

Different flavours of fermion quadrupling condensates in magic-angle twisted bilayer graphene

Dr. Ilaria Maccari SNSF Postdoctoral Fellow, ETH Zürich

ERG 2024 - Les Diablares

Acknowledgements

Today's talk

Egor Babaev (KTH Stockholm)

Julien Garaud (University of Tours)

Johan Carlström (Stockholm University)

Daniel Weston (KTH Stockholm)

SR/NQR *μ*

Vadim Grinenko, Rajib Sarkar, Hans-Henning Klauss, TU Dresden, Germany/Shanghai Jiao Tong University, China

Ba1-xKxFe2As2 single crystals Kunihiro Kihou and Chul-Ho Lee AIST, Tsukuba, Japan

AC specific heat and ultrasound Tino Gottschall, Gorbunov, Denis, Sergei Zherlitsyn, Jochen Federico Caglieris, Ilya Wosnitza HZDR, Dresden-Rossendorf, Germany

AC microcalorimetry Andreas Rydh, Stockholm University, Sweden

STM Measurements

Quanxin Hu, Yu Zheng, Fashi Yang, Yongwei Li, Chi-Ming Yim

Shanghai Jiao Tong University, China

X-Ray measurements

Ilya Shipulin, Yongwei Li TU Dresden, Germany/ Shanghai Jiao Tong University, China

Thermoelectrical transport

Shipulin, Nadia Stegani, Christoph Wuttke, Christian Heß

IFW Dresden, Germany/ CNR-Spin Genova, Italy

Experiments Experiments

ETHzürich

Theory

Spontaneous breaking of the U(1) gauge symmetry

How can we go beyond the pairing paradigm? density wave order that is driven by properties of the band

(*x*) $= |\psi_i(x)| e^{i\phi_i(x)}$ Two components: \overline{e} **e** \overline{e} **← Component label**

ETHzürich

How can we go beyond the pairing paradigm?

1. Multicomponent Superconductors 2. Multiple broken symmetries

Inter-component interaction

SC state breaking multiple symmetries in the GS \mathcal{C} more stable and more stable stability favorable stability favorable (see Figure 5).

 $f = \frac{|\psi_1|^2 |\psi_2|^2}{2^2}$ $\left[\frac{1+\psi_2}{2\rho^2}\right] \left[\vec{\nabla}(\phi_1-\phi_2)\right]$ 2 + 1 $\frac{1}{2\rho^2} [|\psi_1|^2 \vec{\nabla} \phi_1 + |\psi_2|^2 \vec{\nabla} \phi_2 - e\rho^2 \vec{A}]^2 + \sum_{i=1}$ $\sum_{i=1,2}$ $\left[\alpha_i |\psi_i|^2 + \frac{\beta_i}{2}\right]$ $\frac{\nu_i}{2} |\psi_i|^4 +$ ${\bf B}^2$ 2 Re *ψ* Im *ψ* $U(1)$ **Neutral mode** \times $U(1)$ charged mode Re *ψ* Im *ψ* $\rho^2 = |\psi_1|^2 + |\psi_2|^2$ $f = \frac{1}{2} \left[\left(\overrightarrow{\nabla} - ie \overrightarrow{A} \right) \psi_1 \right]$ 2 + $\frac{1}{2}$ $\left(\vec{\nabla} \cdot \vec{i e A} \right) \psi_2$ 2 $+\sum_{i=1,2} \left[\alpha_i |\psi_i|^2 + \frac{\beta_i}{2} \right]$ $\frac{\nu_i}{2} |\psi_i|^4 +$ **B2** 2 2. Simplest case: two components interacting only via the EM field *l* $\psi_{i=1,2}(x) = |\psi_i(x)| e^{i\phi_i(x)}$ Two components: ϵ ϵ ϵ ϵ Component label

How can we go beyond the pairing paradigm?

- 1. Multicomponent Superconductors
- 2. Multiple broken symmetries 2.
- 3. **"Something"** destroying coherence between Cooper pairs while preserving **coherence between pairs of Cooper pairs**

 $f = \frac{|\psi_1|^2 |\psi_2|^2}{2^2}$ $\frac{1+\psi_2}{2\rho^2}$ $\left[\nabla(\phi_1, \phi_2)\right]$ 2 + 1 $\frac{1}{2\rho^2} [|\psi_1|^2 \nabla \phi_1 + \psi_2|^2 \nabla \phi_2 - e\rho^2 \vec{A}]^2 + \sum_{i=1,2}$ $\sum_{i=1,2}$ $\left[\alpha_i |\psi_i|^2 + \frac{\beta_i}{2}\right]$ $\frac{\nu_i}{2} |\psi_i|^4 +$ **B**2 2 Re *ψ* Im *ψ* $\langle \psi_1 \psi_2^* + \psi_1^* \psi_2 \rangle \neq 0$ $\phi_1 - \phi_2$ **Rigid phase difference** $\langle \psi_{1,2} \rangle \neq 0$ T_{S}^{SC} $\langle \psi_{1,2} \rangle = 0$ T_{S}^{SF} $\langle \psi_{1,2} \rangle = 0$ *T* **Fermion quadrupling condensate** T_c^{SC} **Normal Metal** $\langle \psi_{1,2} \rangle = 0$ $\langle \psi_1 \psi_2^* + \psi_1^* \psi_2 \rangle = 0$ T_c^{SF} 2. Simplest case: two components interacting only via the EM field **Superconducting Superfluid** 3. $\rho^2 = |\psi_1|^2 + |\psi_2|$ 2 *l* $\psi_{i=1,2}(x) = |\psi_i(x)| e^{i\phi_i(x)}$ Two components: ϵ ϵ ϵ ϵ Component label Re *ψ* Im *ψ* $U(1)$ **Neutral mode** \times $U(1)$ charged mode Re *ψ* Im *ψ*

ETHzürich

ETHzürich

26.09.2024

26.09.2024

ETHzürich

with the existence of several the existence of several characteristic temperature dependence of the zero-field high-resolution specific high-resolution specific heat Δ

ETHzürich

Above

Below

Tc

Tc

Theoretische Physik 12 **Fig. 2 | Characteristic temperatures.** Temperature dependencies of various physical properties measured in different magnetic fields for the single crystal 26.09.2024

with *x*=0.77 reveal the existence of several characteristic temperatures. **a**, Temperature dependence of the zero-field high-resolution specific heat Δ*C*el/*T*

Monte Carlo results on an effective 3D multicomponent model The role of different intercomponent interactions

I. Maccari and E. Babaev **Phys. Rev. B 105, 214520 (2022)**

๏ **Mean-field models**

- ๏ **Renormalization group approach**
- ✓ **It accounts for the proliferation of topological phase excitations.**
- ✦**You need to properly account for the coupling between the different topological defects.**
- ๏ **Monte Carlo numerical simulations**
- ✓**They allow for a systematic and unbiased study of the proliferation of different topological defects and their interactions.**

Monte Carlo results on an effective 3D multicomponent model The role of different intercomponent interactions

I. Maccari and E. Babaev **Phys. Rev. B 105, 214520 (2022)**

Starting point:

Three-component GL model with phase frustration

$$
f = \frac{1}{2} (\nabla \times \mathbf{A})^2 + \sum_{i} \frac{1}{2} |(\nabla + ie\mathbf{A})\psi_i|^2 + a_i |\psi_i|^2 + \frac{b_i}{2} |\psi_i|^4 + \sum_{i < j} \eta_{ij} |\psi_i| |\psi_j| \cos(\phi_i - \phi_j)
$$

At zero external magnetic field: any BTRS quadrupling fermionic condensate ín the type-II regíme $(e \to 0)$

What are we missing?

+Andreev-Bashkin interaction

A. F. Andreev and E. P. Bashkin, Sov. Phys. JETP 42, 164 (1975); A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).

$$
f = \frac{1}{2} (\nabla \times \mathbf{A})^2 + \sum_{i} \frac{1}{2} |(\nabla + ie\mathbf{A})\psi_i|^2 + a_i |\psi_i|^2 + \frac{b_i}{2} |\psi_i|^4 + \sum_{i < j} \eta_{ij} |\psi_i| |\psi_j| \cos(\phi_i - \phi_j) - \nu \sum_{j > i} \vec{J}_j \cdot \vec{J}_i|
$$

Mapping to a two-component London effective model

J. Garaud, M. Silaev, and E. Babaev, Physica C 533, 63 (2017)

$$
f = \frac{1}{2} (\nabla \times \mathbf{A})^2 + \sum_{i=1,2} \frac{\rho_i}{2} (\nabla \phi_i - e\mathbf{A})^2 + \nu (\nabla \phi_1 - e\mathbf{A}) \cdot (\nabla \phi_2 - e\mathbf{A}) + \eta_2 \cos[2(\phi_1 - \phi_2)]
$$

Phase frustration via a biquadratic Josephson coupling

symmetry of the normal state temperature Z_{2} $U(1)$ **BTRS** $U(1)$ $U(1)xZ_2$ tuning parameter

Monte Carlo results on an effective 3D multicomponent model The role of different intercomponent interactions I. Maccari and E. Babaev **Phys. Rev. B 105, 214520 (2022) Phase frustration via a biquadratic Josephson coupling** *^f* ⁼ ¹ ² ([∇] [×] **^A**) 2 + ∑ *i*=1,2 *ρi* ² (∇*ϕⁱ* [−] *^e***A**) 2 − *ν* (∇*ϕ*¹ − *e***A**) ⋅ (∇*ϕ*² − *e***A**) + *η*² cos[2(*ϕ*¹ − *ϕ*2)] (*ρ*1, *ρ*2*e* −*iπ* ²) (*ρ*1, *ρ*2*e i π* 2) **Two possible chiralities: Key intercomponent interactions:** ✦ **: coupling with the EM field Increasing decreases the cost of (1,1) vortices** ✦ **: biquadratic Josephson coupling Increasing increases the cost of domain walls** *e* → *e η*² → *η*² *U Z*² (1) FMF(m) T = Tc h = 0 -m0 m0 m FMF(m) h = 0 Figure 4: Mean field solution of the free energy as a function of magnetization at zero field at various temperatures. As we cool the system below *Tc*, the free energy changes smoothly to a "Mexican hat" shape, thereby making the *m* = 0 solution unstable and two new stable solutions Plots of the free energy at zero field are shown in Figure 4. We can see that as we cool the system below *Tc*, the *m* = 0 solution becomes metastable and any small perturbation causes the system to spontaneously "roll down" either to *m* = *m*⁰ or *m* = *m*0. When we apply a weak external magnetic field below *Tc*, the solution magnetized in the direction of the field 13 *^ρ*¹ ⁼ *^ρ*² ⁼ ¹ *^f* ⁼ ¹ [−] *^ν* ⁴ (∇*ϕ*¹ ⁺ [∇]*ϕ*² [−] ²*e***A**) 2 + 1 + *ν* ⁴ (∇*ϕ*¹ [−] [∇]*ϕ*2) 2 + *η*² cos[2(*ϕ*¹ − *ϕ*2)] + 1 2 (∇ × **A**) 2

 $\blacklozenge \nu$: : Current-current interaction \rightarrow I**ncreasing** ν **decreases the relative cost of phase sum fluctuations**

Monte Carlo results on an effective 3D multicomponent model symmetry of the normal state temperature The role of different intercomponent interactions Z_{2} $U(1)$ **BTRS** $U(1)$

I. Maccari and E. Babaev **Phys. Rev. B 105, 214520 (2022)**

$$
\text{Extreme type-II Limit:} \quad \lambda \to \infty \quad \longrightarrow \quad e = 0 \qquad f = \frac{1-\nu}{4} \left(\nabla \phi_1 + \nabla \phi_2 \right)^2 + \frac{1+\nu}{4} \left(\nabla \phi_1 - \nabla \phi_2 \right)^2 + \eta_2 \cos[2(\phi_1 - \phi_2)]
$$

 $U(1)xZ_2$

ETHzürich

26.09.2024

ETHzürich

Theoretische Physik 18 26.09.2024

I. Maccari , J. Carlström and E. Babaev, *Phys. Rev. B 107 (6), 064501 (2023)*

MATBG promising candidate to stabilize fermion quadrupling condensates

- 1. $2D \longrightarrow$ more phase fluctuations
- 2. Single-band SC unconventional ground state (multicomponent)

 $f = \frac{1}{2}$ $\frac{1}{2} |(\vec{\nabla} - ie\vec{A})\Delta_i|^2 + V(\Delta_1, \Delta_2);$ $V(\Delta_1, \Delta_2) = 2K |\Delta_1|^2 |\Delta_2|^2 [\cos(2(\phi_1 - \phi_2)) - 1]$ $(\vec{\nabla} \times \vec{A})^2 + \sum$ $\sum_{i=1,2}$ 2 $\Delta_1 = |\Delta_1| e^{i\phi_1};$ $\Delta_1 = |\cos(\frac{\gamma}{2})| e^{i\phi_1};$ $V(\Delta_1, \Delta_2) = \frac{K}{2} \sin^2(\gamma) [\cos(2(\phi_1 - \phi_2)) - 1]$ $\Delta_2 = |\Delta_2| e^{i\phi_2};$ *γ* $\Delta_2 = |\sin(\frac{\gamma}{2})| e^{i\phi_2};$ $|\Delta_1|^2 + |\Delta_2|^2 = \rho^2 = 1.$ *ϕ*12 = *ϕ*1 − *ϕ*2 $K > 0$ $K < 0$ $K < 0$: $\lambda > 0$ $\psi_{12} = \pi/2, \gamma = \pi/2$ $SC + BTRS$ Nematic SC $U(1) \times Z_3$ $U(1) \times Z_2$ $(\theta_{12} = indef, \gamma = n)$ $V_6(\Delta_1, \Delta_2) = \frac{\lambda}{2} \left[(\Delta_1 - i \Delta_2)^3 (\Delta_1^* - i \Delta_2^*)^3 + c.c. \right]$ To be added to lift the accidental degeneracy

Two complementary regions of parameter space describing a chiral (K>0) and a nematic (K<0) SC

ETHzürich

I. Maccari , J. Carlström and E. Babaev, *Phys. Rev. B 107 (6), 064501 (2023)*

 T_{Z_2} - TRSB transition $^2 = 1$ \bullet *We looked at the limit of very large penetration length, so we neglect the coupling to the vector potential $-m_0$ m₀ m FMF(m) T < Tc h = 0 Figure 4: Mean field solution of the free energy as a function of magnetization at zero field at P at zero field are shown in \overline{Z} T^2 , the *T*^c, the *T*^c, the *T*_n \ldots T^2 $T_{BKT} = T_c^{Z_2}$? $T_c^{Z_2} < T_{BKT}$? weak external magnetic field below *Tc*, the solution magnetized in the direction of the field Fractional vortices + DW string Z_2 DW endowgh, the solution of the direction of the direction of the direction of the $\frac{1}{2}$ Two possible chiralities: $\phi_1 - \phi_2 = \pm \frac{\pi}{2}$ $K > 0$ 2 Re *ψ* Im *ψ* **BKT transition** T_{BKT} Tight pair of vortices \overbrace{D} single vortices LOWER TEMPERATURE TOPOLOGICAL PHASE TRANSITION TELL TO HIGHER TEMPERATURE Illustration: ©Johan Jarnestad/The Royal Swedish Academy of Sciences **Large-scale Monte Carlo simulations** $K > 0$ $f = \frac{1}{2\rho^2} \left[|\Delta_1|^2 \overrightarrow{\nabla} \phi_1 + |\Delta_2|^2 \overrightarrow{\nabla} \phi_2 \right]^2$ $+\frac{|\Delta_1|^2|\Delta_2|^2}{2\rho^2} \left[\overrightarrow{\nabla}(\phi_1 - \phi_2) \right]$ 2 $+\frac{1}{2} \left[(\overrightarrow{\nabla} | \Delta_1 |)^2 + (\overrightarrow{\nabla} | \Delta_2 |)^2 \right] + 2K |\Delta_1|^2 |\Delta_2|^2 \left[\cos(2(\phi_1 - \phi_2)) - 1 \right]$ $\rho^2 = |\Delta_1|^2 + |\Delta_2|$ $e = 0$ SC vortices Trigger BKT transition Z_2 DW Trigger Z_2 transition Trigger BKT and Z_2 transition $T_{BKT} < T_c^{Z_2}$? $T_{BKT} = T_c^{Z_2}$? $T_c^{Z_2}$

Stabilising fermion quadruplets is not easy…

Chiral and nematic SC in 3D

✴ "Absence of Ginzburg-Landau mechanism for vestigial order in the normal phase above a two-component superconductor" P. T. How et al., Phys. Rev. B 107, 104514 (2023)

✴"First order SC phase transition in a chiral p+ip system" H. H. Haugen et al., Phys. Rev. B 104, 104515 (2021).

Preemptive first-order phase transition

ETHzürich

I. Maccari , J. Carlström and E. Babaev, *Phys. Rev. B 107 (6), 064501 (2023)*

Large-scale Monte Carlo simulations K>0 $f = \frac{1}{2\rho^2} \left[|\Delta_1|^2 \overrightarrow{\nabla} \phi_1 + |\Delta_2|^2 \overrightarrow{\nabla} \phi_2 \right]^2$ $+\frac{|\Delta_1|^2|\Delta_2|^2}{2\rho^2} \left[\vec{\nabla}(\phi_1-\phi_2)\right]$ 2 $+\frac{1}{2} \left[(\overrightarrow{\nabla} | \Delta_1 |)^2 + (\overrightarrow{\nabla} | \Delta_2 |)^2 \right] + 2K |\Delta_1|^2 |\Delta_2|^2 \left[\cos(2(\phi_1 - \phi_2)) - 1 \right]$ •2D three-band $e = 0$

 $\rho^2 = |\Delta_1|^2 + |\Delta_2|$ *We looked at the limit of very large penetration length, so we neglect the coupling to the vector potential

ETHzürich

model with phase

In other models this phase was found only with very strong Josephson coupling

0.75

 0.7

0.65 \mathcal{O}

 $\rightarrow \beta_{\mathbb{Z}_2}$ $\rightarrow \beta_{\mathrm{U}(1)}$

 \mathbb{Z}_2 symmetry broken. Algebraically decaying $U(1)$ -phase.

I. Maccari , J. Carlström and E. Babaev, *Phys. Rev. B 107 (6), 064501 (2023)*

Large-scale Monte Carlo simulations K>0

$$
f=\frac{1}{2\rho^2}\left[\left|\Delta_1\right|^2\overrightarrow{\nabla}\phi_1+\left|\Delta_2\right|^2\overrightarrow{\nabla}\phi_2\right]^2+\frac{\left|\Delta_1\right|^2\left|\Delta_2\right|^2}{2\rho^2}\left[\overrightarrow{\nabla}(\phi_1-\phi_2)\right]^2+\frac{1}{2}\left[(\overrightarrow{\nabla}\left|\Delta_1\right|)^2+(\overrightarrow{\nabla}\left|\Delta_2\right|)^2\right]+2K\left|\Delta_1\right|^2\left|\Delta_2\right|^2\left[\cos(2(\phi_1-\phi_2))-1\right]
$$

 $\rho^2 = |\Delta_1|^2 + |\Delta_2|$

Great, but…

*We looked at the limit of very large penetration length, so we neglect the coupling to the vector potential

- Why do vortices proliferate always at lower temperatures than domain walls?
- At very small values of K, finite-size effects become prominent, are the two transition still split apart in the thermodynamic limit?
- What is the role of relative density fluctuations?

RG approaches could be crucial to shed light on these main questions

• Related, but different model previously studied via RG: G. Bighin et al, PRL 123, 100601 (2019)

Coupled XY models studied with an interlayer coupling \propto cos($\phi_1 - \phi_2$)

Working in progress with Benjamin Liégeois, Chitra Ramasubramanian, and Nicolò Defenu

I. Maccari , J. Carlström and E. Babaev, *Phys. Rev. B 107 (6), 064501 (2023)*

I. Maccari , J. Carlström and E. Babaev, *In preparation (2024)*

MATBG promising candidate to stabilize fermion quadrupling condensates

- 1. $2D \longrightarrow$ more phase fluctuations
- 2. Single-band SC unconventional ground state (multicomponent)

 $f=\frac{1}{2}$ $\frac{1}{2} |(\vec{\nabla} - ie\vec{A})\Delta_i|^2 + V(\Delta_1, \Delta_2); \quad V(\Delta_1, \Delta_2) = 2K |\Delta_1|^2 |\Delta_2|^2 [\cos(2(\phi_1 - \phi_2)) - 1]$ $(\vec{\nabla} \times \vec{A})^2 + \sum_{i=1,2}$ 2 $\Delta_1 = |\Delta_1| e^{i\phi_1};$ $\Delta_1 = |\cos(\frac{\gamma}{2})| e^{i\phi_1};$ $V(\Delta_1, \Delta_2) = \frac{K}{2} \sin^2(\gamma) [\cos(2(\phi_1 - \phi_2)) - 1]$ $\Delta_2 = |\Delta_2| e^{i\phi_2};$ *γ* $\Delta_2 = |\sin(\frac{\gamma}{2})| e^{i\phi_2};$ $|\Delta_1|^2 + |\Delta_2|^2 = \rho^2$. *ϕ*12 = *ϕ*1 − *ϕ*2 $K > 0$ $K < 0$ $K < 0$: $\lambda > 0$ $b_{12} = \pi/2, v = \pi/2$ $SC + BTRS$ $= 0, v = \pi/3$ Nematic SC $U(1) \times Z_3$ $U(1) \times Z_2$ $\theta_{12} = indef, \gamma = \pi$ $V_6(\Delta_1, \Delta_2) = \frac{\lambda}{2} \left[(\Delta_1 - i\Delta_2)^3 (\Delta_1^* - i\Delta_2^*)^3 + c.c. \right]$ To be added to lift the accidental degeneracy *Two complementary regions of parameter space describing a chiral (K>0) and a nematic (K<0) SC*

ETH zürich

I. Maccari , J. Carlström and E. Babaev, *In preparation (2024)*

Large-scale Monte Carlo simulations $K < 0$

$$
f = \frac{1}{2\rho^2} \left[|\Delta_1|^2 \overrightarrow{\nabla} \phi_1 + |\Delta_2|^2 \overrightarrow{\nabla} \phi_2 \right]^2 + \frac{|\Delta_1|^2 |\Delta_2|^2}{2\rho^2} \left[\overrightarrow{\nabla} (\phi_1 - \phi_2) \right]^2 + \frac{1}{2} \left[(\overrightarrow{\nabla} |\Delta_1|)^2 + (\overrightarrow{\nabla} |\Delta_2|)^2 \right] +
$$

\n
$$
-2|K||\Delta_1|^2 |\Delta_2|^2 \left[\cos(2(\phi_1 - \phi_2)) - 1 \right] + \lambda \left[\cos(3\gamma) + 3\cos(\gamma)\sin^2(\gamma)\sin^2((\phi_1 - \phi_2)) \right]
$$

I. Maccari , J. Carlström and E. Babaev, *In preparation (2024)*

Large-scale Monte Carlo simulations *K* < 0

$$
f = \frac{1}{2\rho^2} \left[|\Delta_1|^2 \overrightarrow{\nabla} \phi_1 + |\Delta_2|^2 \overrightarrow{\nabla} \phi_2 \right]^2 + \frac{|\Delta_1|^2 |\Delta_2|^2}{2\rho^2} \left[\overrightarrow{\nabla} (\phi_1 - \phi_2) \right]^2 + \frac{1}{2} \left[(\overrightarrow{\nabla} |\Delta_1|)^2 + (\overrightarrow{\nabla} |\Delta_2|)^2 \right] +
$$

\n
$$
-2|K||\Delta_1|^2 |\Delta_2|^2 \left[\cos(2(\phi_1 - \phi_2)) - 1 \right] + \lambda \left[\cos(3\gamma) + 3\cos(\gamma)\sin^2(\gamma)\sin^2((\phi_1 - \phi_2)) \right]
$$

Nematic Z_3 phase transition

I. Maccari , J. Carlström and E. Babaev, *In preparation (2024)*

Large-scale Monte Carlo simulations *K* < 0

$$
f = \frac{1}{2\rho^2} \left[|\Delta_1|^2 \overrightarrow{\nabla} \phi_1 + |\Delta_2|^2 \overrightarrow{\nabla} \phi_2 \right]^2 + \frac{|\Delta_1|^2 |\Delta_2|^2}{2\rho^2} \left[\overrightarrow{\nabla} (\phi_1 - \phi_2) \right]^2 + \frac{1}{2} \left[(\overrightarrow{\nabla} |\Delta_1|)^2 + (\overrightarrow{\nabla} |\Delta_2|)^2 \right] +
$$

-2|K| |\Delta_1|^2 |\Delta_2|^2 \left[cos(2(\phi_1 - \phi_2)) - 1 \right] + \lambda \left[cos(3\gamma) + 3 cos(\gamma) sin^2(\gamma) sin^2((\phi_1 - \phi_2)) \right]

These preliminary results seem to suggest:

 $T_{BKT} > T_c^{Z_3}$

Charge-4e SC phase?

Conclusions and future directions

 0.6 0.01 \mathcal{F}_c ΔT_c Ω 0.00 25 0.4 K 20 $40[°]$ K \leftarrow $T_c(Z_2)$ \leftarrow T_{BKT}

- Fermion quadrupling condensates are novel fascinating states of matter so far observed only in two real materials.
	- ★ V. Grinenko, D. Weston, F. Caglieris, C. Wuttke, C. Hess, T. Gottschall, **I. Maccari**, et al., **Nature Physics 17, 1254–1259 (2021)**
	- ★ I. Maccari and E. Babaev, **Phys. Rev. B 105, 214520 (2022)**
	- ★ I. Shipulin, N. Stegani, **I. Maccari,** et al., **Nature Communications 14, 6734 (2023)**
- Twisted-bilayer graphene may be a promising candidate for the observation of fermion quadruplets above T_c
	- ★ **I. Maccari** , J. Carlström and E. Babaev, **Phys. Rev. B 107 (6), 064501 (2023)**
	- **I. Maccari**, J. Carlström and E. Babaev, **In preparation (2024)**
- ■How to engineer materials in such a way as to observe higher order fermionic condensates:
are very welcome! what symmetries are important? what interactions?
- ➡How to manipulate the nucleation of specific topological excitations?
- ➡What are the new emergent properties of these states?

Thank you for your attention!

I. Maccari and E. Babaev **Phys. Rev. B 105, 214520 (2022)**

V. Grinenko, et al., *Nat. Phys.* 17, 1254 - 1259 (2021).

Backup slides v. Grinenko, et al., *Nat. Phys.* 17, 1254 - 1259 (2021).

Extended Data Fig. 6 | Ultrasound data. Temperature dependence of the relative change of the sound velocity (left) for the longitudinal ($c_{11} + c_{12} + 2c_{66}$)/2 and transverse $(c_{11}-c_{12})/2$ acoustic modes with subtracted background (see Fig. S3 in the supplementary information) compared with temperature dependence of the magnetic susceptibility in *B*∥*ab*=0.5 mT (right) measured after cooling in zero magnetic field (ZFC) and cooling in the applied field (FC). The data for the samples with *x*=0.71, 0.81, and 1 are shown in panels **(a)**, **(b)**, and **(c)**, respectively. The sample with *x*=0.81 exhibits a kink in the velocity of the transverse acoustic mode at a position which agrees with the onset of the broad feature in the specific heat shown in Extended Data Fig. 8 for the same sample. The position of the kink agrees with the position of the Z_2 transition indicated by the thermal transport experiments for the sample with $x \approx 0.8$ (Fig. 2 in the main text).

V. Grinenko, et al., *Nat. Phys.* 17, 1254 - 1259 (2021).

The residual resistivity ρ_0 very weakly dependent on doping

$$
\rho(T) = \rho_0 + A_{FL} T^2
$$

$$
F = \frac{\left(\mathbf{J}^2\right)}{2e^2\varrho^2} + \frac{1}{2}\mathbf{B}^2 + \sum_i \frac{1}{2}(\nabla|\psi_i|)^2 + a_i|\psi_i|^2 + \frac{b_i}{2}|\psi_i|^4 + \sum_{i < j} \frac{|\psi_i|^2|\psi_j|^2}{\varrho^2} \left(\frac{\left[\nabla(\phi_i - \phi_j)\right]^2}{2} + \frac{\eta_{ij}\varrho^2\cos(\phi_i - \phi_j)}{|\psi_i||\psi_j|}\right).
$$

Spontaneous Magnetic Fields

No CDW evidences from STM data

Figure S3. STM data for the sample S_{NP} (a) STM Topograph recorded from the disordered surface of a $Ba_{1-x}K_xFe_2As_2$ sample with $x = 0.77$ (image size: (50×50) nm², $V_b = 80$ mV, $I_t = 100pA$). The disordered surface was likely caused by the mixture of Ba atoms and K atoms. (b) $dI/dV - V$ spectrum taken from a defect-free position (the red point) on the surface shown in (**a**) (Spectroscopic set-point: $V_s = 10$ mV, $I_s = 200pA$, amplitude of bias modulation used $V_{mod} = 0.25 \text{mV}$, showing a "V"-shaped superconducting gap. The black circle was experiment result. Red solid curve was fitting result using double-gap Dynes equation with a larger gap $(\Delta_2 = 3.1 \text{meV})$ and a smaller gap with node($\Delta_1 = 2.1$ meV). There is no "CDW" gap feature in the spectrum.

SC vortices carrying a temperature-dependent fractional quantum flux duantum $\ddot{}$ 71 F

 \mathcal{L}

Yusuke Iguchi et al. **Science 380**, 1244 - 1247 (2023)

