Asymptotic Safety in Generalized Proca Theories

Sara Rufrano Aliberti

Scuola Superiore Meridionale, Napoli Istituto Nazionale di Fisica Nucleare – Sezione Napoli

Work in progress with L. Heisenberg, G. Lambiase, A. Platania

September, 26th 2024

12th International Conference on the Exact Renormalization Group 2024 (ERG2024)

Outline

- 1) Generalized Proca Theories (GPTs);
- 2) Asymptotic Safety in GPTs;
- 3) Setup;
- 4) Results;
- 5) Conclusions.

12th International Conference on the Exact Renormalization Group 2024 (ERG2024)

Motivations:

- Cosmology \rightarrow Dynamical Dark Energy [1];
- Derivative self-interactions of the vector field are included in the Lagrangian in flat spacetime [2] to have:
 - Second order equation of motion;
 - Longitudinal mode as a Galileon.
- Constraints from:
 - Data (e.g. [3]);
 - EFT constraints (e.g. [4]).

[1] L. Heisenberg, "A systematic approach to generalisations of General Relativity and their cosmological implications", Physics Reports Volume 796, 15 March 2019, Pages 1-113.

[2] L. Heisenberg, "Generalization of the Proca Action", JCAP 1405 (2014) 015.

[3] A. De Felice et al., "Observational constraints on generalized Proca theories", Phys. Rev. D 93, 104016 (2016).

[4] C. de Rham et al., "Positivity bounds in vector theories", JHEP12 (2022) 086.

12th International Conference on the Exact Renormalization Group 2024 (ERG2024)

■ Galileon Theory [1]:

- Higher order derivatives in the scalar field;
- Invariance under Galilean transformations and shift;
- Second order equation of motion.

$$\mathcal{L}_{\text{Gal}} = \sum_{i=1}^{5} c_i \mathcal{L}_i \tag{1}$$

$$\mathcal{L}_{1} = \pi$$

$$\mathcal{L}_{2} = (\partial \pi)^{2}$$

$$\mathcal{L}_{3} = (\partial \pi)^{2} \Box \pi$$

$$\mathcal{L}_{4} = (\partial \pi)^{2} \left[(\Box \pi)^{2} - (\partial_{\mu} \partial_{\nu} \pi)^{2} \right]$$

$$\mathcal{L}_{5} = (\partial \pi)^{2} \left[(\Box \pi)^{3} - 3 \Box \pi (\partial_{\mu} \partial_{\nu} \pi)^{2} + 2 (\partial_{\mu} \partial_{\nu} \pi)^{3} \right]$$
(2)

[1] L. Heisenberg, "A systematic approach to generalisations of General Relativity and their cosmological implications", Physics Reports Volume 796, 15 March 2019, Pages 1-113.

12th International Conference on the Exact Renormalization Group 2024 (ERG2024)

Generalized Proca Theories (flat spacetime) [2]:

$$\mathcal{L}_{\text{gen.Proca}} = -\frac{1}{4}F_{\mu\nu}^2 + \sum_{n=2}^5 \alpha_n \mathcal{L}_n \tag{3}$$

$$\begin{split} \mathcal{L}_{2} &= f_{2}(A_{\mu}, F_{\mu\nu}, \tilde{F}_{\mu\nu}) \\ \mathcal{L}_{3} &= f_{3}(A^{2}) \ \partial \cdot A \\ \mathcal{L}_{4} &= f_{4}(A^{2}) \ \left[(\partial \cdot A)^{2} - \partial_{\rho}A_{\sigma}\partial^{\sigma}A^{\rho} \right] + c_{2}\tilde{f}_{4}(A^{2})F^{2} \\ \mathcal{L}_{5} &= f_{5}(A^{2}) \ \left[(\partial \cdot A)^{3} - 3(\partial \cdot A)\partial_{\rho}A_{\sigma}\partial^{\sigma}A^{\rho} + 2\partial_{\rho}A_{\sigma}\partial^{\gamma}A^{\rho}\partial^{\sigma}A_{\gamma} \right] \\ &\quad + d_{2}\tilde{f}_{5}(A^{2})\tilde{F}^{\mu\alpha}\tilde{F}^{\nu}_{\alpha}\partial_{\mu}A_{\nu} \\ \mathcal{L}_{6} &= e_{2}f_{6}(A^{2})\tilde{F}^{\alpha\beta}\tilde{F}^{\mu\nu}\partial_{\alpha}A_{\mu}\partial_{\beta}A_{\nu} \,, \end{split}$$

[2] L. Heisenberg, "Generalization of the Proca Action", JCAP 1405 (2014) 015.

12th International Conference on the Exact Renormalization Group 2024 (ERG2024)

Sara Rufrano Aliberti, September 26th 2024

(4)

5

- Partial derivatives (flat spacetime) \rightarrow Covariant derivatives (curved spacetime) + non-minimal couplings [2];
- Longitudinal mode \rightarrow Hordenski interactions.

$$\mathcal{L}_{\text{gen.Proca}}^{\text{curved}} = -\frac{1}{4}F_{\mu\nu}^{2} + \sum_{n=2}^{5}\beta_{n}\mathcal{L}_{n}$$

$$\mathcal{L}_{2} = G_{2}(A_{\mu}, F_{\mu\nu}, \tilde{F}_{\mu\nu})$$

$$\mathcal{L}_{3} = G_{3}(X)\nabla_{\mu}A^{\mu}$$

$$\mathcal{L}_{4} = G_{4}(X)R + G_{4,X} \left[(\nabla_{\mu}A^{\mu})^{2} - \nabla_{\rho}A_{\sigma}\nabla^{\sigma}A^{\rho} \right]$$

$$\mathcal{L}_{5} = G_{5}(X)G_{\mu\nu}\nabla^{\mu}A^{\nu} - \frac{1}{6}G_{5,X} \left[(\nabla \cdot A)^{3} + 2\nabla_{\rho}A_{\sigma}\nabla^{\gamma}A^{\rho}\nabla^{\sigma}A_{\gamma} - 3(\nabla \cdot A)\nabla_{\rho}A_{\sigma}\nabla^{\sigma}A^{\rho} \right]$$

$$-g_{5}(X)\tilde{F}^{\alpha\mu}\tilde{F}^{\beta}_{\mu}\nabla_{\alpha}A_{\beta}$$

$$\mathcal{L}_{6} = G_{6}(X)\mathcal{L}^{\mu\nu\alpha\beta}\nabla_{\mu}A_{\nu}\nabla_{\alpha}A_{\beta} + \frac{G_{6,X}}{2}\tilde{F}^{\alpha\beta}\tilde{F}^{\mu\nu}\nabla_{\alpha}A_{\mu}\nabla_{\beta}A_{\nu}$$
with $X = -A_{\mu}A^{\mu}/2$
[2] L. Heisenberg, "Generalization of the Proca Action", JCAP 1405 (2014) 015.
(5)

12th International Conference on the Exact Renormalization Group 2024 (ERG2024)

Asymptotic Safety of GPTs

- GPTs lack constraints from fundamental physics;
 - Idea: ConstrainWilson coefficients from fundamental physics \leftrightarrow Determine the AS landscape [5,6].
- Asymptotic Safety for GPTs:
 - 1. Investigation of the possible UV completion of GPTs;
 - 2. Study the AS landscape from the FP.
- Important for:
 - Positivity bounds;
 - Cosmological applications.

[5] I. Basile, A. Platania, "Asymptotic Safety: Swampland or Wonderland?", Universe 2021, 7, 389.

[6] B. Knorr, A. Platania, "Unearthing the intersections: positivity bounds, weak gravity conjecture, and asymptotic safety landscapes from photongraviton flows", arXiv:2405.08860.

12th International Conference on the Exact Renormalization Group 2024 (ERG2024)

Setup

Truncation:

$$\mathcal{L} = \frac{1}{16\pi G} \left[2\Lambda - R \right] - \frac{1}{4} F_{\mu\nu}^2 + \frac{1}{2} G_2 A^2 + G_{4,1} \left[A^2 R + (\nabla_\mu A^\mu)^2 - (\nabla_\mu A_\nu) (\nabla^\nu A^\mu) \right] + G_{4,2} \left[A^4 R + 2 A^2 (\nabla_\mu A^\mu)^2 - 2 A^2 (\nabla_\mu A_\nu) (\nabla^\nu A^\mu) \right]$$
(7)

- Minimal setup to compare with positivity bounds [4] (non-minimal couplings, 4th order in A), but minimizing difficulties:
 - **Background field method** (linear split);
 - **Background field approximation** (Einstein manifold, constant Proca field);
 - Harmonic gauge.

[4] C. de Rham et al., "Positivity bounds in vector theories", JHEP12 (2022) 086.

12th International Conference on the Exact Renormalization Group 2024 (ERG2024)

Results

Einstein-Hilbert

$$\mathcal{L}_{EH} = \frac{1}{16\pi G} \left[2\Lambda - R \right]$$

Fixed Point		Critical Exponents		
g^{*}	λ^*	θ_1	θ_2	
0.645	0.194	2.413 <i>– i</i> 2.612	2.413 + <i>i</i> 2.612	

Table 1: NGFP for *A*⁰ truncation in Generalized Proca Theories and corresponding critical exponents.

Einstein-Hilbert + free Proca field

$$\mathcal{L}_{EH+G_2A^2} = \frac{1}{16\pi G} \left[2\Lambda - R \right] - \frac{1}{4} F_{\mu\nu}^2 + \frac{1}{2} G_2 A^2$$

Fixed Points		Critical Exponents			
g^{*}	λ^*	g_2^*	$\boldsymbol{\theta_1}$	θ_2	θ_3
0.746	0.159	0.0457	2.180 <i>– i</i> 2.153	2.180 + <i>i</i> 2.153	1.041

Table 2: NGFP for Einstein-Hilbert plus free Proca field theory and corresponding critical exponents.

12th International Conference on the Exact Renormalization Group 2024 (ERG2024)

Results

■ GPT – second order

$$\mathcal{L}_{2} = \frac{1}{16\pi G} \left[2\Lambda - R \right] - \frac{1}{4} F_{\mu\nu}^{2} + \frac{1}{2} G_{2} A^{2} + G_{4,1} \left[A^{2} R + (\nabla_{\mu} A^{\mu})^{2} - (\nabla_{\mu} A_{\nu}) (\nabla^{\nu} A^{\mu}) \right]$$

Fixed Point						
g^{*}	λ^*	g_2^*	$g^*_{4,1}$			
0.734	0.136	0.0897	0.229			
Critical Exponents						
θ_1	θ_2	θ_3	$ heta_4$			
2.103 – <i>i</i> 1.655	2.103 + <i>i</i> 1.655	2.664 <i>- i</i> 1.468	2.664 + <i>i</i> 1.468			

Table 3: NGFP for truncation up to A^2 in Generalized Proca Theories and corresponding critical exponents.

12th International Conference on the Exact Renormalization Group 2024 (ERG2024)

Results

■ GPT – fourth order

$$\mathcal{L} = \frac{1}{16\pi G} \left[2\Lambda - R \right] - \frac{1}{4} F_{\mu\nu}^2 + \frac{1}{2} G_2 A^2 + G_{4,1} \left[A^2 R + (\nabla_\mu A^\mu)^2 - (\nabla_\mu A_\nu) (\nabla^\nu A^\mu) \right] + G_{4,2} \left[A^4 R + 2 A^2 (\nabla_\mu A^\mu)^2 - 2 A^2 (\nabla_\mu A_\nu) (\nabla^\nu A^\mu) \right]$$

Fixed Points					
g^{*}	λ^*	g_2^*	$g^*_{4,1}$	$g^*_{4,2}$	
0.711	0.131	0.0354	0.297	-3.933	
Critical Exponents					
$\boldsymbol{\theta}_1$	θ_2	θ_3	$ heta_4$	θ_5	
2.239 – <i>i</i> 1.662	2.239 + <i>i</i> 1.662	3.506	7.206	-7.093	

Table 4: NGFP for truncation up to A^4 in Generalized Proca Theories and corresponding critical exponents.

12th International Conference on the Exact Renormalization Group 2024 (ERG2024)

Fig.1: Fixed point values of dimensionless couplings vs the truncation considered.

Fixed Points					
g^{*}	λ^*	g_2^*	$g^*_{4,1}$	$g^{*}_{4,2}$	
0.711	0.131	0.0354	0.297	-3.933	

12th International Conference on the Exact Renormalization Group 2024 (ERG2024)

Plots

Fig.2: Real part of the critical exponents for each stable NGFP vs the truncation considered.

Critical Exponents					
$\boldsymbol{ heta_1}$	θ_2	θ_3	$oldsymbol{ heta}_4$	θ_{5}	
2.239 <i>– i</i> 1.662	$2.239 + i \ 1.662$	3.506	7.206	-7.093	

12th International Conference on the Exact Renormalization Group 2024 (ERG2024)

Conclusions

Generalized Proca Theories:

- *Possible expanation for Dynamical Dark Energy* [1];
- Theoretically and experimentally constrained;
- Lack constraints on Wilson coefficients from fundamental physics \rightarrow Asymptotic Safety?
- Properties of fixed points in GPT analyzed:
 - Four relevant directions \rightarrow less predictivity than usual;
 - Slower convergence than usual \rightarrow need for higher-order terms?
- Next steps:
 - Adding more terms in the Lagrangian;
 - Using the FP to determine Wilson coefficients in the AS landscape of GPTs (as in [5, 6]).

[1] L. Heisenberg, "A systematic approach to generalisations of General Relativity and their cosmological implications", Physics Reports Volume 796, 15 March 2019, Pages 1-113.

[5] I. Basile, A. Platania, "Asymptotic Safety: Swampland or Wonderland?", Universe 2021, 7, 389.

[6] B. Knorr, A. Platania, "Unearthing the intersections: positivity bounds, weak gravity conjecture, and asymptotic safety landscapes from photongraviton flows", arXiv:2405.08860.

12th International Conference on the Exact Renormalization Group 2024 (ERG2024)

Thank you for your attention!