
Wavelet view on the Landau poles in quantum field
theory

1 M.V.Altaisky1

Space Research Institute, Moscow

in collaboration with Dr. M. Hnatich (JINR)

*
Exact Renormalization Group 2024

Sep 22 – 28, 2024, SwissMAP

1e-mail: altaisky@rssi.ru
1 M.V.Altaisky Space Research Institute, Moscow Wavelet view on the Landau poles in quantum field theory 1 / 18



Abstract

Following a series of papers [Phys. Rev. D 93, 105043 (2016), Err:105, 049901;
102(2020)125021; 108 (2023)085023], we develop an approach to RG, where the
effective action functional ΓA[φ] is a sum of all fluctuations of scales from the size of
the system L down to the scale of observation A. It is shown that RG flow equation
of the type ∂ΓA

∂ ln A = −Y (A) is a limiting case of such consideration, when the
running coupling constant is assumed to be a differentiable function of scale. In this
approximation, the running coupling constant, calculated at one-loop level, suffers
from the Landau pole. In general case, when the scale-dependent coupling constant
is a non-differentiable function of scale, the Feynman loop expansion results in a
difference equation, which keeps the coupling constant finite for any finite value of
scale A. Examples of the Euclidean φ4 and QED are considered.

Reference

MA & M.Hnatich Phys. Rev. D 108 (2023) 085023
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UV divergences in quantum field theory

Continuous wavelet transform in quantum field theory

Wavelets and scale-dependent functions: φ(x)→ φa(x), dx → dxd ln a

Quantum field theory without divergences

Scale-dependent coupling constant for scale-dependent fields

Renormalization group equation

Differentiablity as a cause of Landau poles
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UV divergences in QFT

φ4 in Rd example:

Z [J] = N
∫

e
−

∫
dd x

[
1
2 (∂φ)2+ m2

2 φ
2+ λ

4!φ
4−Jφ

]
Dφ,

n-point Green functions

∆(n) ≡ 〈φ(x1) . . . φ(xn)〉c =
δn lnZ [J]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

The divergences of Feynman graphs in the perturbation expansion of the Green
functions with respect to the small coupling constant λ emerge at coinciding argu-
ments xi = xk . For instance, the bare two-point correlation function

∆
(2)
0 (x − y) =

∫
ddp

(2π)d

eıp(x−y)

p2 + m2

is divergent at x =y for d ≥ 2.
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Why do we need scale-dependent functions?
L2(R) or not L2(R)?

φ(x)→ φa(x), dx → dxda
a

To localize a particle in an interval ∆x the measuring device requires a
momentum transfer of order ∆p∼~/∆x . φ(x) at a point x has no
experimental meaning. What is meaningful, is the vacuum expectation of
product of fields in certain region around x

If the particle, described by φ(x), have been initially prepared on the interval
(x − ∆x

2 , x + ∆x
2 ), the probability of registering it on this interval is ≤ 1: for

the registration depends on the strength of interaction and the ratio of
typical scales related to the particle and to the equipment.

Statement of existence: if a measuring equipment with a given resolution a
fails to register an object, prepared on spatial interval of width ∆x with
certainty, then tuning the equipment to all possible resolutions a′ would lead
to the registration.

∫
|φa(x)|2dµ(a, x) = 1

[M.V.A. Phys. Rev. D 81(2010)125003]
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Continuous Wavelet Transform

Each square-integrable function φ(x) ∈ L2(Rd ) can be represented in a form

φ(x) =
1

Cχ

∫
G

1

ad
χ

(
x − b

a

)
φa(b)

ddbda

a
,

where

φa(b) :=

∫
Rd

1

ad
χ

(
x − b

a

)
φ(x)ddx ≡ 〈a, b;χ|φ〉,

are known as wavelet coefficients of φ with respect to mother wavelet χ and the
integration is performed over the affine group

G : x ′ = ax + b, x , b ∈ Rd , a ∈ R+,

For isotropic wavelets

Cχ =

∫ ∞
0

|χ̃(ak)|2 da
a
.
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Field theory for scale-dependent fields φa(b)

Substitution of the CWT into field theory Z [J] gives a theory for the fields φa(x)

ZW [Ja] = N
∫

exp
[
−1

2

∫
φa1 (x1)D(a1, a2, x1 − x2)φa2 (x2)

da1d
dx1

Cψa1
×

× da2d
dx2

Cψa2
− λ

4!

∫
V a1,...,a4

x1,...,x4
φa1 (x1) · · ·φa4 (x4)

da1d
dx1

Cψa1
×

× da2d
dx2

Cψa2

da3d
dx3

Cψa3

da4d
dx4

Cψa4
+

∫
Ja(x)φa(x)

daddx

Cψa

]
Dφa,

with D(a1, a2, x1 − x2) and V a1,...,a4
x1,...,x4

denoting the wavelet images of the inverse
propagator and that of the interaction potential.
The Green functions for scale component fields are given by functional derivatives

〈φa1 (x1) · · ·φan (xn)〉c =
δn lnZW [Ja]

δJa1 (x1) . . . δJan (xn)

∣∣∣∣
J=0

.
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Feynman Diagram Technique

The Feynman rules

MA IOP Conf. Ser. 173(2003)893; Phys. Rev. D 81(2010)125003 :

each field φ̃(k) will be substituted by the scale component
φ̃(k)→ φ̃a(k) = χ̃(ak)φ̃(k).
each integration in momentum variable is accompanied by corresponding
scale integration:

ddk

(2π)d
→ ddk

(2π)d

da

a

1

Cχ
.

each interaction vertex is substituted by its wavelet transform; for the N-th

power interaction vertex this gives multiplication by factor
N∏

i=1

χ̃(aiki ).

Since χ̃(p) ∼ pne−
p2

2 , n ≥ 1, this gives an UV suppressing factors:

1

p2 + m2
→ χ̃(a1p)χ̃(a2p)

p2 + m2
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What is observed?

If all states 〈a ≥ A, x ;χ|φ〉 are registered, but those with a < A are not:

φ(A)(x) =
1

Cg

∫
a≥A

〈x |g ; a, b〉dµ(a, b)〈g ; a, b|φ〉,

G(A)(x1, . . . , xn) ≡ 〈φ(A)(x1), . . . , φ(A)(xn)〉

The running coupling constant λ(A), calculated with such cutoff, describes the
interaction of all perturbations with scales up to A, but says nothing about the
interaction of perturbations with scales about(A,A− δA).

Causality assumption

There should be no scales ai in internal lines of a Feynman diagram smaller than
the minimal scale of all external lines A

The integration
∫∞

A
da
a in all internal lines harnesses a factor f 2(Ak) on each line,

where

f (x) =
1

Cχ

∫ ∞
x

|χ̃(a)|2 da
a
, f (0) = 1

is effective cutoff function.
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Examples of Cutoff Functions
Gaussian derivatives wavelets

χn(x) = (−1)n+1 dn

dxn

e−x2/2

√
2π

,

χ̃n(k) = −(−ık)ne−k2/2, n > 0

-1.5

-1

-0.5

0

0.5

1

-4 -2 0 2 4

g
(x

)

x

Vanishing Momenta Family: wavelets g1 - g4

g1(x)
g2(x)
g3(x)
g4(x)

Cχn =

∫ ∞
0

a2ne−a2 da

a
=

Γ(n)

2

Effective cutoff function

f (n, x) =
2

Γ(n)

∫ ∞
x

|χ̃n(a)|2 da
a

Cutoff functions for χ1 − χ4:

f (1, x) = e−x2

f (2, x) = (x2 + 1)e−x2

f (3, x) = (x4 + 2x2 + 2)e−x2

/2

f (4, x) = (x6 + 3x4 + 6x2 + 6)e−x2

/6
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Effective action functional

Effective action for scale-dependent fields:

Γ[φa] = −WW [Ja] +

∫
Ja(x)φa(x)

da

Cψa
ddx

where WW [Ja] = lnZW [Ja]
Vertex functions

Γ(A)[φa] = Γ
(0)
(A) +

∞∑
n=1

1

n!
Γ

(n)
(A)(a1, b1, . . . , an, bn)φa1 (b1) . . . φan (bn)×

×da1d
db1

Cψa1
. . .

dand
dbn

Cψan

The observation scale A = mini ai plays the role of normalization scale

A ∂
∂A Γ(A) = ... – Flow equation UV IR

Wilsonian RG Wavelet RG

A

µ
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Example of φ4 in one loop

In one-loop approximation, the two-point and the four-point vertex functions, Γ(2)

and Γ(4), respectively, are given by the following diagrams:

Γ(2) = ∆12 −
1

2 1 2 ,
Γ

(2)
(A)(a1, a2, p)

χ̃(a1p)χ̃(−a2p)
= p2 + m2 +

λ

2
T d
χ (A)

Γ(4) = −

1

2 3

4

− 3

2

1

2

3

4

Γ
(4)
(A)

χ̃(a1p1)χ̃(a2p2)χ̃(a3p3)χ̃(a4p4)
= λ− 3

2
λ2X d

χ (A)
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φ4 calculations with χ1(x) = −x exp(−x2/2)/
√

2π wavelet

”Tadpole” integral, χ1 wavelet, d = 4

T d
χ (A) =

Sdm
d−2

(2π)d

∫ ∞
0

f 2
χ (Amx)

xd−1dx

x2 + 1

T 4
χ1

(A) =
m2

8π2

∫ ∞
0

e−2α2x2 x3dx

x2 + 1
=

m2

32π2

(
1

α2
− 2e2α2

Ei1(2α2)

)
where α = Am and Ei1(z) :=

∫∞
1

e−xz

x dx is the exponential integral of 1st kind.

”Fish” integral

X d
χ (A) =

∫
ddq

(2π)d

f 2
χ (qA)f 2

χ ((q − s)A)

[q2 + m2] [(q − s)2 + m2]

In relativistic limit s2 � 4m2, s = p1 + p2 the dimensionless scale is α = As. In
d = 4 in this limit the value of tadpole integral is

X 4
χ1

(A) =
1

16π2

[
2Ei1(2α2)− Ei1(α2) + e−α

2 1− e−α
2

α2

]
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Running coupling constant in one loop. χ1 and χ2 wavelets

Summing up over scale range [A,∞] we get

λ
(1)
eff (α2) = λ+

3

2

λ2e−α
2

16π2

[
eα

2

(2Ei1(2α2)− Ei1(α2)) +
1− e−α

2

α2

]
,

λ
(2)
eff (α2) = λ+

3

2

λ2e−α
2

16π2

[
eα

2

(2Ei1(2α2)− Ei1(α2)) +
1− e−α

2

α2

+
α6 + 18α4 + 134α2 + 384− e−α

2

(128α2 + 384)

256α2

]
, α ≡ As

In reality we need to sum up fluc-
tuations up to the system size
(L):

λA = λL +
3

2
λ2

L[X d
χ (A)− X d

χ (L)],

m2
A = m2

L −
λL

2
[T d
χ (A)− T d

χ (L)]
-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.502  0.504  0.506  0.508  0.51  0.512  0.514

m
2

λ

m=1 χ
1

m=1 χ
2

m=0.8 χ
1

m=0.8 χ
2

m=0.6 χ
1

m=0.6 χ
2

Iteration of the finite shell renormalization goes from L = 4 with the value λ = 1
2

at the left

of the picture by setting Li+1 = Li/
√

2 ≡ Ai . The right side of the picture corresponds
to the UV limit of iteration. An arbitrary value of s = 2 was chosen.
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Continuous RG limit of λA = λL + 3
2λ

2
L[X d

χ (A)− X d
χ (L)]

If the scales A and L are sufficiently close to each other, the difference equation

−∆λ

λ2
= −3

2
∆X

can be transformed to the differential equation d 1
λ = − 3

2dX , which has the solution

λ(A) =
λL

1− 3
2λL(X (A)− X (L))

,

which coincides with the solution of the original equation only for small values of
λL – otherwise it suffers from the pole.
The differentiation of λ(α2) with respect to scale gives the equation [ χ1 wavelet]

α2 ∂λ

∂α2
=

3

2
λ2α2

∂X 4
χ1

∂α2
=

3λ2

32π2

e−α
2 − 1

α2
e−α

2

Its asymptote for small values α� 1 coincides with standard result

∂λeff

∂µ
≈ 3λ2

16π2
, µ = − lnα.
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Scale dependence for different wavelets

For different wavelets of the same Gaussian deriva-
tives family the logarithmic slopes are the same for
α2 � 1:

di := α2
∂X 4

χi

∂α2
= − 1

16π2
+ O(α2)

For the first two wavelets the small scale Taylor
series gives

d1 = − 1

16π2
+

3α2

32π2
− 7α4

96π2
+ O(α6),

d2 = − 1

16π2
− 13α2

1024π2
+

139α4

3072π2
+ O(α6).

The shape of the mother wavelet works as an aper-
ture of the microscope used to study the details
of different scales

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

λ
(A

)

As

χ1
χ2

Dependence of the coupling constant on the logarithm of the

dimensionless scale α = As calculated in one-loop approxi-

mation, with χ1 and χ2 wavelets. The value of the coupling

constant is normalized to λL = 1 at infinity. The parameter

s = 2 was taken.
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Landau poles

In the limit of small α, the RG equation
for the coupling constant,

∂λ

∂ lnα
= − 3λ2

16π2
,

has a well-known solution

λ(α) =
λ1

1 + 3λ1

16π2 ln α
α1

,

where λ1 ≡ λ(α1) is a reference value of
the coupling constant at a certain refer-
ence value α1.
This solution suffers from a Landau pole.

In wavelet theory the differential equation

α2 ∂λ

∂α2
=

3λ2

32π2

e−α
2 − 1

α2
e−α

2

can be solved as an RG-type equation,

d

(
1

λ

)
= − 3

32π2

e−α
2

(e−α
2 − 1)

α4
dα2

If the value of λ is known at certain scale
λ1 = λ(x1 =(A1s)2), then at x =(As)2

λ(x) =
1

1
λ1

+ 3
32π2 [F (x)− F (x1)]

,

where F (x) := 2Γ(−1, 2x) − Γ(−1, x),
with Γ(a, z) =

∫∞
z

ta−1e−tdt being the
incomplete gamma-function.
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Thank You for your attention!

Conclusion

Differential theory makes 1 + x into 1
1−x . This results in Landau poles. It seems

better to avoid such procedures ...
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