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Frustrated quantum spin systems

Frustration: Major challenge for theoretical physics.

Quantum fluctuations dominant for T → 0.

⇒ Exotic ground states without classical long-range order.

Paradigmatic model system: J1-J2 quantum Heisenberg
antiferromagnet on the square lattice,

H = J1
∑
⟨ij⟩1

Si · Sj + J2
∑
⟨ij⟩2

Si · Sj .

Consensus on phase diagram for S = 1/2:

Néel order for J2 ≲ 0.4J1, ordering wave vector Q = (π, π).

Stripe order for J2 ≳ 0.65J1, with Q = (π, 0) or Q = (0, π).

Quantum paramagnet in the intermediate, strongly frustrated regime.

For S > 1/2: Reduced quantum fluctuations should reduce
paramagnetic regime, which vanishes for S → ∞.
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Spin functional renormalization group

Spin FRG approach: Continuously deform exchange couplings

J(k) → JΛ(k) , Λ ∈ [0, 1] ,

such that
1 JΛ=0(k) = 0 (isolated spins),

2 JΛ=1(k) = J(k) (full interacting system).

⇒ Exact flow equation for the Λ-dependent generating functional of
imaginary-time-ordered spin correlation functions.

Advantages of the spin functional renormalization group:

Bosonic Wetterich equation for irreducible spin vertices.

Works directly with the physical spin degrees of freedom.

Arbitrary S without additional cost.

Non-trivial initial conditions because of SU(2) spin algebra.

[Krieg, Kopietz, Phys. Rev. B 99, 060403(R) (2019)]
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Initial conditions & spin conservation

Local spin conservation ∂tSi = 0 implies nonanalytic frequency
dependence of the spin-spin correlation function at Λ = 0,

G0(ω) = δω,0S(S + 1)/3T .

⇒ Nonanalytic δω,0 terms are inherited by all higher-order correlation
functions through the hierarchy of equations of motion:

ω1G
xyz
0 (ω1, ω2, ω3) = G0(ω2)−G0(ω3) ,

ω1G
xxyy
0 (ω1, . . . ω4) = −Gxyz

0 (ω2, ω3, ω1 + ω4)

−Gxyz
0 (ω2, ω4, ω1 + ω3) ,

...

⇒ Legendre transform of generating functional does not exist at Λ = 0.

Solution: Treat dynamic and static fluctuations differently.

[Goll, Tarasevych, Krieg, Kopietz, Phys. Rev. B 100, 174424 (2019)]
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Ergodicity & hybrid functional

Interacting spins at Λ > 0:

Spin conservation only holds globally, GΛ(k = 0, ω ̸= 0) = 0.

Ergodicity: All static susceptibilities (Kubo, isothermal, adiabatic,
. . . ) have to agree for k ̸= 0. [Chiba et al. PRL 2020]

⇒ GΛ(k ̸= 0, ω) expected to be continuous for ω → 0.

⇒ Parametrize dynamic spin susceptibility as

GΛ(k, ω ̸= 0) =
ΠΛ(k, ω)

1 +G−1
Λ (k)ΠΛ(k, ω)

, ΠΛ(k = 0, ω ̸= 0) = 0 ,

GΛ(k, ω = 0) = GΛ(k) =
1

JΛ(k) + ΣΛ(k)
, lim

ω→0
Π−1

Λ (k ̸= 0, ω) = 0 .

Flow equations for ΣΛ(k) and ΠΛ(k, ω ̸= 0): Hybrid functional.

Statics: 1-line irreducible with respect to classical propagator GΛ(k).

Dynamics: 1-line irreducible with respect to J̃Λ(k) = G−1
Λ (k).

[Tarasevych, Kopietz, Phys. Rev. B 104, 024423 (2021)]
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Temperature flow

Deformation scheme

JΛ(k) = ΛJ(k) = Λ̄TJ(k) with Λ̄ ∈ [0, 1/T ].

Without external magnetic fields: Explicit T -dependence can be
removed by rescaling frequencies and vertices,

ω = ω̄T , ΣΛ(k) = T Σ̄(k) , ΠΛ(k, ω) = Π̄Λ(k, ω̄)/T , . . .

⇒ Effectively T -independent problem at fixed Λ̄.

⇒ T -dependence: Flow from Λ̄ = 0 (T → ∞) to Λ̄ = 1/T .

⇒ Flow perturbatively controlled in J(k)/T .

Aim of flow: Extrapolate from controlled high-T regime to low
temperatures T ≪ J(k) by resumming classes of diagrams.

⇒ T < J(k) regime requires nonperturbative truncation!
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T → 0 description of quantum antiferromagnets

Frustrated interactions or reduced dimensions:
Spin-length constraint S2

i = S(S + 1) expected to be important.

Example: 2-dimensional quantum antiferromagnet;
successfully described at low temperatures by nonlinear σ model
[Chakravarty PRB 1989, Chubukov PRB 1994, . . . ],

Z ∝
∫

Dn̂(x, τ)δ (|n̂| − 1) e−
ρ
2

∫ β
0 dτ

∫
d2x(|∇n̂|2+|∂τ n̂|2/c2) ,

interacting only through spin-length constraint.

⇒ Implies importance of susceptibility sum rule

⟨Si(τ) · Si(τ)⟩ = 3Gii(τ, τ) = 3

∫
k,ω

G(k, ω) = S(S + 1) .

However, the spin-length constraint likewise implies〈
T Sx

i (τ)S
x
j (τ

′)Sn(τ
′′) · Sn(τ

′′)
〉
= Gij(τ, τ

′)S(S + 1)

= 3Gij(τ, τ
′)Gnn(τ

′′, τ ′′) , . . .
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2-spin sum rules of the hybrid functional

2-spin flow equations:

∂ΛΣΛ(k) = −T

∫
q

[∂ΛJΛ(q)]G
2
Λ(q)

×
[
Γ
(4)
Λ (k, q) + γΛ(k, q)

]
,

− ∂ΛΠΛ(K) + Π2
Λ(K)∂ΛΣΛ(k)

= − T

∫
q

[∂ΛJΛ(q)]G
2
Λ(q)γ̃Λ(K, q) .

αΣ
α

1
2

z z
Σ

α αα
z z z z z zx
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[γΛ, γ̃Λ: dynamical diagrams encoding quantum fluctuations; wavy lines]

⇒ Associated sum rules:

1 = T

∫
q

G2
Λ(q)

[
Γ
(4)
Λ (k, q) + γΛ(k, q)

]
, Π2

Λ(K) = T

∫
q

G2
Λ(q)γ̃Λ(K, q) .

[equivalent to
〈
T Sx

i (τ)S
x
j (τ

′)Sn(τ
′′) · Sn(τ

′′)
〉
= Gij(τ, τ

′)S(S + 1)]
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Nonperturbative truncation

Strategy: Fix 3- and 4-spin vertices via sum rules and spin algebra.

Ansatz for statics: Γ
(4)
Λ (k, q) = UΛ + [VΛ(k)− 1] γΛ(k, q).

UΛ fixed by demanding ∂Λ

∫
K
GΛ(K) = 0.

VΛ(k): quantum correction required to also satisfy static 2-spin sum

rule 1 = T
∫
q
G2

Λ(q)
[
Γ
(4)
Λ (k, q) + γΛ(k, q)

]
.

Dynamic vertices from equations of motion neglecting loops.

Includes spin algebra and spin conservation nonperturbatively.

⇒ Nonperturbative closure on 2-spin level.

Additionally: high-frequency approximation ΠΛ(k, ω) ≈ AΛ(k)/ω
2.

At large frustration: unphysical AΛ(0
+) < 0 at low temperatures.

⇒ Flow breaks down eventually.
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Flow of the spin gap of the J1-J2 model for S = 1/2
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Phase diagram of the J1-J2 model for arbitrary spin
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Quantum paramagnet disappears for S ≳ 5.

Phase boundaries qualitatively similar to spin wave theory, but large
quantitative difference for small S.
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Conclusions & outlook

Technical advances:

1 Spin-length constraint S2
i = S(+1) ⇒ infinite tower of sum rules,

one for each flow equation.

2 Sum rules, spin algebra & ergodicity are crucial for nonperturbative
truncations applicable to frustrated magnets in reduced dimensions.

3 Good results can be obtained with low numerical costs.

4 Arbitrary S without any additional complications.

Main physical result: Phase diagram of J1-J2 antiferromagnet on
the square lattice at arbitrary S.

Future research:

1 More complicated frustrated models, magnetic fields . . .

2 4-spin correlations to characterize quantum paramagnetic phases.

3 Keldysh spin FRG.

A. Rückriegel, D. Tarasevych, and P. Kopietz,
Phys. Rev. B 109, 184410 (2024)
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Residual spin gaps of the J1-J2 model for S = 1/2
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Final temperature in strongly frustrated region too large to detect
possible first order transition.
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Spin-length constraint in the spin FRG

To elegantly derive spin-length sum rules for vertices from the
hierarchy of spin FRG flow equations, rewrite

HΛ =
1

2

∑
ij

JΛ
ijSi · Sj

=
1

2

∑
ij

(
JΛ
ij + δijCΛ − δijCΛ

)
Si · Sj

=
1

2

∑
ij

(
JΛ
ij + δijCΛ

)
Si · Sj −

N

2
CΛS(S + 1) .

Crucial observations

No modification to the system at all, only added a zero.

⇒ All correlation functions remain unchanged and independent of CΛ.

However, flow equations modified non-trivially!
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Spin-length constraint in the spin FRG

Modification of the flow of the generating functional of connected
spin correlation functions:

∂ΛGΛ[h] = −1

2

∫ β

0

dτ
∑
ij,α

(
∂ΛJ

Λ
ij

) [ δ2GΛ[h]

δhα
i (τ)δh

α
j (τ)

+
δGΛ[h]

δhα
i (τ)

δGΛ[h]

δhα
j (τ)

]

= −1

2

∫ β

0

dτ
∑
ij,α

(
∂ΛJ

Λ
ij + δij∂ΛCΛ

) [ δ2GΛ[h]

δhα
i (τ)δh

α
j (τ)

+
δGΛ[h]

δhα
i (τ)

δGΛ[h]

δhα
j (τ)

]

+
βN

2
∂ΛCΛS(S + 1) .

⇒ Sum rule for the generating functional:

S(S + 1) =
1

βN

∫ β

0

dτ
∑
i,α

[
δ2GΛ[h]

δhα
i (τ)δh

α
i (τ)

+
δGΛ[h]

δhα
i (τ)

δGΛ[h]

δhα
i (τ)

]
.

Implies infinite tower of sum rules, one for each flow equation.
12 / 12



Spin-length constraint in the spin FRG

Sum rules and flow equations have the same structure.

Invariance of physical functions under shift JΛ(k) → JΛ(k) + CΛ

implies simple translation rules from flow equations to sum rules.

Hybrid functional: All vertex functions are defined in terms of
physical spin correlation functions.

Only exception: static spin self-energy ΣΛ(k) = G−1
Λ (k)− JΛ(k).

⇒ Hybrid functional translation rules:

flow equation → sum rule

(i) ∂ΛJΛ(k) → 1,

(ii) ∂ΛΣΛ(k) → −1,

(iii) ∂ΛfΛ → S(S + 1)/2,

(iv) all other ∂Λ-terms → 0.
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