Order of the $SU(N_f) \times SU(N_f)$ chiral transition

Gergely Fejős

Eötvös University Budapest Institute of Physics and Astronomy

12th International Conference on the Exact Renormalisation Group 2024 Les Diablerets

25 September, 2024

GF and T. Hatsuda, Phys. Rev. D110, 016021 (2024) GF, Phys. Rev. D105, L071506 (2022)

Introduction

- Chiral phase transition at the physical point: crossover
- Quark mass dependence? Chiral limit? 1st order or 2nd order?
- QCD Lagrangian without quark masses:

$$\mathcal{L} = -rac{1}{4}G^{a}_{\mu
u}G^{\mu
u a} + ar{q}_{i}ig(i\gamma^{\mu}(D_{\mu})_{ij}ig)q_{j}$$

 \longrightarrow *SU*(3) gauge symmetry

- \rightarrow exact $U_L(N_f) \times U_R(N_f)$ chiral symmetry
- \rightarrow anomalous breaking of $U_A(1)$ axial symmetry
- Low temperature: spontaneous breaking $SU_L(N_f) \times SU_R(N_f) \longrightarrow SU_V(N_f)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

- Chiral phase transition at the physical point: crossover
- Quark mass dependence? Chiral limit? 1st order or 2nd order?
- QCD Lagrangian without quark masses:

$$\mathcal{L} = -rac{1}{4}G^a_{\mu
u}G^{\mu
u a} + ar{q}_iig(i\gamma^\mu(D_\mu)_{ij}ig)q_j$$

 \longrightarrow *SU*(3) gauge symmetry

- \longrightarrow exact $U_L(N_f) \times U_R(N_f)$ chiral symmetry
- \rightarrow anomalous breaking of $U_A(1)$ axial symmetry
- Low temperature: spontaneous breaking $SU_L(N_f) \times SU_R(N_f) \longrightarrow SU_V(N_f)$
- Ginzburg-Landau paradigm for second order (or weakly first order) transitions:

i.) there exists a local order parameter Φ near the transition ii.) the (UV) free energy can be expanded in terms of Φ iii.) structure of the free energy \longleftrightarrow symmetries

- GL theory for the chiral transition:
 - \longrightarrow Hubbard-Stratonovich transformation: $(\Phi)_{ij} \leftrightarrow \bar{q}^i_L q^j_R$
 - \longrightarrow integrate out quarks and gluons
 - \longrightarrow perform dimensional reduction at finite ${\cal T}$
- Chiral transformation: $\Phi \rightarrow L \Phi R^{\dagger}$
- The most general free energy functional (no anomaly):

$$\begin{split} \Gamma &= \int d^3 x \Big[m^2 \operatorname{Tr} \left(\Phi^{\dagger} \Phi \right) + g_1 \big(\operatorname{Tr} \left(\Phi^{\dagger} \Phi \right) \big)^2 + g_2 \operatorname{Tr} \left(\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right) + \dots \\ &+ \operatorname{Tr} \left(\partial_i \Phi^{\dagger} \partial_i \Phi \right) + \dots \Big] \end{split}$$

 \longrightarrow $U_{\mathcal{A}}(1)$ anomaly included via: $a(\det \Phi^{\dagger} + \det \Phi)$

- 2nd order transitions \leftrightarrow scale invariance (RG fixed point)
- Can the system show scaling behavior?
 - \longrightarrow Is there an RG fixed point with one relevant direction?

- 同下 - 三下 - 三下

• Pisarski & Wilczek analysis of the Ginzburg–Landau theory¹:

 \rightarrow one-loop calculation of the β functions (no anomaly)

 \rightarrow counterterms for g_1 , g_2 :

• Results (ϵ -expansion, $\epsilon = 4 - d$):

$$\begin{aligned} \beta_{g_1} &= -\epsilon g_1 + \frac{N_f^2 + 4}{4\pi^2} g_1^2 + \frac{N_f}{\pi^2} g_1 g_2 + \frac{3g_2^2}{4\pi^2} \\ \beta_{g_2} &= -\epsilon g_2 + \frac{3}{2\pi^2} g_1 g_2 + \frac{N_f}{2\pi^2} g_2^2 \end{aligned}$$

- No infrared stable fixed point at T_C if $N_f > \sqrt{3}$ \implies 2nd order transition cannot occur!
- Inclusion of the anomaly: the transition might be 2nd order for $N_f = 2$ [O(4) exponents]

¹R. D. Pisarski and F. Wilczek, Phys. Rev. D**29**, 338 (1984)

Gergely Fejős Order of the $SU(N_f) \times SU(N_f)$ chiral transition

Columbia plot:

Gergely Fejős

Order of the $SU(N_f) \times SU(N_f)$ chiral transition

Columbia plot:

• F. Cuteri, O. Philipsen, and A. Sciarra, JHEP 11, 141 (2021)

 \rightarrow chiral transition is second order for all N_f up to the conformal window $N_f = 2$

- ³Y. Zhang et al., arXiv:2401.05066
- ⁴J. Bernhardt and C.-S. Fischer, Phys. Rev. D108,114018 (2023)
- ⁵S. R. Kousvos and A. Stergiou, SciPost Phys. **15**, 075 (2023) \equiv \mapsto \equiv \Rightarrow \equiv

Gergely Fejős Order of the $SU(N_f) \times SU(N_f)$ chiral transition

²L. Dini et al., Phys. Rev. D105, 034510 (2022)

• F. Cuteri, O. Philipsen, and A. Sciarra, JHEP 11, 141 (2021)

 \rightarrow chiral transition is second order for all N_f up to the conformal window $N_{f=2}$

- Lattice QCD result with highly improved staggered fermions²
- Lattice QCD with Mobius domain wall fermions³
- Dyson-Schwinger approach⁴
- Conformal bootstrap approach⁵

Where is the corresponding IR fixed point?

- ²L. Dini et al., Phys. Rev. D105, 034510 (2022)
- ³Y. Zhang et al., arXiv:2401.05066
- ⁴J. Bernhardt and C.-S. Fischer, Phys. Rev. D108,114018 (2023)
- ⁵S. R. Kousvos and A. Stergiou, SciPost Phys. **15**, 075 (2023) $\Rightarrow \forall \exists b \in \exists b \in B$

Gergely Fejős Order of the $SU(N_f) \times SU(N_f)$ chiral transition

- Potential problems with the Pisarski & Wilczek analysis:
 - \longrightarrow it uses the field theoretical RG
 - (β functions from UV divergences \Rightarrow massless)
 - \rightarrow number of (perturbatively) relevant operators are restricted at $d \approx 4$
- d = 4: operators up to $\mathcal{O}(\phi^4)$ are not irrelevant
- d = 3: operators up to $\mathcal{O}(\phi^6)$ are not irrelevant

 \longrightarrow $SU(N_f) \times SU(N_f)$ symmetry allows a richer structure of the free energy in d = 3

- Results of the ϵ expansion at LO are insensitive to the introduction of higher order terms
 - \rightarrow an inherently d = 3 approach is important
 - \rightarrow functional renormalization group (FRG)

Functional Renormalization Group

• Local potential approximation (LPA):

$$\Gamma_{k}[\Phi] = \int_{x} \left(\frac{1}{2} \operatorname{Tr} \left[\partial_{i} \Phi^{\dagger} \partial_{i} \Phi \right] + V_{k}(\Phi) \right)$$

- How to build up the most general potential for N_f flavors? \longrightarrow for d = 3 we need $\mathcal{O}(\phi^6)$!
- Independent chiral invariants for N_f flavors:

$$l_{1} = \operatorname{Tr} [\Phi^{\dagger} \Phi]$$

$$l_{2} = \operatorname{Tr} [\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi]$$

$$l_{3} = \operatorname{Tr} [\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \Phi^{\dagger} \Phi]$$
...

$$I_{N_f} = \operatorname{Tr}\left[(\Phi^{\dagger}\Phi)^{N_f}\right]$$

 \rightarrow only I_1 , I_2 and I_3 enters the potential (for $N_f = 2$, I_3 is not independent)

• The most general chirally symmetric renormalizable potential:

$$\begin{split} V_{ch}[\Phi] &= m^2 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] + g_1 \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + g_2 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right] \\ &+ \lambda_1 \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^3 + \lambda_2 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \cdot \operatorname{Tr} \left[\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right] \\ &+ g_3 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right] \end{split}$$

<回ト < 三ト < 三ト

Э

• The most general chirally symmetric renormalizable potential:

$$\begin{aligned} V_{ch}[\Phi] &= m^2 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] + g_1 \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^2 + g_2 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right] \\ &+ \lambda_1 \left(\operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \right)^3 + \lambda_2 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \right] \cdot \operatorname{Tr} \left[\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right] \\ &+ g_3 \operatorname{Tr} \left[\Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \Phi^{\dagger} \Phi \right] \end{aligned}$$

• Possible $U_A(1)$ breaking terms:

 $I_{det} = \det \Phi^{\dagger} + \det \Phi, \quad \tilde{I}_{det} = \det \Phi^{\dagger} - \det \Phi$

 $\longrightarrow \tilde{\mathit{l}}_{det}^2$ and $\det \Phi^\dagger \cdot \det \Phi$ are not independent

• If Φ is too large, I_{det} becomes perturbatively irrelevant! $\longrightarrow I_{det} \sim \mathcal{O}(\phi^6)$

• For $N_f > 6$ the potential does not contain the anomaly

A B K A B K

 $V_A = a \cdot (\det \Phi^{\dagger} + \det \Phi)$

Gergely Fejős Order of the $SU(N_f) \times SU(N_f)$ chiral transition

・ロト ・回ト ・ヨト ・ヨト

Ξ

•
$$\underline{\mathbf{N}_{\mathbf{f}} = \mathbf{5}, \mathbf{6}}$$
:
 $V_A = \mathbf{a} \cdot (\det \Phi^{\dagger} + \det \Phi)$
• $\underline{\mathbf{N}_{\mathbf{f}} = \mathbf{4}}$:
 $V_A = \mathbf{a} \cdot (\det \Phi^{\dagger} + \det \Phi) + \mathbf{b} \cdot \operatorname{Tr} [\Phi^{\dagger} \Phi] (\det \Phi^{\dagger} + \det \Phi)$

・ロト ・回ト ・ヨト ・ヨト

Ξ

•
$$\underline{\mathbf{N}_{\mathbf{f}} = \mathbf{5}, \mathbf{6}}$$
:
 $V_A = \mathbf{a} \cdot (\det \Phi^{\dagger} + \det \Phi)$
• $\underline{\mathbf{N}_{\mathbf{f}} = \mathbf{4}}$:
 $V_A = \mathbf{a} \cdot (\det \Phi^{\dagger} + \det \Phi) + \mathbf{b} \cdot \operatorname{Tr} [\Phi^{\dagger} \Phi] (\det \Phi^{\dagger} + \det \Phi)$
• $\underline{\mathbf{N}_{\mathbf{f}} = \mathbf{3}}$:
 $V_A = \mathbf{a} \cdot (\det \Phi^{\dagger} + \det \Phi) + \mathbf{b} \cdot \operatorname{Tr} [\Phi^{\dagger} \Phi] (\det \Phi^{\dagger} + \det \Phi)$
 $+ \mathbf{a}_2 \cdot (\det \Phi^{\dagger} + \det \Phi)^2$

・ロト ・回ト ・ヨト ・ヨト

Ξ

•
$$N_{f} = 5, 6$$
:
 $V_{A} = a \cdot (\det \Phi^{\dagger} + \det \Phi)$
• $N_{f} = 4$:
 $V_{A} = a \cdot (\det \Phi^{\dagger} + \det \Phi) + b \cdot \operatorname{Tr} [\Phi^{\dagger} \Phi] (\det \Phi^{\dagger} + \det \Phi)$
• $N_{f} = 3$:
 $V_{A} = a \cdot (\det \Phi^{\dagger} + \det \Phi) + b \cdot \operatorname{Tr} [\Phi^{\dagger} \Phi] (\det \Phi^{\dagger} + \det \Phi)$
 $+ a_{2} \cdot (\det \Phi^{\dagger} + \det \Phi)^{2}$
• $N_{f} = 2$:
 $V_{A} = a \cdot (\det \Phi^{\dagger} + \det \Phi) + b_{1} \cdot \operatorname{Tr} [\Phi^{\dagger} \Phi] (\det \Phi^{\dagger} + \det \Phi)$
 $+ a_{2} \cdot (\det \Phi^{\dagger} + \det \Phi)^{2} + a_{3} \cdot (\det \Phi^{\dagger} + \det \Phi)^{3}$
 $+ b_{2} \cdot (\operatorname{Tr} [\Phi^{\dagger} \Phi])^{2} (\det \Phi^{\dagger} + \det \Phi) + b_{4} \cdot \operatorname{Tr} (\Phi^{\dagger} \Phi)^{2} (\det \Phi^{\dagger} + \det \Phi)$

• Optimized flow equation:

$$k\partial_k V_k = \frac{k^5}{6\pi^2} \operatorname{Tr} [k^2 + V_k^{(2)}]^{-1}$$

• Identification of the scale dependencies:

$$\sum_{n} k \partial_{k} g_{n} \cdot \mathcal{O}_{n} = \sum_{n} \frac{k^{5}}{6\pi^{2}} [...] \cdot \mathcal{O}_{n}$$

同ト・モン・モン

• Optimized flow equation:

$$k\partial_k V_k = \frac{k^5}{6\pi^2} \operatorname{Tr} [k^2 + V_k^{(2)}]^{-1}$$

• Identification of the scale dependencies:

$$\sum_{n} k \partial_{k} g_{n} \cdot \mathcal{O}_{n} = \sum_{n} \frac{k^{5}}{6\pi^{2}} [...] \cdot \mathcal{O}_{n}$$

• Problem:

 $\longrightarrow V_k^{(2)} \text{ depends on the fields, not invariants!} \\ \longrightarrow [k^2 + V_k^{(2)}]: 2N_f^2 \times 2N_f^2 \text{ matrix, in practice cannot be inverted for a general field configuration}$

• Specific background:

$$\Phi = s_0 \begin{pmatrix} 1 & & \\ & 1 & \\ & & \ddots & \\ & & & 1 \end{pmatrix} + s_L \begin{pmatrix} 1 & & \\ & 1 & \\ & & \ddots & \\ & & & -(N_f - 1) \end{pmatrix}$$

• Optimized flow equation:

$$k\partial_k V_k = \frac{k^5}{6\pi^2} \operatorname{Tr} [k^2 + V_k^{(2)}]^{-1}$$

• Identification of the scale dependencies:

$$\sum_{n} k \partial_k g_n \cdot \mathcal{O}_n = \sum_{n} \frac{k^5}{6\pi^2} [\dots] \cdot \mathcal{O}_n$$

• The \mathcal{O}_n operators become linear combinations:

$$\mathcal{O}_n = \sum_{\alpha+\beta=n} c^{\alpha\beta} s_0^{\alpha} s_L^{\beta}$$

 \longrightarrow at each order matching *rhs* and *lhs* leads to coupling flows • β functions: $(g_n = k^{(6-n)/2} \overline{g}_n)$

$$\beta_n \equiv k \partial_k \bar{g}_n = -\frac{1}{2}(6-n)\bar{g}_n + k \partial_k g_n / k^{(6-n)/2}$$

伺 ト イ ヨ ト イ ヨ ト ー

• β functions without anomaly:

$$\begin{split} \beta_{m^2} &= -2\bar{m}_k^2 - 2\frac{\bar{y}_{1,k}N_f(N_f^2+1) + \bar{y}_{2,k}(N_f^2-1)}{3\pi^2 N_f(1+\bar{m}_k^2)^2}, \\ \beta_{g_1} &= -\bar{g}_{1,k} + 4\frac{\bar{y}_{1,k}^2N_f^2(N_f^2+4) + 2\bar{g}_{1,k}\bar{g}_{2,k}N_f(N_f^2-1) + 2\bar{g}_{2,k}^2(N_f^2-1)}{3\pi^2 N_f^2(1+\bar{m}_k^2)^3} - \frac{3\bar{\lambda}_{1,k}N_f(N_f^2+2) + 2\bar{\lambda}_{2,k}(N_f^2-1)}{3\pi^2 N_f(1+\bar{m}_k^2)^2}, \\ \beta_{g_2} &= -\bar{g}_{2,k} + 8\frac{3\bar{g}_{1,k}\bar{y}_{2,k}N_f + \bar{g}_{2,k}^2(N_f^2-3)}{3\pi^2 N_f(1+\bar{m}_k^2)^3} - \frac{3\bar{g}_{3,k}(N_f^2-4) + \bar{\lambda}_{2,k}N_f(N_f^2+4)}{3\pi^2 N_f(1+\bar{m}_k^2)^2}, \\ \beta_{\lambda_1} &= 4\frac{\bar{g}_{1,k}N_f^2(3\bar{\lambda}_{1,k}N_f(N_f^2+7) + 2\bar{\lambda}_{2,k}(N_f^2-1)) + \bar{g}_{2,k}N_f(N_f^2-1)(3N_f\bar{\lambda}_{1,k}+4\bar{\lambda}_{2,k})}{3\pi^2 N_f^2(1+\bar{m}_k^2)^3} \\ &- 4\frac{2\bar{g}_{1,k}^3N_f^3(N_f^2+13) + 6\bar{g}_{1,k}^2\bar{g}_{2,k}N_f^2(N_f^2-1) + 12\bar{g}_{1,k}\bar{g}_{2,k}^2N_f(N_f^2-1) + 8\bar{g}_{3,k}^3(N_f^2-1)}{3\pi^2 N_f^2(1+\bar{m}_k^2)^4}, \\ \beta_{\lambda_2} &= 4\frac{\bar{g}_{1,k}N_f(\bar{\lambda}_{2,k}N_f(N_f^2+19) + 3\bar{g}_{3,k}(N_f^2-4)) + \bar{g}_{2,k}(15\bar{g}_{3,k}(N_f^2-4) + N_f(18\bar{\lambda}_{1,k}N_f+\bar{\lambda}_{2,k}(5N_f^2-1))))}{3\pi^2 N_f^2(1+\bar{m}_k^2)^3} \\ &- 4\frac{72N_f^2\bar{g}_{1,k}^2\bar{g}_{2,k} + 6\bar{g}_{1,k}\bar{g}_{2,k}N_f(N_f^2-1) + 3\bar{g}_{3,k}^2(2N_f^2-90)}{3\pi^2 N_f^2(1+\bar{m}_k^2)^3}, \\ \beta_{g_3} &= 4\frac{5N_f\bar{g}_{1,k}\bar{g}_{3,k} + 4N_f\bar{g}_{2,k}\bar{\lambda}_{2,k} + (2N_f^2-17)\bar{g}_{2,k}\bar{g}_{3,k}}{\pi^2N_f(1+\bar{m}_k^2)^3} - 4\frac{54\bar{g}_{1,k}\bar{g}_{2,k}^2(4N_f^2-54)}{3\pi^2N_f(1+\bar{m}_k^2)^4}. \end{split}$$

• Fixed points: $\beta_i = 0 \forall i$

- \longrightarrow solve for marginal couplings analytically
- \longrightarrow substitute to the relevant couplings
- \longrightarrow find fixed points numerically
- \rightarrow check stability matrix $(\partial \beta_i / \partial g_j)$ at the fixed points

N _f	FP	\bar{m}^2	\bar{g}_1	Ē2	RD#
50	$O(2N_{f}^{2})$	-0.33342	0.0017538	0	2
"	B_2^{50}	0.040303	-0.0029448	0.12152	2
"	C_{1}^{50}	-0.37509	0.0019579	-0.011198	1
"	$ ilde{C}_1^{50}$	-0.33342	0.0017556	-0.000088291	1
20	$O(2N_{f}^{2})$	-0.33385	0.010939	0	2
"	B_2^{20}	0.043192	-0.018915	0.31043	2
"	C_{1}^{20}	-0.38411	0.012287	-0.030728	1
//	$ ilde{C}_1^{20}$	-0.33393	0.011010	-0.0014253	1
10	$O(2N_{f}^{2})$	-0.33492	0.043430	0	2
"	B_2^{10}	0.059163	-0.086421	0.68317	2
"	C_{1}^{10}	-0.43356	0.048876	-0.082581	1
//	$ ilde{C}_1^{10}$	-0.33641	0.044669	-0.012667	1
6	$O(2N_{f}^{2})$	-0.33516	0.11855	0	2
"	B_{2}^{6}	0.40276	-1.23414	3.80527	2
"	C_{1}^{6}	1.09084	-6.45942	16.76628	1
//	$ ilde{C}_1^6$	-0.34848	0.12934	-0.069536	1

N _f	FP	\bar{m}^2	\bar{g}_1	<u></u> <i>g</i> ₂	ā	RD#
5	$O(2N_{f}^{2})$	-0.33386	0.16871	0	0	2
"	$ ilde{C}_1^5$	-0.36068	0.19128	-0.12675	0	1
//	A_{3}^{5}	-0.17023	0.14387	-0.056313	-2.79735	3

N _f	FP	\bar{m}^2	\bar{g}_1	Ē2	ā	RD#
4	$O(2N_f^2)$	-0.32940	0.25800	0	0	3 (2)
//	\tilde{C}_2^4	-0.38129	0.31042	-0.25480	0	2 (1)
"	A_2^4	-0.34949	0.63992	-1.73326	-3.82052	2
//	\tilde{A}_2^4	-0.40273	0.21168	0.17473	-0.73657	2

$\mathbf{N}_{\mathbf{f}}$	FP	$ar{m}^2$	$ar{g}_1$	$ar{g}_2$	\bar{a}	\overline{b}	RD#
3	$O(2N_f^2)$	-0.31496	0.43763	0	0	0	3(2)
"	$ ilde{C}_2^3$	-0.38262	0.59725	-0.62042	0	0	2(1)
"	A_4^3	-0.01786	0.091631	-0.14148	-0.11900	0.39087	4
	A_{1*}^3	-0.41126	0.73099	-0.88199	-0.46585	-0.91131	1*

シック・ 川 ・山・山・山・ 白・

• Anomaly free fixed points for $N_f = 2$:

N_{f}	FP	\bar{m}^2	\bar{g}_1	<u></u> <i>g</i> ₂	RD#
2	$O(2N_{f}^{2})$	-0.27094	0.85280	0	4 (3)
//	$ ilde{C}_2^2$	-0.20599	1.33367	-1.88211	2 (1)
//	\hat{C}_2^2	-0.26318	0.33093	1.71728	2 (1)

- Anomalous fixed points for $N_f = 2$?
 - \longrightarrow numerically challenging
 - \longrightarrow $a = -\infty$, $m^2 = \infty$ with $m^2 + a =$ finite
 - \rightarrow half of the modes decouple $\Rightarrow O(4)$ FP
 - \longrightarrow infrared stable at the critical temperature

向下 イヨト イヨト

Fixed points and stability

• Flavor continuity conjecture:

The chiral transition is governed by the \tilde{C}^{N_f} fixed points; other fixed points (if exist) do not have an influence.

- For $N_f \ge 5$, irrespectively of the $U_A(1)$ anomaly \longrightarrow second order transition
- For $N_f = 2, 3, 4$ with disappearing $U_A(1)$ anomaly \rightarrow second order transition
 - $\rightarrow \overline{\nu_{N_{\ell}=3}} \approx 0.829$ [close O(7) univ. class]
 - $\rightarrow \nu_{N_f=2} \approx 0.638$ [close to Ising univ. class]
- For $N_f = 2, 3, 4$ with not disappearing $U_A(1)$ anomaly
 - \longrightarrow first order transition
 - \longrightarrow $U_A(1)$ breaking controls the strength of the transition
 - \longrightarrow weak anomaly \Leftrightarrow weak first order transition

・ロト ・ 同ト ・ ヨト ・ ヨト

Fixed points and stability

- For $N_f = 2$ and $N_f = 3$ the situation is more subtle
- $N_f = 3$:
 - \rightarrow there exist a fixed point with nonzero anomaly with one relevant direction
 - \longrightarrow however: the stability matrix has complex eigenvalues \Rightarrow unnatural
- $N_f = 2$:
 - \rightarrow there also exist a fixed point with nonzero (infinite) anomaly with one relevant direction [O(4) FP]
- Problem 1.) we do not know the domain of attraction of the fixed points
- Problem 2.) we do not know where the bare (UV) parameters lie in the parameter space

Columbia plot with flavor continuity

Columbia plot with flavor continuity

Transition o	orders	without	anomaly:
--------------	--------	---------	----------

	$N_f = 2$	$N_f = 3$	$N_f = 4$	$N_f \ge 5$
$\begin{aligned} \epsilon \text{ expansion} \\ (\epsilon = 1) \end{aligned}$	1st order	1st order	1st order	1st order
FRG $(d=3)$	2nd order	2nd order	2nd order	2nd order

Transition orders with anomaly:

	$N_f = 2$	$N_f = 3$	$N_f = 4$	$N_f \ge 5$
$\begin{aligned} \epsilon \text{ expansion} \\ (\epsilon = 1) \end{aligned}$	2nd order*	1st order	1st order	1st order
FRG $(d = 3)$	1st order (Case I) 2nd order (Case II) 2nd order (Case III)	1st order (Case I) 1st order (Case II) 2nd order (Case III)	1st order	2nd order

*:only with strong anomaly

・ロト ・回ト ・ヨト ・ヨト

臣

Summary

- Re-analysis of the RG flows of the Ginzburg-Landau potential of chiral transition
 - \longrightarrow scale evolution is obtained directly at d=3 using the Functional Renormalization Group method
 - \longrightarrow Local Potential Approximation + $\mathcal{O}(\phi^6)$ truncation: inclusion of all relevant and marginal interactions
- Results can be made consistent with recent lattice QCD simulations [i.e. chiral transition is second order]
 - \longrightarrow there exist new classes of fixed points spanned in the entire N_f range
 - \longrightarrow they are IR stable at T_C for $N_f \ge 5$
 - \longrightarrow they are IR stable at T_C for $N_f = 2, 3, 4$ only if $U_A(1)$ is restored

• Future:

- \longrightarrow improve truncation (irrelevant operators, wavefunction renormalization, higher derivatives)
- \longrightarrow establishing fully non-perturbative fixed point potentials