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Introduction

Membranes: D-dimensional extended objects embedded in a
d-dimensional space subject to quantum and/or thermal
and/or disorder fluctuations
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Generic questions :

effects of – thermal – fluctuations ?

=⇒ phase transition ?

=⇒ ordered, flat, phase at low temperatures ?

effects of quenched disorder ?

(effects of quantum fluctuations as T → 0 ? )

=⇒ depends crucially on the nature of the membrane
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Fluid membranes vs polymerized membranes

Fluid membranes

weakly interacting molecules

free diffusion inside the membrane plane =⇒ no shear modulus
very small compressibility and elasticity =⇒ no elastic energy

=⇒ only curvature energy
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Fluid membranes

Free energy:

F =
κ

2

∫
d2σ
√
g H2

H: extrinsic curvature

κ: rigidity constant

√
g =

√
det gµν ensures reparametrization invariance

gµν = ∂µr.∂νr ≡ metric induced by the embedding r(σσσ)
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Fluctuations ?

Fluid membranes

Low temperatures: Monge parametrization
x = σ1, y = σ2 and z = h(x, y) with h height, capillary, mode

• r(x, y) = (x, y, h(x, y)) parametrizes points

• n̂(x, y) =
(−∂xh,−∂yh, 1)√

1 + (∂ih)2
• n̂(x, y). ez = cos θ(x, y) =

1√
1 + (∂ih)2
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Fluid membranes

Flat phase ? =⇒ harmonic fluctuations of θ(x, y):

〈θ(x, y)2〉 ' kBT
∫
d2q 〈∂ih(q)∂ih(−q)〉

= kBT

∫
d2q

q2

κ q4
' kBT

κ
log

(
L

a

)
−→∞

=⇒ no long range order between the normals (Mermin-Wagner)

=⇒ strong analogy with 2D-nonlinear σ model with N − 2 −→ d

2

exp. decreasing correlations: 〈Ŝ(r).Ŝ(0)〉 ∼ e−r/ξ

correlation length – mass gap: ξ ' a e2πκ/(3kBT (d/2))
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Polymerized membranes

Polymerized membranes

- chemical physics/biology: red blood cell, . . .

- condensed matter physics: graphene, phosphorene, . . .

strongly interacting molecules by V (|ri − rj|)
=⇒ bending and elastic energy contributions
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Free energy of crystalline membranes

Polymerized membranes

• Flat reference configuration: r0(x, y) = (x, y, z = 0)

• Fluctuations: r(x, y) = r0 + ux(x, y) e1 + uy(x, y) e2 + h(x, y) n̂

h ≡ height field and ui ≡ phonon fields

h(x,y)

u
u

y

z

x

x

y

r(x  )α
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Polymerized membranes

Free energy: curvature + elasticity/shear

F '
∫
d2x

[κ
2

(∆h)2 + λg2ab + µg2aa

]
gab = 1

2
[∂aub + ∂bua + ∂au.∂bu + ∂ah ∂bh]

gab ≡ stress tensor ∼ encodes fluctuations with respect to the
flat configuration r0

λ, µ: Lamé coefficients

coupling between height and phonon fluctuations

=⇒ frustration of height fluctuations:

〈θ(x, y)2 〉 ' T
(
L

a

)−η
−→ 0

=⇒ long range order between normals in D = 2 (and less) !

11 / 36



Fluid membranes and polymerized membranes
RG approaches to pure membranes

RG approaches to disordered membranes
Conclusion

Polymerized membranes

Free energy: curvature + elasticity/shear

F '
∫
d2x

[κ
2

(∆h)2 + λg2ab + µg2aa

]
gab = 1

2
[∂aub + ∂bua + ∂au.∂bu + ∂ah ∂bh]

gab ≡ stress tensor ∼ encodes fluctuations with respect to the
flat configuration r0
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Polymerized membranes

spontaneous symmetry breaking in D = 2 and even in D < 2
=⇒ crumpled-to-flat transition
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Polymerized membranes

=⇒ low-temperature, ordered, flat, phase with non-trivial
correlations in the I.R.


Ghh(q) ∼ q−(4−η)

Guu(q) ∼ q−(6−D−2η)

with η 6= 0 =⇒ associated e.g. correlations of stable membrane
(e.g. graphene monolayer)

• a big challenge: computing η associated with scaling properties
of graphene
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RG approaches to pure membranes

One-loop perturbative approach of the crumpling-to-flat transition

(Paczuski, Kardar and Nelson (89))

F [∂µr] =

∫
dDx

κ

2
(∆r)2 + λ (∂ar.∂br)2 + µ (∂ar.∂ar)2

=⇒ perturbative expansion in λ and µ

β-functions in D = 4− ε at one-loop order:

∂tλ = −ελ+ 1
8π2

((
d
3 + 65

12

)
λ2 + 6µλ+ 4

3µ
2
)

∂tµ = −εµ+ 1
8π2

((
21
16

)
λ2 + 21

2 µλ+ (4d+ 5)µ2
)

=⇒ fluctuation induced 1st order for d < dc ' 218.2 near D = 4
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One-loop perturbative approach of the flat phase

(Aronovitz, Golubović and Lubensky (88); Guitter, David, Leibler and Peliti

(89))

F '
∫
dDx

[κ
2

(∆h)2 + λg2ab + µg2aa

]
=⇒ perturbative expansion in λ and µ

β-functions in D = 4− ε at one-loop order:

∂tµ = (−ε+ 2η)µ+
dcµ

2

96π2

∂tλ = (−ε+ 2η)λ+
dc(6λ

2 + 6λµ+ µ2)

96π2

and η = 5µ(λ+µ)
(2µ+λ) =⇒ fixed point P4 with η4(ε = 2, d = 3) = 0.96

far from MC predictions: η = 0.85
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Thus two great questions:

nature of the phase transition of D = 2, d = 3, i.e. physical,
membranes ?

flat phase properties – η – of physical membranes ?

while all computations are performed near D = 4
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Non perturbative RG

=⇒ use of a non perturbative RG approach (Kownacki and D.M. (08))

Effective action Γk[∂µr] for membranes:

Γk [∂µr] =

∫
dDx

κ

2
(∆r)2 + λ (∂ar.∂br− δab)2 + µ (∂ar.∂ar− δaa)2

=⇒ Wetterich equation

=⇒ unified treatment of crumpling-to-flat transition and flat phase
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Results:

1 1.5 2 2.5 3 3.5 4
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no FLFP
no CTFP

FLFP
CTFP

FLFP
no CTFP

Dlc(d)
dcr(D)

crumpled-to-flat transition: dc(D = 2) ∼ 3 and strong
dependence with respect to the ansatz (powers of ∂r)

flat phase η = 0.85 that compares very well to Monte Carlo
η = 0.85(1) (Los, Katsnelson, Yazyev, Zakharchenko and Fasolino (09))

18 / 36



Fluid membranes and polymerized membranes
RG approaches to pure membranes

RG approaches to disordered membranes
Conclusion

Striking facts : in the flat phase (only):

no corrections at orders ϕ4 ∼ (∂r)4 !
(Essafi, Kownacki and D.M. (14))

no quantitative corrections at all orders in ∂2p !
η = 0.849 (Braghin and Hasselmann (10)) compared to η = 0.85

=⇒ extreme stability of the approach

Question: structure and properties of the perturbative theory at
higher orders in λ and µ ?
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Polymerized membranes at two and three loop order

Polymerized membranes at two-loop and three loop order

(Coquand, D.M. and Teber (20), Metayer, D.M. and Teber (22))

S[h,u] =

∫
dDx

{κ
2

(
∆h
)2

+ λ g2ab + µ g2aa

}
with the metric tensor: gij = 1

2(∂ir.∂jr− δij) given by:

gij '
1

2
[∂iuj + ∂jui + ∂ih.∂jh] .

not so simple: derivative field theory
=⇒ momentum dependent vertices
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good news: in the flat phase it is sufficient to renormalize the
propagators

height-field propagator:

Gαβh (q) =
δαβ

κq4
=

α βq

phonon-field propagator:

Giju (q) =
1

µq2
P ijT (q) +

1

(λ+ 2µ)q2
P ijL (q)

=
i jq

with P ijT (q) = δij −
qiqj
q2

and P ijL (q) =
qiqj
q2 21 / 36
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Results

36 years after Aronovitz et al.:

the non-trivial stable fixed point P4 controls the flat phase
with remarkable, rapidly decreasing, series

η3L = 0.4800 ε− 0.01152 ε2 − 0.00334 ε3

ηNPRG re-expanded = 0.4800 ε− 0.00918 ε2 − 0.00333 ε3

a rapidly converging exponent η: in D = 2 (i.e. ε=2) and
d = 3:

– 1L : η = 0.96
– 2L : η = 0.9139
– 3L : η = 0.8872
– 4L : η = 0.8760 (Pikelner (22))

to be compared to NPRG η = 0.85 *
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RG approaches to disordered membranes

Disorder in membranes: imperfect polymerization, vacancies,
impurities etc =⇒ ”defects”

isotropic defects =⇒ elastic disorder (a)

anisotropic defect =⇒ curvature disorder (b)
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Free energy:

Γ[r] =

∫
dDx

{
κ

2

(
∆r− c(x)

κ

)2

+ λ

(
∂ar.∂br− δab(1 + 2m(x))

)2

+µ

(
∂ar.∂a.r− δaa(1 + 2m(x))

)2
}

with c(x) and m(x) Gaussian random fields coupled to curvature
and metric

average over (quenched) disorder using replica trick:

F = logZ = lim
n→0

Zn − 1

n
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=⇒ effective action with interacting replica : A,B

Γ[r] =

∫
ddx
∑
A

{
κ

2

(
∆rA

)2
+ λ

(
∂ar

A.∂br
A − δab

)2

+ µ

(
∂ar

A.∂ar
A − δaa

)2
}

−∆κ

2

∑
A,B

∆rA.∆rB

−∆λ

∑
A,B

(
∂ar

A.∂br
A − δab

)(
∂ar

B .∂br
B − δab

)
−∆µ

∑
A,B

(
∂ar

A.∂ar
A − δaa

)(
∂br

B .∂br
B − δbb

)

with ∆κ,∆λ,∆µ disorder variances *
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Weak coupling approach of the flat phase

one-loop, weak coupling, analysis in D = 4− ε
(Morse and Lubensky (92))

=⇒ stability of the disorder-free fixed point P4

=⇒ new zero-T , disordered fixed point P5 but unstable

T
P   P   5 4

disorder

disappointing . . . and not expected (at least by me)
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NPRG approach of the flat phase

Functional RG approach (Coquand, Essafi, Kownacki and D.M. (17))

=⇒ new critical fixed point Pc between P4 and P5

−→ Temperature
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Three scaling behaviours associated with P5, P4 and Pc observed
in partially fluid polymerized membranes
(S. Chaieb, V.K. Natrajan and A. A. El-rahman (06))
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Question:

could Pc just be an artifact of the NPRG ?

. . . as Pc not seen via Self-Consistent Screening
Approximation (∼ 2P.I.)
(Le Doussal and Radzihovsky (18))
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Disordered membranes at two and three loop order

Disordered membranes at two-loop and three loop order

(Metayer and Mouhanna (22))

S =

∫
dDx

{
κ̃AB

2
∆hA(x)∆hB(x) + λ̃AB g

A
ab(x)gBab(x)

+µ̃AB g
A
aa(x)gBbb(x)

}
with: gAij ' 1

2

[
∂iu

A
j + ∂iu

A
j + ∂ih

A.∂jh
A
]

and with generalized

coupling constants
κ̃AB = κ̃ δAB − ∆̃κ J

AB

µ̃AB = µ̃ δAB − ∆̃µ J
AB

λ̃AB = λ̃ δAB − ∆̃λ J
AB

where JAB ≡ 1 ∀A,B. 30 / 36
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Disordered membranes at two and three loop order

a fixed point Pc of order ε2 found !

Very proximity between three-loop and NPRG !
η3L = 0.42857 ε− 0.03695 ε2 − 0.01191 ε3

ηNPRG re-expanded = 0.42857 ε− 0.03621 ε2 − 0.01318 ε3

a rapidly converging exponent ηc: in D = 2 (i.e. ε=2) and
d = 3:

– 1L : ηc = 0.8571
– 2L : ηc = 0.7093
– 3L : ηc = 0.6140
to be compared to NPRG ηc = 0.490 and experiment ηc = 0.492
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Crumpled-to-flat transition in membranes

Weak coupling analysis in D = 4− ε at one-loop
(Paczuski Kardar and Nelson (92))

=⇒ first order transitions below dc ' 218.20

and beyond one loop ?

=⇒ limited physical interest (?)

=⇒ but a challenge: to tackle with the derivative O(N)
model : ϕ −→ ∂aϕ

F [∂ar] =

∫
dDx

κ

2
(∂a∂aϕ)2 + λ (∂aϕ.∂bϕ)2 + µ (∂aϕ.∂aϕ)2

rem: scalar case treated by Safari, Stergiou,Vacca and Zanusso (22)
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Crumpled-to-flat transition in membranes

4-point vertex: strong momentum dependence: a nightmare

Wαβγθ(q) =
q1+q2=q

1

24

{
λ
[
(q1.q2)(q3.q4)δαβδγθ

+ (q1.q3)(q2.q4)δαγδβθ

+ (q1.q4)(q2.q3)δαθδβγ
]

+ µ
[(

(q1.q3)(q2.q4) + (q1.q4)(q2.q3)
)
δαβδγθ

+
(
(q1.q4)(q2.q3) + (q1.q2)(q3.q4)

)
δαγδβθ

+
(
(q1.q2)(q3.q4) + (q1.q3)(q2.q4)

)
δαθδβγ

]}

=

α

β γ

θq1

q2

q3

q4 33 / 36
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Auxiliary field method =⇒ introducing D auxiliary
d-components fields {Ai}, i = 1 . . . D in place of the
derivative fields ∂iϕ (Delzescaux, Duclut, D.M., Tissier (23))

Z =

∫
Dϕ

D∏
i=1

DAi δ(Ai − ∂iϕ) e−S[{Ai}] .

δ-constraint raised with D auxiliary d-components fields
{Bβ}:

Z =

∫
Dϕ

D∏
i,j=1

DAiDBj e
−S[{Ai}] e

−i
∫
dDxBi.(Ai − ∂iϕ)

{Bi} and {∂iϕ} appear linearly =⇒ no renormalization

only the auxiliary fields {Ai} renormalize nontrivially.

propagator of the {Ai}-fields given by P
‖
ij/p

2 + r)
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βλ(λ, µ) = −ελ+ c1
(
(6d+ 7)λ2 + 2(3d+ 17)λµ+ (d+ 15)µ2)

− c21
6

(
(69d+ 52)λ3 + (54d2 − 16d+ 541)λ2µ

+ (36d2 + 281d− 110)λµ2 + (6d2 + 112d− 95)µ3)
βµ(λ, µ) = −εµ+ c1

(
λ2 + (d+ 21)µ2 + 10λµ

)
+
c21
12

(
(96d+ 55)λ3 + (470d+ 289)λ2µ

+ (146d+ 421)λµ2 + (−212d+ 475)µ3)
η(λ, µ) =

(d+ 2)(λ+ 2µ)

3(32π2)3
×
(
(2d+ 3)λ2 + 2(d+ 9)λµ+ (d+ 19)µ2)

=⇒ very easily: dc(ε) = 218.20− 448.25 ε+O(ε2)

recently extended to disordered membranes
ϕ (Delzescaux, D.M., Tissier (23))
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Conclusion

membranes display a very rich physics:

– pure systems due to (hidden) long range interactions

– disordered systems: new fixed points, new phases

• in the flat phase =⇒ glassy phase in graphene ?
• in the crumpling-to-flat transition =⇒ rich RG flow diagram
(Delzescaux, D.M., Tissier (23))

technically the flat phase provides a unusual situation:

– NPRG and perturbative approaches are particularly
successful
=⇒ all the more striking that the theory displays scale
invariance without conformal invariance
(Mauri and Katsnelson (21), Gimenez-Grau, Nakayama and Rychkov (23)

this should be understood
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