UV complete field theory in (2+1)D with symmetry breaking at all temperatures

Michael M. Scherer

Ruhr University Bochum

@ ERG 2024, Les Diablerets, September 2024

Outline

- **• Introduction & key question**
	- ‣ Inverted symmetry breaking & phase diagrams
	- ‣ FRG 101: O(*N*) models and finite *T*

- **• O(***N***) Z2 field theory at finite** *T* ×
	- ‣ Mechanism for high-temperature SB
	- ‣ Fixed-points and UV completion
	- ‣ Quantum critical point & phase diagram

• Conclusions

Bilal Hawashin, RUB Junchen Rong, IHES

MERCUR Mercator Research Center Ruhr

CRC1238 Control and Dynamics of Quantum Materials

Symmetry breaking & temperature

- Spontaneous *symmetry breaking* is usually a *low-temperature* phenomenon
- Towards *high temperatures symmetries* are *restored*
	- ‣ Consider **free energy** $F = E - TS$
	- \triangleright *F* is minimized \rightarrow *high-entropy* states dominate at high *T*
	- ▶ *high-entropy states* typically disordered \rightarrow symmetry restoration for high T

- There are **exceptions**, e.g., **Pomeranchuk effect**
	- ‣ Liquid 3He: obeys Fermi statistics → *S* ∝ *T*
	- ‣ Solid 3He: nucleon spins contribute excess entropy *S* ∝ const .
	- For $T \lesssim 0.3K$: $S_{\text{solid}} > S_{\text{liquid}} \rightarrow 3\text{He}$ "freezes" when heated $S_{\text{solid}} > S_{\text{liquid}}$
	- ‣ **Inverted phase diagram**!

Pomerantschuk, Zh. Eksp. Teor. Fiz.. (1950)

Inverted phase diagrams

- **Pomeranchuk effect** also observed recently in *twisted bilayer graphene* and *moiré transition metal dichalcogenides*
- Also: Structural transition in Rochelle salt, "order by disorder", ...
- *Application:* Pomeranchuk effect in 3He can be used for *cooling* upon isentropic *compression*
- Inverted phase diagrams also exist in QFTs, e.g, with $O(N) \times O(M)$ symmetry \otimes Weinberg, PRD 9, 3357 (1974)
- *Applications* to domain wall and false vacuum problems, baryogenesis, inflation,... **@**...
- **Up to which temperatures** *T* **can this work?**
	- Lattice system w/ density matrix: $e^{-\beta H}$ \longrightarrow \longrightarrow \Box

Rosen *et al.*, Nature 592 (2021) Saito *et al.*, Nature 592 (2021) Li *et al.*, Nature 597 (2021)

- ‣ **UV incomplete models** (e.g., due to Landau poles): phenomenon can only be verified up to *T* below UV cutoff
- ▶ UV complete models: high-T limit could be nontrivial! _{© Chai, Chaudhuri, Choi, Komargodski, Rabinovici, Smolkin, PRL 125, 131603 (2020)}

Mohapatra & Senjanović, PRL 42, 1651 (1979) Pietroni, Rius, Tetradis, PLB 397, 119 (1997) Senjanović, COSMO97 (1998) ...

\blacktriangleright All sites decouple \rightarrow expectation values of local operators vanish \rightarrow symmetries restored at sufficiently high *T*

Kliesch, Gogolin, Kastoryano, Riera, Eisert, PRX 4, 031019 (2014)

Bajc, Lugo, Sannino, PRD 103, 096014 (2021)

UV complete models and temperature

- Short distance limit of UV complete field theory is a CFT/scale invariant #asymptotic-safety
- **What happens to CFT at finite** *T***?**
	- \triangleright CFT does not have inherent scale \rightarrow any nonzero *T* is equivalent to any other nonzero *T*
		- \rightarrow If CFT shows **SSB at some finite** $T \rightarrow$ there is **SSB at all** *T***!**
		- ➡ Question: **Are there unitary, local, nontrivial CFTs that do not restore SYM at infinite** *T***?**
- **Conjecture**: $O(N) \times Z_2$ symmetric scalar field theory in $D = 2 + 1$ dimensions at *biconical fixed point*

 m_ϕ^2 *ϕ* 2 $\phi^2 +$ m_χ^2 *χ* 2 χ^2 + *λϕ* 8 ϕ^4 + *λχ* 8 χ^4 + *λϕχ* 4 $\phi^2 \chi^2$) Chai, Chaudhuri, Choi, Komargodski, Rabinovici, Smolkin, PRL 125, 131603 (2020)

$$
S = \int d^D x \left(\frac{1}{2} (\partial \phi)^2 + \frac{1}{2} (\partial \chi)^2 + \right)
$$

- \triangleright **Discrete SB at finite** $T: O(N) \times Z_2 \longrightarrow O(N)$
-

• *Evidence from 4-* ϵ *expansion (unitarity violating for* $D \notin \mathbb{N}$ *, no MWH for* $\epsilon = 1$ *), 2+1D in long-range PT (non-local)* Hogervorst, Rychkov, van Rees, PRD 93, 125025 (2016) Chai, Dymarsky, Smolkin, PRL 128, 011601 (2022)

Polyakov, PLB 72, 477 (1978) Komargodski, Sharon, Thorngren, Zhou, SciPost Phys 6, 003 (2019)

FRG 101: O(*N***) model**

$$
\phi\big)^2+U_k(\phi)\bigg]
$$

- Effective average action in LPA': $\Gamma_k =$ ∫ $d^D x$ $\overline{}$ *Zk* 2 (∂*ϕ*)
	- ‣ Consider *D* dimensional space *or D*=*d*+1 dimensional Euclidean spacetime
	- ‣ Effective potential maybe in symmetric (SYM) or symmetry broken (SSB) regime

 \rightarrow Boundedness of potential requires $\lambda > 0$ (neglecting higher-order terms)

FRG 101: O(*N***) model**

- Effective average action in LPA': ∫ $d^D x$ $\overline{}$ *Zk* 2
	- Flow of *dimensionless effective potential in* D=3 with Litim regulator in LPA with $\rho = \phi^2/2$

$$
k\partial_k u(\rho) = -3u + \rho u' + \frac{1}{6\pi^2} \frac{1}{1 + u' + 2\rho u''}
$$

rescaling
radial mode

 ϕ_2

$$
\left(\partial\phi\right)^2+U_k(\phi)\Bigg]\\
$$

‣ Flow equation for *dimensionful mass in SYM regime:*

$$
k\partial_k m^2 = -(N+2)\frac{a_D}{3\pi^2}k^{D+2}\frac{\lambda}{(k^2+m^2)^2}
$$

 \triangleright R.H.S. is negative \Rightarrow for $k \to 0$ the mass² cannot decrease \Rightarrow bosonic fluctuations keep system in SYM phase.

- \triangleright Higher *T* can make fluctuations even stronger with same sign \Rightarrow system remains SYM phase.
- ‣ Corresponds to *standard expectation*: higher temperature *no transition into SSB regime* →

$$
k\partial_k u(\rho) = -3u + \rho u' + \frac{1}{6\pi^2} \frac{1}{1 + u' + 2\rho u''}
$$

rescaling
radial mode

• Introduce finite T:
$$
q_0 \rightarrow i\omega_n = 2\pi nT
$$
, $\left[\frac{d^Dq}{(2\pi)^D}\right]$

 \triangleright Use "covariant" Litim regulator and $\tau = 2\pi T/k$

τ

‣ Flow equation for *dimensionful mass* at high *T* or small *k*:

$$
k\partial_k m^2 = -(N+2)\frac{b_D}{3\pi^2}k^{d+2}\frac{\lambda}{(k^2+m^2)^2}
$$

O(*N***) model at finite temperature**

O(*N***) model at finite temperature**

‣ Flow equation for **condensate** *κ* at high *T* or small *k*:

$$
k\partial_k u(\rho) = -3u + \rho u' + \frac{1}{6\pi^2} \frac{1}{1 + u' + 2\rho u''}
$$

rescaling
radial mode

$$
k\partial_k \kappa = c_D(N-1)k^{d-2}T + O(k)
$$

- For $N > 1$ and $d \leq 2$: Condensate κ melts down at finite $k \to \textbf{no SSB} \to \textbf{Mermin-Wagner!}$
- **•** For $N = 1$ or $d > 2$: Flow gets arbitrarily slow towards IR \Rightarrow **condensate** $\kappa_{IR} > 0$ is possible \Rightarrow SSB

• Introduce finite T:
$$
q_0 \rightarrow i\omega_n = 2\pi nT
$$
, $\left(\frac{d^Dq}{(2\pi)^D}\right)$

 \triangleright Use "covariant" Litim regulator and $\tau = 2\pi T/k$

 ϕ_1^{\prime}

 ϕ_2

O(*N***) model at finite temperature**

- Numerical example for $N > 1$, $D = 2 + 1$
	-

\triangleright Start flow in SSB regime (*κ* > 0, dashed lines) → always flows into SYM regime (*m*² > 0, solid lines) for *T* > 0

O(*N***) model with Yukawa-coupled fermions**

- How to drive system into SSB regime?
	- ‣ Flow equation for *dimensionful mass* with *massless fermions*

$$
k\partial_k m^2 \sim -(N+2)\lambda s_0(\tau) + h^2 s_0^F
$$

- → Fermion loop has *opposite sign* \rightarrow can drive mass to zero and into SSB regime
- \triangleright *But:* for large $\tau \sim T/k$ it gets switched off \rightarrow cannot drive high-*T* symmetry breaking

0 (*τ*)

→ Talk by Mireia Tolosa-Simeón

τ

O(*N***) model coupled to Z2 model**

\n- Microscopic action with
$$
O(N) \times \mathbb{Z}_2
$$
 symmetry and $\rho_{\phi} = \phi_a \phi_a / 2$ and $\rho_{\chi} = \chi^2 / 2$
\n- $S = \int d^D x \left(\frac{1}{2} (\partial \phi)^2 + \frac{1}{2} (\partial \chi)^2 + m_{\phi}^2 \rho_{\phi} + m_{\chi}^2 \rho_{\chi} + \frac{\lambda_{\phi}}{2} \rho_{\phi}^2 + \frac{\lambda_{\chi}}{2} \rho_{\chi}^2 + \lambda_{\phi \chi} \rho_{\phi} \rho_{\chi} \right)$
\n- Bound from below if λ_{ϕ} , $\lambda_{\chi} > 0$ and $\lambda_{\phi} \lambda_{\chi} \geq \lambda_{\phi \chi}^2 \implies \lambda_{\phi \chi}$ can be negative!
\n

• *FRG flow of effective potential* $U(\rho_{\phi}, \rho_{\chi})$ can be written down in *closed form* in LPA' for abitrary *T*

 $\phi_{\chi}^{2} = 4 \bar{\rho}_{\phi} \bar{\rho}_{\chi} (u_{k}^{(1,1)})$ *k*) 2

> Hawashin, Rong, Scherer, arXiv:2409.10606 (2024) See also Pietroni, Rius, Tetradis, PLB 397, 119 (1997)

$$
\partial_t u = -\,du + (d - 2 + \eta_\phi)\bar{\rho}_\phi u^{(1,0)} + (d - 2 + \eta_\chi)\bar{\rho}_\chi u^{(0,1)} + \left[I_R^d(\omega_\chi, \omega_\phi, \omega_{\phi\chi}) + (N - 1)I_G^d(u^{(1,0)})\right]S_\phi(\tau) + I_R^d(\omega_\phi, \omega_\chi, \omega_{\phi\chi})S_\chi
$$

$$
\omega_{\phi} = u_k^{(1,0)} + 2\bar{\rho}_{\phi} u_k^{(2,0)}, \omega_{\chi} = u_k^{(0,1)} + 2\bar{\rho}_{\chi} u_k^{(0,2)}, \omega_{\phi\chi}^2 = 4\bar{\rho}
$$

O(*N***) model coupled to Z2 model**

• Microscopic action with $O(N) \times \mathbb{Z}_2$ symmetry and $\rho_{\phi} = \phi_a \phi_a/2$ and $\rho_{\chi} = \chi^2/2$

$$
S = \int d^{D}x \left(\frac{1}{2} (\partial \phi)^{2} + \frac{1}{2} (\partial \chi)^{2} + m_{\phi}^{2} \rho_{\phi} + m_{\chi}^{2} \rho_{\chi} + \frac{\lambda}{2} \right)
$$

→ Bound from below if $\lambda_{\phi}, \lambda_{\chi} > 0$ and $\lambda_{\phi} \lambda_{\chi} \geq \lambda_{\phi \chi}^2 \implies \lambda_{\phi \chi}$ can be negative!

• *FRG flow of dimensionful mass of* Z_2 *field* χ at high *T* **for negative** $\lambda_{\phi\chi}$ in D=2+1:

- ‣ Boson loop with mixed coupling has *opposite sign* **can potentially drive mass to zero and into SSB phase!** →
- \triangleright *And:* for large $\tau \sim T/k$ it *won't be switched off* \rightarrow can drive SSB towards high *T*!

$$
k\partial_k m_\chi^2 = \frac{k^4 a_D}{3\pi^2} \left(-\frac{3\lambda_\chi}{(k^2 + m_\chi^2)^2} + \frac{N|\lambda_{\phi\chi}|}{(k^2 + m_\phi^2)^2} \right)
$$

- (1) **Decoupled Wilson-Fisher FPs**:
- (2) **Iso**
- (3) **Bic**

Fixed points in $O(N) \times Z_2$ model in D=3 (T=0)

- How can we get **SSB at all temperatures**?
	- \triangleright Need UV completion of $O(N) \times \mathbb{Z}_2$ field theory with sufficiently negative $\lambda_{\phi\chi}$ contribution
	- ‣ **Fixed-point analysis!**
- Micros

Iscopic action generalized to
$$
O(N) \times O(M)
$$

\n
$$
S = \int d^{D}x \left(\frac{1}{2} (\partial \phi)^{2} + \frac{1}{2} (\partial \chi)^{2} + m_{\phi}^{2} \rho_{\phi} + m_{\chi}^{2} \rho_{\chi} + \frac{\lambda_{\phi}}{2} \rho_{\phi}^{2} + \frac{\lambda_{\chi}}{2} \rho_{\chi}^{2} + \lambda_{\phi\chi} \rho_{\phi} \rho_{\chi} \right)
$$
\n1.66

\n1.7

\n1.8

\n1.8

\n1.9

\n1.10

\n2.11

\n3.2

\n4.3

\n1.4

\n1.4

\n2.4

\n3.5

\n4.6

\n4.7

\n4.8

\n5.9

\n4.9

\n5.1

\n1.1

Biconical fixed point in *D***=3**

‣ Comparison w/ 5-loop at small *N*: *^N*=2 *^ν ^η^φ ^η^χ*

- BFP is not IR stable for $N > 2$ but can still define UV completion
	- ‣ is indeed **negative**! *λϕχ*
	- For $N \ge 5$ we even find: $N|\lambda_{\phi\chi}| > 3\lambda_{\chi}$
	- ‣ For large enough *N*: *good convergence* within LPA(')*n*

negative, with $U(\rho_{\boldsymbol{\phi}}, \rho_{\boldsymbol{\chi}})$ *bounded from below!*

RG flows & inverted phase diagram at finite *T*

QCP separates $O(N - 1) \times Z_2$ from $O(N - 1)$ phase

RG flows & inverted phase diagram at finite *T*

• Microscopic starting point is BFP in *SSB-SSB regime* $(T = 0)$ for $N = 100$

0

RG flows & phase diagram at finite *T*

• Evolution of phase diagram with *N*

- Inverted phase diagram only for $N > N_c$
- For $N < N_c$ phase diagram is back to normal
- ‣ We find *Nc* ∼ 15

Conclusions

- **Inverted SB** occurs in various physical systems #pomeranchuk-effect #rochelle-salt
- Symmetry typically restored at higher *T*
- In **UV complete** QFTs **inverted SB** can potentially occur at all *T* due to **scale invariance**
- **Conjecture:** $O(N) \times Z_2$ symmetric field theory in *D*=2+1 at **BFP**

- Here: finite-*T* phase diagram directly in *D*=2+1 for **UV complete, unitary, and local** model
	- ▶ Phase diagram is inverted for $N > N_c$ ~ 15 → **SB at all temperatures** *Hawashin, Rong, Scherer, arXiv:2409.10606 (2024)*
- **Outlook**:
	- Solve for full potential $U(\rho_{\phi}, \rho_{\chi})$, velocity renormalization,... (quantitative 2D Ising transition)
	- Circumvent no-go theorem: *UV complete single-field model* with $\lambda < 0$ but $\lambda_6 > 0$?

<u>(evidence from D=4- ϵ *or non-local models)</u>*

