Generalized Hertz action for quantum criticality in Fermi systems

Paweł Jakubczyk

University of Warsaw

(Univ. Warsaw) Work together with:

Hiroyuki Yamase (NIMS Tsukuba)

Mateusz Homenda

Phys. Rev. B **110**, L121102 (2024)

Quantum criticality in clean electronic systems

At *T >* 0 critical singularities controlled by the classical (Wilson-Fisher) F-P

What is the correct low-energy action to describe the QCP ?

Hertz - Millis theory (1976, 1993)

$$
\mathcal{Z} = \int \mathcal{D}[\bar{\psi}, \psi] e^{-S_{mic}[\bar{\psi}, \psi]}
$$
\nknown dominant instability - order parameter ϕ

\nHubbard - Stratonovich transformation

\n
$$
\mathcal{Z} = \int \mathcal{D}[\bar{\psi}, \psi, \phi] e^{-S_{fb}[\bar{\psi}, \psi, \phi]}
$$
\n(decoupled fermionic interactions)

\nintegrate fermions out

\n
$$
\mathcal{Z} = \int \mathcal{D}\phi e^{-S_b[\phi]}
$$
\n(The problematic point !)

\nattempt an expansion of $S_b[\phi]$ in powers of ϕ

\nand expansion of vertices in q $q := (q_0, \vec{q})$

\n
$$
S_b[\phi] \longrightarrow S_H[\phi]
$$
\n(Hertz action)

The problem with H-M: The problem with LL M. nie propieni willi privi.

The problem with H-M (ctd): $\sum_{n=1}^{\infty}$ self-interaction with $\prod_{n=1}^{\infty}$ $\prod_{n=1}^{\infty}$ (at d). <u>TIIC PIUDICIII WILI</u>

‡Contact author: yamase.hiroyuki@nims.go.jp

 $he\ FS$ Landau damping generated from fermions at the FS

Necessity of keeping fermions well recognized in literature

ory of quantum criticality in Fermi systems featuring *Q*

 \sim in affective dimensionality $D-d+z$ $z-3$ Result of H-M: QCP governed by a classical-like F-P in effective dimensionality *D=d+z*, *z=3*.

Still many interesting and important predictions!

Earlier work on coupled f-b flows

(*Lee, Mandal, Metlitski, Mross, Sachdev, Holder, Metzner, Drukier, Kopietz,*

Fitzpatrick, Raghu …)

Typically use the H-M propagator to compute loop integrals

Wilsonian RG \Longrightarrow Conventional Landau damping <u>cannot</u> appear
until all fermions become integrated out compl until all fermions become integrated out completely. What replaced it at finite scales?

Present focus:

Set up RG where the Bose propagator involves only contributions from integrating out high energy fermions. Integrate out fermions and bosons "in parallel".

Use Wetterich framework.

$$
\mathcal{Z}=\int \mathcal{D}[\bar{\psi},\psi,\phi] e^{-\mathcal{S}_{fb}[\bar{\psi},\psi,\phi]}
$$

Cutoff scale(s):

FIG. 2. A schematic plot of the regularized dispersion ξ*^k* $\mathbf{F} = \mathbf{F} \cdot \mathbf{F$ and only then $\Lambda \rightarrow \Lambda$ | Alt and only then 11 7 Fermi level $\frac{1}{\sqrt{6}}$ $\Lambda_F = (\Lambda - \Lambda_0) \theta (\Lambda - \Lambda_0) \quad \Lambda_0 > 0$ taking r native: $\mathsf{\Lambda}_{F} = \mathsf{\Lambda}_{F}$ $\bm{\lambda}$ lternative: $\Lambda_F = \Lambda$ $\frac{1}{2}$ are derived to derive the dropped terms are $\frac{1}{2}$ (fermions and bosons $rated$ out "in parallel") structure of *^B*(*q*⃗*, ^q*0*,* "*^F*), we emphasize that (i) for "*^F* [→] ⁰ H-M: spirit: $\Lambda_F\rightarrow 0$ first, and only then $\Lambda\rightarrow 0$ integrated out "in parallel")

Coupled flows of Fermi and Bose propagators with "⁰ *>* 0, such that "*^F* becomes zero at positive ". In it recovers, via *B>*, the standard Landau damping term of the Hertz action and (ii) it takes minimum at (*q*0*,* [|]*q*⃗|) ⁼ (0*,* "*^F*), yator o

Boson propagator flow:

Present truncation: <u>i Toschit trundation.</u>

 Γ Dierogard the formion Disregard the fermion self-energy and all the generated interaction random field Ising model [32], discovery of nonperturbative multicritical RG fixed points for the *O*(*N*) models in *d* = 3 ne: nogloet Vulcawa flow vertices involving fermions; neglect Yukawa flow.

the coupled fermionic ({ψ¯*,* ^ψ}) and bosonic (φ) fluctuating fields out of the partition function via a renormalization group flows. The central objects in the scale of the scale of the scale scale is the scale of the scale of the scale $\mathbf{H} \cap \mathbf{k} \cap \Lambda$ \mathbf{A} \math take $\Lambda_F = \Lambda.$ $f \circ f$ \wedge + \wedge + \wedge (*k*) + \wedge + \wedge $\binom{10111}{1}$ $\binom{6}{1001101111000}$ Fully encompasses H-M (for $\Lambda_F \to 0$ taken first), but also allows to

 \vec{a} $\frac{1}{20}$, $\frac{1$ $\frac{1}{2}$ \mathbf{L} $g_0, [\dot{q}]$ in $f \equiv (0, \Lambda_F)$ $\mathbf{I}^{\mathbf{0}}$ field with the field with \mathbf{I} . integrating the fermions out via the contribution to the flow Λ_F) Ordering wavevector flows $\frac{1}{6}$ *q*0 \overline{a} are essential for the present Letter. Equation (13) for the present α FIG. 2. A schematic plot of the regularized dispersion ξ*^k* $\overline{ }$). Including the regulator introduces a deformation of the disat $(q_0, |\vec{q}|) = (0, \Lambda_F)$ \mathbf{S} integrating over the cutoff scale according to \mathbf{S} scale according to \mathbf{S} $\mathbb{E}_{\mathbf{1}}$. Eq. (11). Equation (14) results for evaluating Eq. (11) for evaluating Eq. (10) for evaluating Eq. (10) for d *d* vevector flows. $B(\vec{q})$ $B(\vec{q}, q_0, \Lambda_F)$ has minimum at $(q_0, |\vec{q}|) = (0, \Lambda_F)$ α **b**
 α ⁺ Ordering wavevector flows. cutoff scale and falls at |*Q* g_0 $|\vec{a}|$) = $(0 \Lambda_F)$

 \overline{a}

Bosonic NPRG ctd:

 $z = 2$ at odds with "broadly expected" value $z = 3$

(Here recovered by a questionable procedure in the H-M spirit) $\Lambda_0 > 0$

 $z=2$ $\,$ seen in QMC simulations of fermionic QCPs with $\,\vec{Q}=0\,$

Shattner *et al* PRX **6**, 031028 (2016) Liu *et al* PRB **105**, L041111 (2022)

(Here obtained by the procedure of integrating out fermions and bosons in parallel) $\Lambda_0 = 0$
i.e. $\Lambda_F = \Lambda$ Further work, in progress:

see poster of Mateusz

- *fermion self-energy*
- boson vertex
- Yukawa flow
- finite *^T*

