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Introduction

@ Membranes: D-dimensional extended objects embedded in a
d-dimensional space subject to quantum and/or thermal
and/or disorder fluctuations
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Generic questions :

o effects of — thermal — fluctuations ?
— phase transition ?

= ordered, flat, phase at low temperatures ?

o effects of quenched disorder ?

o (effects of quantum fluctuations as 7' — 0 7 )

= depends crucially on the nature of the membrane J
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Fluid membranes and polymerized membranes

Fluid membranes vs polymerized membranes

Fluid membranes

@ weakly interacting molecules
o free diffusion inside the membrane plane = no shear modulus

e very small compressibility and elasticity = no elastic energy

= only curvature energy




Fluid membranes and polymerized membranes

Fluid membranes

Free energy:
F= g / d2o /g H?
@ [: extrinsic curvature
@ r: rigidity constant
@ /g = +/det g, ensures reparametrization invariance

® gy = 0,r.0,xr = metric induced by the embedding r(o)
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Fluid membranes and polymerized membranes

Fluctuations 7

Fluid membranes

@ Low temperatures: Monge parametrization
x =01, y =09 and z = h(x,y) with h height, capillary, mode

o r(z,y) = (z,y, h(z,y)) parametrizes points

(=0:h, —8yh, 1) e fi(z,y). e, = cosO(z,y) = 1

o ii(z,y) = 1+ (9:h)2 m
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Fluid membranes and polymerized membranes

Fluid membranes
e Flat phase ? = harmonic fluctuations of 0(z,y):

0(z,9)2) =~ kT / d2q (Oih(@)dih(~q))

2
:k;BT/d2 q4_kBT1 <L>—>oo

Kq K a

= no long range order between the normals (Mermin-Wagner)

—> strong analogy with 2D-nonlinear ¢ model with N — 2 — 3

e exp. decreasing correlations:  (S(r).S(0)) ~ e /¢
27k /(3kpT(d/2))

@ correlation length — mass gap: E~ace
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Fluid membranes and polymerized membranes

Polymerized membranes

Polymerized membranes

- chemical physics/biology: red blood cell, ...

- condensed matter physics: graphene, phosphorene, ...

@ strongly interacting molecules by V(|r; —r;j|)

—> bending and elastic energy contributions
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Fluid membranes and polymerized membranes

Free energy of crystalline membranes

Polymerized membranes

e Flat reference configuration: ro(z,y) = (z,y,z = 0)
e Fluctuations: r(z,y) =rg+ u.(z,y) €1 + uy(x,y) €2 + h(z,y) 0

h = height field and u; = phonon fields
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Fluid membranes and polymerized membranes

Polymerized membranes
@ Free energy: curvature + elasticity/shear

P [ [5A02 4, + ]

Gab = 5 [Oats + Obta + Dau.0pu + dah Osh]

stress tensor ~ encodes fluctuations with respect to the
flat configuration rq

Jab =

A, 2 Lamé coefficients )
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Fluid membranes and polymerized membranes

Polymerized membranes
@ Free energy: curvature + elasticity/shear

F~ / x| S(AR)? +Ag2, + g,

GJab = % [aaub T abua, i 6a,u~8bu F aah 8bh]

stress tensor ~ encodes fluctuations with respect to the
flat configuration rq

Jab =

A, 2 Lamé coefficients

@ coupling between height and phonon fluctuations

= frustration of height fluctuations:

O(z,y)2 ) ~ T <§> R

= long range order between normals in D = 2 (and less) ! b




Fluid membranes and polymerized membranes

Polymerized membranes

@ spontaneous symmetry breaking in D = 2 and even in D < 2
— crumpled-to-flat transition

\o/

<0 s <i>=£0
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Fluid membranes and polymerized membranes

Polymerized membranes

—> |low-temperature, ordered, flat, phase with non-trivial
correlations in the |.R.

Ghn(q) ~ g~ (4=

Guu(q) ~ q—(G—D—277)

with 7 # 0 = associated e.g. correlations of stable membrane

(e.g. graphene monolayer)

e a big challenge: computing 7 associated with scaling properties
of graphene
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RG approaches to pure membranes

RG approaches to pure membranes

One-loop perturbative approach of the crumpling-to-flat transition
(Paczuski, Kardar and Nelson (89))

FO,r] = /de g(Ar)2 + A (Oar.0r)? + 1 (dyr.0,r)?

— perturbative expansion in A and u

[B-functions in D = 4 — ¢ at one-loop order:

A = —ex+ g (($+8) X2+ 6pr+ 34°)

O = —ep+ g ((B) 3 + Fur + (4d + 5)p2)

— fluctuation induced 1% order for d < d,. ~ 218.2 near D = 4
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RG approaches to pure membranes

One-loop perturbative approach of the flat phase
(Aronovitz, Golubovi¢ and Lubensky (88); Guitter, David, Leibler and Peliti

(89))
D K 2 2 2
F~ /d x b(Ah) + g2+ 1G2s

—> perturbative expansion in A and u

B-functions in D = 4 — ¢ at one-loop order:

dc,u2
O = (met+2np+ g

d.(6)% + 6 2
O = (—etomrt LN FOF L)

9672

and 5 = 350H) —; fixed point Py with 7(e = 2,d = 3) = 0.96

far from MC predictions: 1 = 0.85




RG approaches to pure membranes

Thus two great questions:

@ nature of the phase transition of D = 2,d = 3, i.e. physical,
membranes ?

o flat phase properties — 17 — of physical membranes ?

while all computations are performed near D = 4
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RG approaches to pure membranes

Non perturbative RG

= use of a non perturbative RG approach (Kownacki and D.M. (08))

e Effective action I';[0,r] for membranes:

Ty [B,1] = /de & (A0 4 A (@ar-or — 0u0)® + 1 (0ur-Bar — bua)’

= Wetterich equation

— unified treatment of crumpling-to-flat transition and flat phase
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RG approaches to pure membranes

Results:

15 1
10

no FLFP
no CTFP

FLFP
no CTFP

@ crumpled-to-flat transition: d.(D = 2) ~ 3 and strong
dependence with respect to the ansatz (powers of Or)

o flat phase n = 0.85 that compares very well to Monte Carlo
7 = 0.85(1) (Los, Katsnelson, Yazyev, Zakharchenko and Fasolino (09)) o /36




RG approaches to pure membranes

Striking facts : in the flat phase (only):

@ no corrections at orders p* ~ (9r)* !
(Essafi, Kownacki and D.M. (14))

@ no quantitative corrections at all orders in 9% |
1 = 0.849 (Braghin and Hasselmann (10)) compared to 1 = 0.85

—> extreme stability of the approach

Question: structure and properties of the perturbative theory at
higher orders in A and p ?
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RG approaches to pure membranes

Polymerized membranes at two and three loop order

Polymerized membranes at two-loop and three loop order
(Coquand, D.M. and Teber (20), Metayer, D.M. and Teber (22))

Slh,u] = /dDw {S(Ah)2 + gy + ugﬁa}
with the metric tensor: g;; = %(81-1'.8]-1' — 0j;) given by:

1
gij =~ 5 [@uj + Gjui + 8Zh8jh] .

@ not so simple: derivative field theory
=—> momentum dependent vertices
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RG approaches to pure membranes

good news: in the flat phase it is sufficient to renormalize the
propagators

height-field propagator:

6055 (0} q B
af
Gy (q) = pr i

phonon-field propagator:

1 1

u(Q) ‘uq2 T(Q) (A—&—Qu)qz L(Q)
7 q J
= ANANN

with Pyl (q) = 6;j - % and P7/(q) = q;Qj
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RG approaches to pure membranes

Results
36 years after Aronovitz et al.:

@ the non-trivial stable fixed point P, controls the flat phase
with remarkable, rapidly decreasing, series

N3, = 0.4800€ — 0.01152 €2 — 0.00334 €3

TINPRG re-expanded = 0.4800 € — 0.00918 2 — 0.00333 €

@ a rapidly converging exponent n: in D = 2 (i.e. €e=2) and

d=3:
—-1L:n=0.96
-2L:1n=0.9139
—3L:n=0.8872
— 4L : n = 0.8760 (Pikelner (22))
to be compared to NPRG 7 = 0.85 *

22/36



RG approaches to disordered membranes

RG approaches to disordered membranes

Disorder in membranes: imperfect polymerization, vacancies,
impurities etc = " defects”

@ isotropic defects = elastic disorder (a)

@ anisotropic defect = curvature disorder (b)

s, 0 5 g Kee

(@)

mﬂmﬂ%ﬂ
(b) PR L8




RG approaches to disordered membranes

Free energy:

Ilr] = /de {’;(m - C(:)f - A(@ar.abr — bap(1+2 m(x))>2

+ M(aar.aa.r ~daa(l+ zm(x))> 2}

with c(x) and m(x) Gaussian random fields coupled to curvature
and metric

@ average over (quenched) disorder using replica trick:

— zZ" -1
F =log Z = lim
n—0 n
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RG approaches to disordered membranes

— effective action with interacting replica : A,B

2 2
[[r] = /dde{ 24 >\<8 .o — 5ab) 4 ﬁ((’)arA.aarA = 5aa) }
A,B
A (aar Bpr™ — 5ab) (8arB.8er - 5ab)
A,B
—A> ((%rA.aarA - 5aa> <abr3.abr3 - 5bb)
A,B

*

M‘D\

with A, Ay, A, disorder variances
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RG approaches to disordered membranes

Weak coupling approach of the flat phase

@ one-loop, weak coupling, analysis in D =4 — ¢
(Morse and Lubensky (92))

— stability of the disorder-free fixed point P,
—> new zero-1', disordered fixed point P; but unstable

R P
disorder o o

N,
»~ e N
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RG approaches to disordered membranes

Weak coupling approach of the flat phase

@ one-loop, weak coupling, analysis in D =4 — ¢
(Morse and Lubensky (92))

— stability of the disorder-free fixed point P,
—> new zero-1', disordered fixed point P; but unstable

R P

disorder . > < T
e disappointing ... and not expected (at least by me) J
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RG approaches to disordered membranes

NPRG approach of the flat phase

@ Functional RG approach (Coquand, Essafi, Kownacki and D.M. (17))

= new critical fixed point P, between P, and P;

— Temperature

w
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RG approaches to disordered membranes

Three scaling behaviours associated with P5, P, and P, observed
in partially fluid polymerized membranes
(S. Chaieb, V.K. Natrajan and A. A. El-rahman (06))

1017 Y
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RG approaches to disordered membranes

Question:

@ could P, just be an artifact of the NPRG ?

. as P. not seen via Self-Consistent Screening
Approximation (~ 2P.l.)
(Le Doussal and Radzihovsky (18))
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RG approaches to disordered membranes

Disordered membranes at two and three loop order

Disordered membranes at two-loop and three loop order
(Metayer and Mouhanna (22))

S = /de {H‘;BAhA(x)AhB(X) + XAB gfb(x)gﬁ)(X)

. gﬁa<x>g£,<x>}

with: gﬁ = % [aiuj‘ + &iuf + aihA.ajhA} and with generalized

coupling constants

ELIGRN ), U %n JAB
ﬁAB — ,L~L5AB o A” JAB

\AB )\ §AB _ g)\ JAB

where JAB =1 VA,B. 30 /36



RG approaches to disordered membranes

Disordered membranes at two and three loop order
e a fixed point P, of order €? found !

@ Very proximity between three-loop and NPRG !

n3r, = 0.42857 ¢ — 0.03695 €2 — 0.01191 ¢*

TINPRG re-expanded = 0.42857 ¢ — 0.03621 €2 — 0.01318 €3

@ a rapidly converging exponent 7.: in D = 2 (i.e. ¢e=2) and
d=3:
- 1L : n. = 0.8571
- 2L : n. =0.7093
- 3L : n.=0.6140
to be compared to NPRG 7. = 0.490 and experiment 7. = 0.492 )
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RG approaches to disordered membranes

Crumpled-to-flat transition in membranes

@ Weak coupling analysis in D = 4 — ¢ at one-loop
(Paczuski Kardar and Nelson (92))

— first order transitions below d. ~ 218.20

@ and beyond one loop 7
— limited physical interest (?)

= but a challenge: to tackle with the derivative O(V)
model : ¢ — O,

F[8,1] = / 4Px & (0uda) + A @up 000) + 1 (P D)

rem: scalar case treated by Safari, Stergiou,Vacca and Zanusso (22)

32/36



RG approaches to disordered membranes

Crumpled-to-flat transition in membranes

4-point vertex: strong momentum dependence: a nightmare

1

Wa, = —
p70(9) q1+92=q 24

{)\ [(QI -92)(¢3-94)00p0~0

+ (q1-93)(92-94)dardp0
+(q1'q4)(Qqu3)5a66B7:|

+ 1] ((92-95)(2.04) + (41.04)(@2:03)) 5060
+ ((91-94)(g2-93) + (q1-92)(g3-94)) dar Fp0

+ (@) @00 + (@109 (020)) 035,

q1 Q30

33/36



RG approaches to disordered membranes

@ Auxiliary field method = introducing D auxiliary
d-components fields {A;}, i = 1...D in place of the
derivative fields 0;¢ (Delzescaux, Duclut, D.M., Tissier (23))

D

@ J-constraint raised with D auxiliary d-components fields
{Bg}:

D o —i/deB-.(A- — 0ip)
Z:/'DQQH DA DB; ¢S4l ¢ R
=1
@ {B;} and {9;¢} appear linearly = no renormalization
@ only the auxiliary fields {A;} renormalize nontrivially.

@ propagator of the { A, }-fields given by Pili./p2 +r)
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RG approaches to disordered membranes

B\ 1) = —eX + 1 ((6d + T)A? +2(3d + 17) A\ + (d + 15)1°)
2

- % ((69d + 52)X° + (54d® — 16d + 541)\%p

+ (36d* + 281d — 110)A\u® + (6d° + 112d — 95).°)

Bu(\ 1) = —ep +c1 (A + (d + 21)p® + 10Ap)
2
+ % ((96d + 55)A% + (470d + 289)A%u

+ (146d + 421)Ap® + (—212d + 475)u*)

(d+2)(A+2u)

n(\, p) = sEant)y ((2d + 3)A* + 2(d + 9) A + (d + 19)p?)

—> very easily: d.(e) = 218.20 — 448.25 ¢ + O(€?)

@ recently extended to disordered membranes
@ (Delzescaux, D.M., Tissier (23))

V
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Conclusion

Conclusion

@ membranes display a very rich physics:
— pure systems due to (hidden) long range interactions
— disordered systems: new fixed points, new phases

e in the flat phase = glassy phase in graphene ?
e in the crumpling-to-flat transition = rich RG flow diagram
(Delzescaux, D.M., Tissier (23))

@ technically the flat phase provides a unusual situation:

— NPRG and perturbative approaches are particularly
successful

— all the more striking that the theory displays scale
invariance without conformal invariance

(Mauri and Katsnelson (21), Gimenez-Grau, Nakayama and Rychkov (23)

@ this should be understood o /36
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