UV complete field theory in (2+1)D with symmetry breaking at all temperatures

Michael M. Scherer

Ruhr University Bochum

@ ERG 2024, Les Diablerets, September 2024

Outline

- Introduction & key question
 - Inverted symmetry breaking & phase diagrams
 - FRG 101: O(N) models and finite T

- $O(N) \times Z_2$ field theory at finite *T*
 - Mechanism for high-temperature SB
 - Fixed-points and UV completion
 - Quantum critical point & phase diagram

• Conclusions

Bilal Hawashin, RUB

Junchen Rong, IHES

MERCUR Mercator Research

Center Ruhr

Symmetry breaking & temperature

- Spontaneous *symmetry breaking* is usually a *low-temperature* phenomenon
- Towards *high temperatures symmetries* are *restored*
 - F = E TSConsider **free energy**
 - *F* is minimized \rightarrow *high-entropy* states dominate at high *T*
 - *high-entropy states* typically disordered \rightarrow *symmetry restoration* for high *T*

- There are exceptions, e.g., Pomeranchuk effect Pomerantschuk, Zh. Eksp. Teor. Fiz.. (1950)
 - Liquid ³He: obeys Fermi statistics $\rightarrow S \propto T$
 - Solid ³He: nucleon spins contribute excess entropy $S \propto \text{const}$.
 - \rightarrow ³He "freezes" when heated • For $T \leq 0.3K$: $S_{\rm solid} > S_{\rm liquid}$
 - Inverted phase diagram!

Inverted phase diagrams

- **Pomeranchuk effect** also observed recently in *twisted bilayer graphene* and *moiré transition metal dichalcogenides*
- *Also:* Structural transition in Rochelle salt, "order by disorder", ...
- *Application:* Pomeranchuk effect in ³He can be used for *cooling* upon isentropic *compression*
- **Inverted phase diagrams** also exist in QFTs, e.g., with $O(N) \times O(M)$ symmetry
- *Applications* to domain wall and false vacuum problems, baryogenesis, inflation,... §
- Up to which temperatures *T* can this work?
 - $e^{-\beta H} \xrightarrow{I \to \infty}$ Lattice system w/ density matrix:

- UV incomplete models (e.g., due to Landau poles): phenomenon can only be verified up to T below UV cutoff
- UV complete models: high-T limit could be nontrivial! 🖗 Chai, Chaudhuri, Choi, Komargodski, Rabinovici, Smolkin, PRL 125, 131603 (2020)

Rosen *et al.*, Nature 592 (2021) Saito *et al.*, Nature 592 (2021) Li *et al.*, Nature 597 (2021)

Weinberg, PRD 9, 3357 (1974) Mohapatra & Senjanović, PRL 42, 1651 (1979) © Pietroni, Rius, Tetradis, PLB 397, 119 (1997) Senjanović, COSMO97 (1998)

\rightarrow All sites decouple \rightarrow expectation values of local operators vanish \rightarrow symmetries restored at sufficiently high T

Kliesch, Gogolin, Kastoryano, Riera, Eisert, PRX 4, 031019 (2014)

Bajc, Lugo, Sannino, PRD 103, 096014 (2021)

UV complete models and temperature

- Short distance limit of UV complete field theory is a CFT/scale invariant #asymptotic-safety
- What happens to CFT at finite *T*?
 - CFT does not have inherent scale \rightarrow any nonzero T is equivalent to any other nonzero T
 - \rightarrow If CFT shows **SSB at some finite** $T \rightarrow$ there is **SSB at all** T!
 - Question: Are there unitary, local, nontrivial CFTs that do not restore SYM at infinite *T*?
- **Conjecture**: $O(N) \times Z_2$ symmetric scalar field theory in D = 2 + 1 dimensions at *biconical fixed point*

$$S = \int d^{D}x \left(\frac{1}{2}(\partial\phi)^{2} + \frac{1}{2}(\partial\chi)^{2} + \frac{1}{2}(\partial\chi)^{2}\right)$$

- **Discrete SB at finite** $T: O(N) \times Z_2 \longrightarrow O(N)$
- Hogervorst, Rychkov, van Rees, PRD 93, 125025 (2016)

Polyakov, PLB 72, 477 (1978) Komargodski, Sharon, Thorngren, Zhou, SciPost Phys 6, 003 (2019)

🚯 Chai, Chaudhuri, Choi, Komargodski, Rabinovici, Smolkin, PRL 125, 131603 (2020) $+\frac{m_{\phi}^2}{2}\phi^2+\frac{m_{\chi}^2}{2}\chi^2+\frac{\lambda_{\phi}}{8}\phi^4+\frac{\lambda_{\chi}}{8}\chi^4+\frac{\lambda_{\phi\chi}}{4}\phi^2\chi^2\right)$

Evidence from 4- ϵ expansion (unitarity violating for $D \notin \mathbb{N}$, no MWH for $\epsilon = 1$), 2+1D in long-range PT (non-local) Chai, Dymarsky, Smolkin, PRL 128, 011601 (2022)

FRG 101: O(N) model

- Effective average action in LPA': $\Gamma_k = \int d^D x \left[\frac{Z_k}{2} \left(\partial \phi \right) \right]$
 - Consider *D* dimensional space or D=d+1 dimensional Euclidean spacetime
 - Effective potential maybe in symmetric (SYM) or symmetry broken (SSB) regime

Boundedness of potential requires $\lambda > 0$ (neglecting higher-order terms)

$$\phi \Big)^2 + U_k(\phi)$$

FRG 101: O(N) model

- $\Gamma_k = \int d^D x \, \left| \frac{Z_k}{2} \left(\partial q \right) \right|^2$ Effective average action in LPA':
 - Flow of dimensionless effective potential in D=3 with Litim regulator in LPA with $\rho = \phi^2/2$

$$k\partial_k u(\rho) = \underbrace{-3u + \rho u'}_{\text{rescaling}} + \underbrace{\frac{1}{6\pi^2} \frac{1}{1 + u' + 2\rho u}}_{\text{radial mode}}$$

• Flow equation for *dimensionful mass in SYM regime*:

$$k\partial_k m^2 = -(N+2)\frac{a_D}{3\pi^2}k^{D+2}\frac{\lambda}{(k^2+m^2)^2}$$

• R.H.S. is negative \Rightarrow for $k \rightarrow 0$ the mass² cannot decrease \Rightarrow bosonic fluctuations keep system in SYM phase.

$$\phi \Big)^2 + U_k(\phi) \bigg]$$

O(N) model at finite temperature

• Introduce finite T:
$$q_0 \rightarrow i\omega_n = 2\pi nT$$
, $\left[\frac{d^D q}{(2\pi)^D}\right]$

Use "covariant" Litim regulator and $\tau = 2\pi T/k$

$$k\partial_k u(\rho) = -3u + \rho u' + \frac{1}{6\pi^2} \frac{1}{1 + u' + 2\rho u}$$
rescaling
rescaling
radial mode

• Flow equation for *dimensionful mass* at high T or small k:

$$k\partial_k m^2 = -(N+2)\frac{b_D}{3\pi^2}k^{d+2}\frac{\lambda}{(k^2+m^2)^2}$$

- Higher T can make fluctuations even stronger with same sign \Rightarrow system remains SYM phase.
- Corresponds to *standard expectation*: higher temperature \rightarrow *no transition into SSB regime*

O(N) model at finite temperature

• Introduce finite T:
$$q_0 \rightarrow i\omega_n = 2\pi nT$$
, $\left[\frac{d^D q}{(2\pi)^D}\right]$

Use "covariant" Litim regulator and $\tau = 2\pi T/k$

$$k\partial_k u(\rho) = \underbrace{-3u + \rho u'}_{\text{rescaling}} + \underbrace{\frac{1}{6\pi^2} \frac{1}{1 + u' + 2\rho u}}_{\text{radial mode}}$$

Flow equation for condensate κ at high T or small k:

$$k\partial_k \kappa = c_D(N-1)k^{d-2}T + \mathcal{O}(k)k^{d-2}$$

- For N > 1 and $d \le 2$: Condensate κ melts down at finite $k \rightarrow \text{no SSB} \rightarrow \text{Mermin-Wagner}!$
- For N = 1 or d > 2: Flow gets arbitrarily slow towards IR \Rightarrow condensate $\kappa_{IR} > 0$ is possible \Rightarrow SSB

O(N) model at finite temperature

- Numerical example for N > 1, D = 2 + 1

• Start flow in SSB regime ($\kappa > 0$, dashed lines) \rightarrow always flows into SYM regime ($m^2 > 0$, solid lines) for T > 0

O(N) model with Yukawa-coupled fermions

- How to drive system into SSB regime?
 - Flow equation for *dimensionful mass* with *massless fermions*

$$k\partial_k m^2 \sim -(N+2)\lambda s_0(\tau) +$$

- Fermion loop has *opposite sign* \rightarrow can drive mass to zero and into SSB regime
- *But*: for large $\tau \sim T/k$ it gets switched off \rightarrow cannot drive high-*T* symmetry breaking

 $h^2 s_0^F(\tau)$

 \rightarrow Talk by Mireia Tolosa-Simeón

O(N) model coupled to Z₂ model

• Micros

scopic action with
$$O(N) \times \mathbb{Z}_2$$
 symmetry and $\rho_{\phi} = \phi_a \phi_a/2$ and $\rho_{\chi} = \chi^2/2$

$$S = \int d^D x \left(\frac{1}{2} (\partial \phi)^2 + \frac{1}{2} (\partial \chi)^2 + m_{\phi}^2 \rho_{\phi} + m_{\chi}^2 \rho_{\chi} + \frac{\lambda_{\phi}}{2} \rho_{\phi}^2 + \frac{\lambda_{\chi}}{2} \rho_{\chi}^2 + \lambda_{\phi\chi} \rho_{\phi} \rho_{\chi} \right)$$
and from below if $\lambda_{\phi}, \lambda_{\chi} > 0$ and $\lambda_{\phi} \lambda_{\chi} \ge \lambda_{\phi\chi}^2 \implies \lambda_{\phi\chi}$ can be negative!

Bou

• FRG flow of effective potential $U(\rho_{\phi}, \rho_{\chi})$ can be written down in closed form in LPA' for abitrary T

$$\omega_{\phi} = u_{k}^{(1,0)} + 2\bar{\rho}_{\phi}u_{k}^{(2,0)}, \omega_{\chi} = u_{k}^{(0,1)} + 2\bar{\rho}_{\chi}u_{k}^{(0,2)}, \omega_{\phi\chi}^{2} = 4\bar{\rho}_{\chi}u_{k}^{(0,2)}, \omega_{\chi}^{2} = 4\bar{\rho}_{\chi}u_{\chi}^{2}$$

 $\bar{o}_{\phi}\bar{\rho}_{\chi}(u_k^{(1,1)})^2$

Hawashin, Rong, Scherer, arXiv:2409.10606 (2024) 🖗 see also Pietroni, Rius, Tetradis, PLB 397, 119 (1997)

O(N) model coupled to Z₂ model

• Microscopic action with $O(N) \times \mathbb{Z}_2$ symmetry and $\rho_{\phi} = \phi_a \phi_a/2$ and $\rho_{\gamma} = \chi^2/2$

$$S = \int d^{D}x \left(\frac{1}{2} (\partial \phi)^{2} + \frac{1}{2} (\partial \chi)^{2} + m_{\phi}^{2} \rho_{\phi} + m_{\chi}^{2} \rho_{\chi} + \frac{\lambda}{2} \right)$$

• Bound from below if $\lambda_{\phi}, \lambda_{\gamma} > 0$ and $\lambda_{\phi}\lambda_{\gamma} \ge \lambda_{\phi\gamma}^2 \implies$

• *FRG flow of dimensionful mass* of Z_2 field χ at high *T* for negative $\lambda_{\phi \chi}$ in *D*=2+1:

$$k\partial_k m_{\chi}^2 = \frac{k^4 a_D}{3\pi^2} \left(- \frac{3\lambda_{\chi}}{(k^2 + m_{\chi}^2)^2} + \frac{N|\lambda_{\phi\chi}|}{(k^2 + m_{\phi\chi}^2)^2} \right)$$

- Boson loop with mixed coupling has *opposite sign* \rightarrow can potentially drive mass to zero and into SSB phase!
- And: for large $\tau \sim T/k$ it won't be switched off \rightarrow can drive SSB towards high T!

Fixed points in $O(N) \times Z_2$ model in D=3 (T=0)

- How can we get **SSB at all temperatures**?
 - Need **UV completion** of $O(N) \times \mathbb{Z}_2$ field theory with **sufficiently negative** $\lambda_{\phi_{\chi}}$ contribution
 - Fixed-point analysis!
- Micros

$$S = \int d^{D}x \left(\frac{1}{2} (\partial \phi)^{2} + \frac{1}{2} (\partial \chi)^{2} + m_{\phi}^{2} \rho_{\phi} + m_{\chi}^{2} \rho_{\chi} + \frac{\lambda_{\phi}}{2} \rho_{\phi}^{2} + \frac{\lambda_{\chi}}{2} \rho_{\chi}^{2} + \lambda_{\phi\chi} \rho_{\phi} \rho_{\chi} \right)$$

$$S = \int d^{D}x \left(\frac{1}{2} (\partial \phi)^{2} + \frac{1}{2} (\partial \chi)^{2} + m_{\phi}^{2} \rho_{\phi} + m_{\chi}^{2} \rho_{\chi} + \frac{\lambda_{\phi}}{2} \rho_{\phi}^{2} + \frac{\lambda_{\chi}}{2} \rho_{\chi}^{2} + \lambda_{\phi\chi} \rho_{\phi} \rho_{\chi} \right)$$

$$S = \int d^{D}x \left(\frac{1}{2} (\partial \phi)^{2} + \frac{1}{2} (\partial \chi)^{2} + m_{\phi}^{2} \rho_{\phi} + m_{\chi}^{2} \rho_{\chi}^{2} + \frac{\lambda_{\chi}}{2} \rho_{\chi}^{2} + \lambda_{\phi\chi} \rho_{\phi} \rho_{\chi} \right)$$

$$S = \int d^{D}x \left(\frac{1}{2} (\partial \phi)^{2} + \frac{1}{2} (\partial \chi)^{2} + m_{\phi}^{2} \rho_{\phi} + m_{\chi}^{2} \rho_{\chi}^{2} + \frac{\lambda_{\phi}}{2} \rho_{\phi}^{2} + \frac{\lambda_{\chi}}{2} \rho_{\chi}^{2} + \lambda_{\phi\chi} \rho_{\phi} \rho_{\chi} \right)$$

$$S = \int d^{D}x \left(\frac{1}{2} (\partial \phi)^{2} + \frac{1}{2} (\partial \chi)^{2} + m_{\phi}^{2} \rho_{\phi} + m_{\chi}^{2} \rho_{\chi}^{2} + \frac{\lambda_{\chi}}{2} \rho_{\chi}^{2} + \lambda_{\phi\chi} \rho_{\phi} \rho_{\chi} \right)$$

$$S = \int d^{D}x \left(\frac{1}{2} (\partial \phi)^{2} + \frac{1}{2} (\partial \chi)^{2} + m_{\phi}^{2} \rho_{\phi} + m_{\chi}^{2} \rho_{\chi}^{2} + \frac{\lambda_{\chi}}{2} \rho_{\chi}^{2} + \lambda_{\phi\chi} \rho_{\phi} \rho_{\phi} \rho_{\chi} \right)$$

$$S = \int d^{D}x \left(\frac{1}{2} (\partial \phi)^{2} + \frac{1}{2} (\partial \chi)^{2} + m_{\chi}^{2} \rho_{\chi} + \frac{\lambda_{\phi}}{2} \rho_{\phi}^{2} + \frac{\lambda_{\chi}}{2} \rho_{\chi}^{2} + \lambda_{\phi\chi} \rho_{\phi} \rho_{\phi} \rho_{\chi} \right)$$

$$S = \int d^{D}x \left(\frac{1}{2} (\partial \phi)^{2} + \frac{1}{2} (\partial \chi)^{2} + m_{\chi}^{2} \rho_{\chi} + \frac{\lambda_{\phi}}{2} \rho_{\chi}^{2} + \frac{\lambda_{\phi}}{2} \rho_{\chi}^{2} + \lambda_{\phi\chi} \rho_{\phi} \rho_{\phi} \rho_{\chi} \right)$$

$$S = \int d^{D}x \left(\frac{1}{2} (\partial \phi)^{2} + \frac{1}{2} (\partial \chi)^{2} + \frac{1}{2} (\partial \chi)^{2} + \frac{\lambda_{\phi}}{2} \rho_{\chi}^{2} + \frac{\lambda_{\phi}}{2$$

- (1) \mathbf{De}
- (2) **Iso**
- (3) **Bic**

ri (2003) erer (2013)

Biconical fixed point in *D***=3**

- BFP is not IR stable for N > 2 but can still define UV completion
 - $\lambda_{\phi\gamma}$ is indeed **negative**!
 - For $N \ge 5$ we even find: $N |\lambda_{\phi_{\chi}}| > 3\lambda_{\chi}$
 - ► For large enough *N*: *good convergence* within LPA(')*n*

N = 10	κ_{ϕ}	κ_χ	λ_{ϕ}	λ_{χ}	$\lambda_{\phi\chi}$	$ heta_1$	$ heta_2$	$ heta_3$
LPA6	0.25	0.10	2.62	2.54	-2.34	2.02	1.06	0.61
LPA8	0.24	0.09	2.59	2.84	-2.43	1.98	1.07	0.61
LPA'6	0.24	0.10	2.50	2.61	-2.30	1.99	1.09	0.56
LPA'8	0.24	0.09	2.47	2.81	-2.34	1.95	1.09	0.57

negative, with $U(\rho_{\phi}, \rho_{\chi})$ bounded from below!

Comparison w / 5-loop at small N:

N=2	ν	η_{ϕ}	η_{χ}	
5-loop	0.70(3)	0.037(5)	0.037(5)	Calabrese, Pelissetto, Vicari (2003)
FRG, LPA'6	0.68	0.04	0.04	

U	!

RG flows & inverted phase diagram at finite *T*

• Microscopic starting point is BFP in *SSB-SSB regime* (T = 0) for N = 100

QCP separates $O(N - 1) \times Z_2$ from O(N - 1) phase

RG flows & inverted phase diagram at finite *T*

• Microscopic starting point is BFP in *SSB-SSB regime* (T = 0) for N = 100

RG flows & phase diagram at finite T

• Evolution of phase diagram with *N*

- Inverted phase diagram only for $N > N_c$
- For $N < N_c$ phase diagram is back to normal
- We find $N_c \sim 15$

Conclusions

- **Inverted SB** occurs in various physical systems #pomeranchuk-effect #rochelle-salt
- Symmetry typically restored at higher *T*
- In **UV complete** QFTs **inverted SB** can potentially occur at all *T* due to **scale invariance**
- **Conjecture**: $O(N) \times Z_2$ symmetric field theory in D=2+1 at **BFP** (evidence from $D=4-\epsilon$ or non-local models)

- Here: finite-*T* phase diagram directly in *D*=2+1 for **UV complete, unitary, and local** model
 - Phase diagram is inverted for $N > N_c \sim 15 \rightarrow SB$ at all temperatures *Hawashin, Rong, Scherer, arXiv:2409.10606 (2024)*
- **Outlook**:
 - Solve for full potential $U(\rho_{\phi}, \rho_{\gamma})$, velocity renormalization,... (quantitative 2D Ising transition)
 - Circumvent no-go theorem: UV complete single-field model with $\lambda < 0$ but $\lambda_6 > 0$?

