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Symmetry breaking & temperature

• Spontaneous symmetry breaking is usually a low-temperature phenomenon

• Towards high temperatures symmetries are restored

‣ Consider free energy            

‣ F is minimized  high-entropy states dominate at high T

‣ high-entropy states typically disordered  symmetry restoration for high T

F = E − T S

→

→

M

T
Tc

• There are exceptions, e.g., Pomeranchuk effect

‣ Liquid 3He: obeys Fermi statistics  

‣ Solid 3He: nucleon spins contribute excess entropy 

‣ For :                  3He "freezes" when heated

‣ Inverted phase diagram!

→ S ∝ T

S ∝ const .

T ≲ 0.3K Ssolid > Sliquid →

Pomerantschuk, Zh. Eksp. Teor. Fiz.. (1950)
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Inverted phase diagrams

• Pomeranchuk effect also observed recently in twisted bilayer graphene and moiré transition metal dichalcogenides

• Also: Structural transition in Rochelle salt, "order by disorder", ...

• Application: Pomeranchuk effect in 3He can be used for cooling upon isentropic compression

Rosen et al., Nature 592 (2021)
Saito et al., Nature 592 (2021)
Li et al., Nature 597 (2021) 

• Inverted phase diagrams also exist in QFTs, e.g,  with  symmetry

• Applications to domain wall and false vacuum problems,  baryogenesis, inflation,...

O(N) × O(M) Weinberg, PRD 9, 3357 (1974)
Mohapatra & Senjanović, PRL 42, 1651 (1979)
Pietroni, Rius,  Tetradis, PLB 397, 119 (1997)
...

Senjanović, COSMO97 (1998)
...

• Up to which temperatures T can this work?

‣ Lattice system w/ density matrix:                  

➡ All sites decouple  expectation values of local operators vanish  symmetries restored at sufficiently high T

e−β H T→∞
⟶ 𝕀

→ →
Kliesch, Gogolin, Kastoryano, Riera, Eisert, PRX 4, 031019 (2014)

Chai, Chaudhuri, Choi, Komargodski, Rabinovici, Smolkin, PRL 125, 131603 (2020)
Bajc, Lugo, Sannino, PRD 103, 096014 (2021)

‣ UV incomplete models (e.g., due to Landau poles): phenomenon can only be verified up to T below UV cutoff

‣ UV complete models: high-T limit could be nontrivial!



UV complete models and temperature

• Short distance limit of UV complete field theory is a CFT/scale invariant #asymptotic-safety

• Conjecture:  symmetric scalar field theory in  dimensions at biconical fixed pointO(N) × Z2 D = 2 + 1

S = ∫ dDx ( 1

2
(∂ϕ)2 +

1

2
(∂χ)2 +

m2
ϕ

2
ϕ2 +

m2
χ

2
χ2 +

λϕ

8
ϕ4 +

λχ

8
χ4 +

λϕχ

4
ϕ2 χ2)

Chai, Chaudhuri, Choi, Komargodski, Rabinovici, Smolkin, PRL 125, 131603 (2020)

‣ Discrete SB at finite : 

‣ Evidence from 4-  expansion (unitarity violating for , no MWH for ), 2+1D in long-range PT (non-local)

T O(N) × Z2 ⟶ O(N)

ϵ D ∉ ℕ ϵ = 1
Hogervorst, Rychkov, van Rees, PRD 93, 125025 (2016) Chai, Dymarsky, Smolkin, PRL 128, 011601 (2022)

Polyakov, PLB 72, 477 (1978)
Komargodski, Sharon, Thorngren, Zhou, SciPost Phys 6, 003 (2019)

• What happens to CFT at finite T?

‣ CFT does not have inherent scale  any nonzero T is equivalent to any other nonzero T

➡ If CFT shows SSB at some finite T   there is SSB at all T!

➡ Question: Are there unitary, local, nontrivial CFTs that do not restore SYM at infinite T?

→

→



FRG 101: O(N) model

• Effective average action in LPA': Γk = ∫ dDx [
Zk

2
(∂ϕ)

2
+ Uk(ϕ)]

‣ Consider D dimensional space or D=d+1 dimensional Euclidean spacetime

‣ Effective potential maybe in symmetric (SYM) or symmetry broken (SSB) regime

ϕ1

ϕ2

U(ϕ)

U(ϕ) =
m2

2
ϕ2 +

λ

8
ϕ4, m2, λ > 0

‣ Boundedness of potential requires  (neglecting higher-order terms)λ > 0

ϕ1

ϕ2

U(ϕ)

U(ϕ) =
λ

2 ( ϕ2

2
− κ)

2

, κ, λ > 0

"condensate"



FRG 101: O(N) model

‣ Flow of dimensionless effective potential in D=3 with Litim regulator in LPA with ρ = ϕ2/2

k∂ku(ρ) = −3u + ρu′ 

rescaling

+
1

6π2

1

1 + u′ + 2ρu′ ′ 

radial mode

+
N − 1

6π2

1

1 + u′ 

Goldstones

‣ R.H.S. is negative  for  the mass2 cannot decrease  bosonic fluctuations keep system in SYM phase.⇒ k → 0 ⇒

• Effective average action in LPA': Γk = ∫ dDx [
Zk

2
(∂ϕ)

2
+ Uk(ϕ)]

‣ Flow equation for dimensionful mass in SYM regime:

k∂km
2 = − (N + 2)

aD

3π2
kD+2

λ

(k2 + m2)2
∼

ϕ1

ϕ2

U(ϕ)

U(ϕ) =
m2

2
ϕ2 +

λ

8
ϕ4



• Introduce finite T:

‣ Higher  can make fluctuations even stronger with same sign  system remains SYM phase.

‣ Corresponds to standard expectation: higher temperature  no transition into SSB regime

T ⇒

→

‣ Use "covariant" Litim regulator and τ = 2πT/k

k∂ku(ρ) = −3u + ρu′ 

rescaling

+
1

6π2

1

1 + u′ + 2ρu′ ′ 

radial mode

s0(τ)+
N − 1

6π2

1

1 + u′ 

Goldstones

s0(τ)

s0(τ)

τ

1

1

‣ Flow equation for dimensionful mass at high T or small k:

k∂km
2 = − (N + 2)

bD

3π2
kd+2

λ

(k2 + m2)2
T ∼

ϕ1

ϕ2

U(ϕ)

U(ϕ) =
m2

2
ϕ2 +

λ

8
ϕ4

O(N) model at finite temperature

q0 → iωn = 2πnT, ∫
dDq

(2π)D
→ T ∑

n∈ℤ
∫

ddq

(2π)d



O(N) model at finite temperature

‣ Flow equation for condensate  at high T or small k:κ

• Introduce finite T:

‣ Use "covariant" Litim regulator and τ = 2πT/k

k∂ku(ρ) = −3u + ρu′ 

rescaling

+
1

6π2

1

1 + u′ + 2ρu′ ′ 

radial mode

s0(τ)+
N − 1

6π2

1

1 + u′ 

Goldstones

s0(τ)

k∂kκ = cD(N − 1)kd−2T + 𝒪(kD+1)

‣ For  and : Condensate  melts down at finite   no SSB  Mermin-Wagner!

‣ For  or : Flow gets arbitrarily slow towards IR  condensate  is possible  SSB

N > 1 d ≤ 2 κ k → →

N = 1 d > 2 ⇒ κIR > 0 ⇒

ϕ1

ϕ2

U(ϕ)

q0 → iωn = 2πnT, ∫
dDq

(2π)D
→ T ∑

n∈ℤ
∫

ddq

(2π)d



O(N) model at finite temperature

log k
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• Numerical example for N > 1, D = 2 + 1

‣ Start flow in SSB regime ( , dashed lines)  always flows into SYM regime ( , solid lines) for κ > 0 → m2 > 0 T > 0

see also:
Gräter & Wetterich, PRL 75, 378 (1995)
...
Rançon, Kodio, Dupuis, Lecheminant, PRE 88, 012113 (2013)
Jakubczyk & Eberlein, PRE 93, 062145 (2016)
...
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O(N) model with Yukawa-coupled fermions

• How to drive system into SSB regime?

‣ Flow equation for dimensionful mass with massless fermions

k∂km
2 ∼ − (N + 2) λ s0(τ) + h2sF

0 (τ)

‣ Fermion loop has opposite sign  can drive mass to zero and into SSB regime

‣ But: for large  it gets switched off  cannot drive high-T symmetry breaking

→

τ ∼ T/k →

s0(τ)

τ

1

1

sF
0 (τ)

 Talk by

Mireia Tolosa-Simeón

→



O(N) model coupled to Z2 model

• Microscopic action with  symmetry and  and O(N) × ℤ2 ρϕ = ϕaϕa/2 ρχ = χ2/2

S = ∫ dDx ( 1

2
(∂ϕ)2 +

1

2
(∂χ)2 + m2

ϕρϕ + m2
χ ρχ +

λϕ

2
ρ2

ϕ +
λχ

2
ρ2

χ + λϕχρϕρχ)
‣ Bound from below if  and  can be negative!λϕ, λχ > 0 λϕλχ ≥ λ2

ϕχ ⇒ λϕχ

m2
ϕ = − 1,m2

χ = 0.5

λϕ = λχ = 1,λϕχ = − 0.9

• FRG flow of effective potential  can be written down in closed form in LPA' for abitrary TU(ρϕ, ρχ)

∂tu = − du + (d − 2 + ηϕ)ρ̄ϕu(1,0) + (d − 2 + ηχ)ρ̄χu
(0,1) + [Id

R(ωχ, ωϕ, ωϕχ) + (N − 1)Id
G(u(1,0))] Sϕ(τ) + Id

R(ωϕ, ωχ, ωϕχ)Sχ(τ)

ωϕ = u(1,0)

k
+ 2ρ̄ϕu(2,0)

k
, ωχ = u(0,1)

k
+ 2ρ̄χu

(0,2)

k
, ω2

ϕχ = 4ρ̄ϕρ̄χ(u
(1,1)

k
)2

Hawashin, Rong, Scherer, arXiv:2409.10606 (2024)
see also Pietroni, Rius, Tetradis, PLB 397, 119 (1997)



O(N) model coupled to Z2 model

• Microscopic action with  symmetry and  and O(N) × ℤ2 ρϕ = ϕaϕa/2 ρχ = χ2/2

S = ∫ dDx ( 1

2
(∂ϕ)2 +

1

2
(∂χ)2 + m2

ϕρϕ + m2
χ ρχ +

λϕ

2
ρ2

ϕ +
λχ

2
ρ2

χ + λϕχρϕρχ)

k∂km
2
χ =

k4aD

3π2 ( −
3λχ

(k2 + m2
χ)2

+
N |λϕχ |

(k2 + m2
ϕ)2 ) T = − +

• FRG flow of dimensionful mass of  field  at high T for negative  in D=2+1:Z2 χ λϕχ

m2
ϕ = − 1,m2

χ = 0.5

λϕ = λχ = 1,λϕχ = − 0.9

‣ Bound from below if  and  can be negative!λϕ, λχ > 0 λϕλχ ≥ λ2
ϕχ ⇒ λϕχ

‣ Boson loop with mixed coupling has opposite sign  can potentially drive mass to zero and into SSB phase!

‣ And: for large  it won't be switched off  can drive SSB towards high T!

→

τ ∼ T/k →



Fixed points in  model in D=3 (T=0)O(N) × Z2

• Microscopic action generalized to O(N) × O(M)

S = ∫ dDx ( 1

2
(∂ϕ)2 +

1

2
(∂χ)2 + m2

ϕρϕ + m2
χ ρχ +

λϕ

2
ρ2

ϕ +
λχ

2
ρ2

χ + λϕχρϕρχ)
(1) Decoupled Wilson-Fisher FPs:                  

(2) Isotropic FP w/ emergent :                          

(3) Biconical fixed point:                                   

λ*
ϕ

> 0, λ*χ > 0, λ*
ϕχ

= 0

O(N+M) λ*
ϕ

= λ*χ = λ*
ϕχ

> 0

λ*
ϕ

> 0, λ*χ > 0, λ*
ϕχ

≠ 0

• How can we get SSB at all temperatures?

‣ Need UV completion of  field theory with sufficiently negative  contribution

‣ Fixed-point analysis!

O(N) × ℤ2 λϕχ

Nelson, Kosterlitz, Fisher (1974)

...

Calabrese, Pelissetto, Vicari (2003)

Eichhorn, Mesterhazy, Scherer (2013)

...

N

M
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Infrared stability:



Biconical fixed point in D=3

• BFP is not IR stable for  but can still define UV completion

‣  is indeed negative!

‣ For  we even find: 

N > 2

λϕχ

N ≥ 5 N |λϕχ | > 3λχ

N

0

−2

−4

2

4

6

105 100

�φ

�χ

�φχ

‣ Comparison w/ 5-loop at small N: N=2 ν ηφ ηχ

5-loop 0.70(3) 0.037(5) 0.037(5)

FRG, LPA'6 0.68 0.04 0.04

Calabrese, Pelissetto, Vicari (2003)

N = 10 φ χ �φ �χ �φχ ✓1 ✓2 ✓3

LPA6 0.25 0.10 2.62 2.54 -2.34 2.02 1.06 0.61

LPA8 0.24 0.09 2.59 2.84 -2.43 1.98 1.07 0.61

LPA06 0.24 0.10 2.50 2.61 -2.30 1.99 1.09 0.56

LPA08 0.24 0.09 2.47 2.81 -2.34 1.95 1.09 0.57

negative, with  bounded from below!U(ρϕ, ρχ)

‣ For large enough : good convergence within LPA(')nN
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RG flows & inverted phase diagram at finite T

• Microscopic starting point is BFP in SSB-SSB regime ( ) for                          (finite-order LPA'6, single  per sector)T = 0 N = 100 Zi
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• Evolution of phase diagram with N

N ↘

N
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‣ Inverted phase diagram only for 

‣ For  phase diagram is back to normal

‣ We find 

N > Nc

N < Nc

Nc ∼ 15

vev



Conclusions

• Inverted SB occurs in various physical systems #pomeranchuk-effect #rochelle-salt

• Symmetry typically restored at higher T

• In UV complete QFTs inverted SB can potentially occur at all T due to scale invariance

• Conjecture:  symmetric field theory in D=2+1 at BFP      (evidence from D=4-  or non-local models)O(N) × Z2 ϵ

• Here: finite-T phase diagram directly in D=2+1 for UV complete, unitary, and local model

‣ Phase diagram is inverted for   SB at all temperatures

Hawashin, Rong, Scherer, arXiv:2409.10606 (2024)

N > Nc ∼ 15 →
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• Outlook: 

• Solve for full potential , velocity renormalization,... (quantitative 2D Ising transition)

• Circumvent no-go theorem: UV complete single-field model with  but ? 

U(ρϕ, ρχ)

λ < 0 λ6 > 0


