_i}, i = 1...D in place of the derivative fields ∂_iφ (Delzescaux, Duclut, D.M., Tissier (23))

$$Z = \int \mathcal{D}\boldsymbol{\varphi} \prod_{i=1}^{D} \mathcal{D}\boldsymbol{A}_{i} \ \delta(\boldsymbol{A}_{i} - \partial_{i}\boldsymbol{\varphi}) \ e^{-S[\{\boldsymbol{A}_{i}\}]}$$

• δ -constraint raised with D auxiliary d-components fields $\{B_{\beta}\}$:

$$Z = \int \mathcal{D}\boldsymbol{\varphi} \prod_{i,j=1}^{D} \mathcal{D}\boldsymbol{A}_{i} \mathcal{D}\boldsymbol{B}_{j} \ e^{-\boldsymbol{S}[\{\boldsymbol{A}_{i}\}]} \ e^{-i \int d^{D}x \ \boldsymbol{B}_{i} \cdot (\boldsymbol{A}_{i} - \partial_{i} \boldsymbol{\varphi})}$$

- ullet $\{m{B}_i\}$ and $\{m{\partial}_im{arphi}\}$ appear linearly \Longrightarrow no renormalization
- only the auxiliary fields {A_i} renormalize nontrivially.
- propagator of the $\{A_i\}$ -fields given by $P_{ij}^{\parallel}/p^2 + r)$

$$\begin{split} \beta_{\lambda}(\lambda,\mu) &= -\epsilon\lambda + c_1 \left((6d+7)\lambda^2 + 2(3d+17)\lambda\mu + (d+15)\mu^2 \right) \\ &- \frac{c_1^2}{6} \left((69d+52)\lambda^3 + (54d^2 - 16d+541)\lambda^2\mu \right. \\ &+ (36d^2 + 281d - 110)\lambda\mu^2 + (6d^2 + 112d - 95)\mu^3 \right) \\ \beta_{\mu}(\lambda,\mu) &= -\epsilon\mu + c_1 \left(\lambda^2 + (d+21)\mu^2 + 10\lambda\mu \right) \\ &+ \frac{c_1^2}{12} \left((96d+55)\lambda^3 + (470d+289)\lambda^2\mu \right. \\ &+ (146d+421)\lambda\mu^2 + (-212d+475)\mu^3 \right) \end{split}$$

$$\eta(\lambda,\mu) = \frac{(d+2)(\lambda+2\mu)}{3(32\pi^2)^3} \times \left((2d+3)\lambda^2 + 2(d+9)\lambda\mu + (d+19)\mu^2\right)$$

 \implies very easily: $d_c(\epsilon) = 218.20 - 448.25 \epsilon + \mathcal{O}(\epsilon^2)$

• recently extended to disordered membranes φ (Delzescaux, D.M., Tissier (23))

∙ি ৭ ে 35 / 36

Conclusion

- membranes display a very rich physics:
 - pure systems due to (hidden) long range interactions
 - disordered systems: new fixed points, new phases
 - in the flat phase \implies glassy phase in graphene ?
 - in the crumpling-to-flat transition \implies rich RG flow diagram (Delzescaux, D.M., Tissier (23))
- technically the flat phase provides a unusual situation:

- NPRG and perturbative approaches are particularly successful

 \Longrightarrow all the more striking that the theory displays scale invariance without conformal invariance

(Mauri and Katsnelson (21), Gimenez-Grau, Nakayama and Rychkov (23)

• this should be understood