# Generalized Hertz action for quantum criticality in Fermi systems

Paweł Jakubczyk

University of Warsaw

Work together with:

Hiroyuki Yamase (NIMS Tsukuba)

Mateusz Homenda

(Univ. Warsaw)



e

Phys. Rev. B 110, L121102 (2024)

### Quantum criticality in clean electronic systems



At T > 0 critical singularities controlled by the classical (Wilson-Fisher) F-P

What is the correct low-energy action to describe the QCP ?

Hertz - Millis theory (1976, 1993)

### The problem with H-M:



# The problem with H-M (ctd):



soft (fermionic) modes

Landau damping generated from fermions at the FS

Necessity of keeping fermions well recognized in literature

<u>Result of H-M:</u> in effective dimensionality D=d+z, z=3.

Still many interesting and important predictions!

## Earlier work on coupled f-b flows



(Lee, Mandal, Metlitski, Mross, Sachdev, Holder, Metzner, Drukier, Kopietz,

Fitzpatrick, Raghu ... )

Typically use the H-M propagator to compute loop integrals

Wilsonian RG  $\implies$ Conventional Landau damping  $\underline{cannot}$  appear<br/>until all fermions become integrated out completely.What replaced it at finite scales?

Present focus:

Set up RG where the Bose propagator involves only contributions from integrating out high energy fermions. Integrate out fermions and bosons "in parallel".

Use Wetterich framework.

$$\mathcal{Z} = \int \mathcal{D}[\bar{\psi}, \psi, \phi] e^{-\mathcal{S}_{fb}[\bar{\psi}, \psi, \phi]}$$

Cutoff scale(s):



H-M: spirit:  $\Lambda_F \to 0$  first, and only then  $\Lambda \to 0$  Alternative:  $\Lambda_F = \Lambda$   $\Lambda_F = (\Lambda - \Lambda_0)\theta(\Lambda - \Lambda_0)$   $\Lambda_0 > 0$  (fermions and bosons integrated out "in parallel")

Coupled flows of Fermi and Bose propagators



#### Boson propagator flow:



Present truncation:

Disregard the fermion self-energy and all the generated interaction vertices involving fermions; neglect Yukawa flow.

Fully encompasses H-M ( for  $\Lambda_F \to 0$  taken first ), but also allows to take  $\Lambda_F = \Lambda$ .



 $B(\vec{q}, q_0, \Lambda_F)$  has minimum at  $(q_0, |\vec{q}|) = (0, \Lambda_F)$ Ordering wavevector flows.



Bosonic NPRG ctd:

z=2 at odds with "broadly expected" value z=3

( Here recovered by a questionable procedure in the H-M spirit )  $\Lambda_0>0$ 

z = 2 seen in QMC simulations of fermionic QCPs with  $\vec{Q} = 0$ Shattner *et al* PRX **6**, 031028 (2016) Liu *et al* PRB **105**, L041111 (2022) (Here obtained by the procedure of integrating out fermions and bosons in parallel )  $\Lambda_0 = 0$ i.e.  $\Lambda_F = \Lambda$  Further work, in progress:

see poster of Mateusz

- fermion self-energy
- boson vertex
- Yukawa flow
- finite T

