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Single component real scalar field in LPA:

The LPA approximation amounts to setting the field ¢ in the Hessian to a spacetime constant,
thus dropping from a derivative expansion all terms that do not take the form of a correction to

the potential. The flow equation for Vj(¢) then takes the form:

0 1 diq A 1

where J; = —Adj, t being the renormalization group ‘time’ which, following [7], we have chosen to

flow towards the IR. Here the momentum, potential and field are already scaled by the appropriate
power of A to make them dimensionless. Then A = C(q?)/¢* no longer depends on A. The same

is true of 0; A, which after scaling we write as A, where
A=2C"(¢). (2.2)

Since C(g?) is monotonically increasing, we have that A > 0.

The scaling dimension of the field is d, = %(d — 2+ 1), where n is the anomalous dimension.



Asymptotic behaviour

Fixed point potfential:

Vil — A\gp\d/dso e as © — 00

=> discrete set of fixed points



Eigenoperator equation:

Vip) +ev(p) e

¢ being infinitesimal. Here A is the RG eigenvalue. It is the scaling dimension of the corresponding
coupling, and is positive (negative) for relevant (irrelevant) operators. The scaling dimension of
the operator v(y) itself is then d — A\. We write the eigenoperator equation in the same form as
refs. [34,35,41]:

— az(p)v" () + a1(p)v'(p) + ao(p)v(p) = (d = Nv(y), (2.4)

where the p-dependent coefficients multiplying the eigenoperators are given by:
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Asymptotic behaviour

Eigenoperator equation:

Cutoff-dependent

d -\
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=> Sturm-Liouville type



Liouville Normal Form:

Thus from SL analysis [32], we know that the eigenvalues \,, are real, discrete, with a most pos-
itive (relevant) eigenvalue and an infinite tower of ever more negative (more irrelevant) eigenvalues,

An — —00 as n — oo [30]. Let us define a ‘coordinate’ x:

(2.17)
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(always taking the positive root in fractional powers). Defining the wave-function as

U(x) = ay ()2 (p)o() (2.18)

= . @ /
enables us to recast (2.15) as: 1 exp{_/ d99,a1(¢ )dw'} |
0

w(p) =

az(p) az(¢’)

| dy(a)

dx?

+U(x)P(x) = (d = A)y(x). (2.19)

This is a one-dimensional time-independent Schrodinger equation for a particle of mass m = 1/2,
with energy E' = d — ) i.e. just the eigenoperator scaling dimension, and with potential [34,35,41]:
2
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where the terms on the right hand side are functions of .




Asymptotic behaviour

ddigx) FU(2)y(z) = (d — A)ap(w)

(d—dy,)?z* + - SHM. Universal!

WKEB: /xndx VE, —Uz) = (n n %) .



d/dy
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Find double this for O(N) scalar field theory,
for all ixed N >0 and N=-2,-4,...



f(R) approximation

Split into background + fluctuation:
g,uy =0 a5 h,uy
IR cutoff: R ~ R(-V*/k?)

Single metric, or background field, ansatz:

Replace 67Ty with 0°T'
5h’u,/ (.CIZ‘) 5ha5 (y) 59W(5L’) 59@5 (y)
This allows: I'xlg] = /d433\/§ fe(R)

by specialising to a maximally symmeftric background manifold
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where V = [ d*z,/g is the volume of the manifold, and the 7 objects are the following spacetime traces:
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Asymptotic analysis: fixed points
Ble) = :

g b= 1.

exp(azl) — 1’
4-Sphere:

: 16¢7, 1 1\° pb
FR)= 220 patb 4 2 g2 Ry AR? 4 — (%“) c ekl

76872 76872 \5ab(1 +b)ad
A

4-Hyperboloid: S
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To get discrefe set of fixed points, match sphere and
hyperboloid solutions smoothly through flat space (R—0).




Asymptotic analysis: eigenoperators
Substitute fi(R) = f(R) + evi(R) = i) =R

—as(R)v"(R) + a1 (R)v'(R) + ag(R) v(R) = (4 — 0)v(R)

) —0 \ ap(R) — 0

AQ(Q’I“(AQ il Oé()R) (AO o+ OéoR)’l“/(Ao S OéQR))
(9f (R)AZ + 3f'(R)Ap + E(R) + 16¢,1(Ag + agR))?
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=> Sturm-Liouville type



Liouville Normal Form
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All non-universal parameters have dropped out
except for b (and this is caused by the single metric
approximation).



Why single metric ansatz is at fault:

I d%q A
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d/dy

X a0 O (n“d/d@l)) as mn — 00

Double this for O(N) scalar field theory,
for all ixed N =0 and N=-2,-4,...
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